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Robust Visual Correspondence:  
Theory and Applications 

Federico Tombari, Luigi Di Stefano and Stefano Mattoccia  
DEIS/ARCES – University of Bologna 

Italy 

1. Introduction  

Visual correspondence represents one of the most important tasks in computer vision. Given 
two sets of pixels (i.e. two images), it aims at finding corresponding pixel pairs belonging to 
the two sets (homologous pixels). As a matter of fact, visual correspondence is commonly 
employed in fields such as stereo correspondence, change detection, image registration, 
motion estimation, pattern matching, image vector quantization.  
The visual correspondence task can be extremely challenging in presence of disturbance 
factors which typically affect images. A common source of disturbances can be related to 
photometric distortions between the images under comparison. These can be ascribed to the 
camera sensors employed in the image acquisition process (due to dynamic variations of 
camera parameters such as auto-exposure and auto-gain, or to the use of different cameras), 
or can be induced by external factors  such as changes of the amount of light emitted by the 
sources or viewing of non-lambertian surfaces at different angles. 
 All of these factors tend to produce brightness changes in corresponding pixels of the two 
images that can not be neglected in real applications implying visual correspondence 
between images acquired from different spatial points (e.g. stereo vision) and/or different 
time instants (e.g. pattern matching, change detection). In addition to photometric 
distortions, differences between corresponding pixels can also be due to the noise 
introduced by camera sensors. Finally, the acquisition of images from different spatial 
points or different time instants can also induce occlusions.  Evaluation assessments have 
also been proposed which compared visual correspondence approaches for tasks such as 
stereo correspondence (Chambon & Crouzil, 2003), image registration (Zitova & Flusser, 
2003) and image motion (Giachetti, 2000). 

2. Literature review 

Let Ir, It be respectively the reference image patch vector and the target image patch vector, 
that have to be matched together. Traditional matching measures can be subdivided into 
two categories: correlation-based or distance-based. Between the first,  the most commonly 
adopted are the Normalized Cross-Correlation (NCC) and the Zero-mean Normalized Cross-
Correlation (ZNCC): 
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 r r t t

r t

r r t t2 2

(I I ) (I I )
ZNCC(I ,I )

I I I I

− −
=

− ⋅ −
c  (2) 

with ◦ denoting the dot product, ||·||p the Lp norm, ¯ the mean value over the patch.  
Thanks to normalization with regards to the magnitude of the vectors and to the mean 
intensity value of the image patch, NCC and ZNCC are invariant, respectively, to linear and 
affine transformation between Ir and It.  Efficient techniques for exhaustive template 
matching based on NCC and ZNCC matching measures have been proposed in (Mattoccia 
et al., 2008-1) and (Mattoccia et al., 2008-2).  
On the other side, commonly used dissimilarity measures are those derived from the Lp-
distance between Ir and It. Between this class, two popular measures are the Sum of Absolute 
Differences (SAD) and the Sum of Squared Differences (SSD): 

 
r t r t 1

SAD(I ,I ) I I= −  (3) 

 
2

r t r t 2
SSD(I ,I ) I I= −  (4) 

These two measures showed experimentally good robustness towards noise (Aschwanden 
& Guggenbuhl, 1992), (Martin & Crowley, 1995). An efficient technique for exhaustive 
template matching based on Lp-distance has been proposed in (Tombari et al., 2008). A 
similar approach was also adopted in (Mattoccia et al., 2007) for motion estimation.  
While all these measures are usually computed directly on the pixel intensities of the 
images, in (Martin & Crowley, 1995) it was shown that by computing these measures on the 
gradient norm of each pixel a higher robustness is attained, i.e. for what concerns 
insensitivity to illumination changes the SSD and the NCC applied on gradient norms 
(referred to here respectively as G-SSD and G-NCC) showed to perform well. In particular, 
if we denote with Gr(i, j) the gradient of Ir at pixel (i, j): 
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and similarly with Gt(i, j) the gradient of It at pixel (i, j): 

 
( , ) ( , )

G ( , ) , ( , ), ( , )

T

T
t tt t

t i j

I i j I i j
i j G i j G i j

i j

⎡∂ ∂ ⎤
⎡ ⎤= =⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦

 (6) 

the gradient norm, or magnitude, in both cases is defined as:  
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Hence the G-NCC function can be defined as:  
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and, analogously, the G-SSD function as: 

 ( )2

r t r t2 2
( , )

G-SSD(I ,I ) G ( , ) G ( , )
ri j I

i j i j
∈

= −∑
 (10) 

In addition to these measures, many alternatives have been proposed in literature with the 
specific aim of deploying robust image matching. The Gradient Correlation (GC) measure, 
proposed in (Crouzil et al., 1996) and derived from a measure originally introduced in 
(Scharstein, 1994), is based on two terms, referred to as distinctiveness (D) and confidence (C), 
both computed from intensity gradients: 
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The GC measure is then defined as: 

 r t

r t

r t

D(I ,I )
GC(I ,I )

C(I ,I )
=  (13) 

Its minimum value is 0, corresponding to the highest similarity between Ir and It. For any 
other positive value, the greater the value, the higher the dissimilarity between the two 
vectors. In order to compute the partial derivatives, (Crouzil et al., 1996) proposes to use 
either the Sobel operator or the Shen-Castan ISEF filter (Shen & Castan, 1992).  
The Orientation Correlation (OC) measure (Fitch et al., 2002) is based on the correlation of the 
orientation of the intensity gradient. In particular, for each gradient Gr(i,j) a complex 
number representing the orientation of the gradient vector is defined as: 

 ( )r
O (i,j) sgn ( , ) ( , )r r

i j
G i j iG i j= +  (14) 

with i denoting the imaginary unit and where: 

 ( )
0 0
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if x

x x
elsewhere

x

⎧ =
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⎪
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 (15) 

Analogously, a complex number representing the orientation of the gradient vector Gt (i, j) is 
defined as: 

 ( )t
O (i,j) sgn ( , ) ( , )t t

i j
G i j iG i j= +  (16) 

As proposed in (Fitch et al., 2002), the partial derivatives for the gradient computation 
should be calculated by approximating them with central differences. Hence, the OC measure 
between Ir and It is defined as the real part of the correlation between all gradient 
orientations belonging to Ir and It: 
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with * indicating the conjugate of the complex vector. In (Fitch et al., 2002) it is proposed to 
exploit the correlation theorem to compute the correlation operation in the frequency 
domain by means of the FFT in order to achieve computational efficiency. 
Another class of measures concerns the so-called order-consistency or order-preservation 
hypothesis, that is the assumption that the considered distortions do not violate the ordering 
between the intensities of neighbouring pixels. This assumption includes a more general 
class of transformations compared to the linear or affine case. These measures are called 
ordinal and a typical example of this class is represented by the Rank transform. As for this 
measure, both Ir and It are transformed into two novel images where each pixel stores the 
number of points in the patch whose intensity is less than that of the central point of the 
patch: 

 { }r
R (i,j) ( , ) | ( , ) ( , )

r r r
u v I I u v I i j= ∈ <  (18) 

 { }t
R (i,j) ( , ) | ( , ) ( , )

t t t
u v I I u v I i j= ∈ <  (19) 

where |· | represents the cardinality operator. Once the two transforms are computed, a 
matching measure is deployed to compare Rr and Rt, e.g. (Zabih & Woodfill, 1994) proposes 
to use the SAD.   
A typical example of this class is represented by the Rank transform (Zabih & Woodfill, 1994), 
and the measure proposed in (Bhat & Nayar, 1998). Further approaches of robust visual 
correspondence measures specifically conceived for change detection are (Ohta, 2001), (Xie 
at al., 2004), (Mittal & Ramesh, 2006). 
Finally, other robust approaches have been proposed in (Seitz, 1989), (Lai, 2000), (Odone et 
al., 2001), (Ullah et al., 2001), (Kaneko et al., 2003). 

3. The MF measure 

This section describes a novel approach, referred to here as Matching Function (MF), which is 
implicitly based on the ordering assumption. In particular, MF aims at quantifying how well 
the order is preserved between corresponding pairs of neighbouring pixels in the two 
images. A simple and effective approach for evaluating the order-consistency is to evaluate 
the difference between the intensities of pairs of neighbouring pixels. As an example, let Ir 
be a 3×3 patch. In order to evaluate the order preservation between neighbouring elements 
within this window, many pairs (e.g. 72) should be considered, as each of the 9 pixels has to 
be put in correspondence with each other. In order to simplify the problem, we propose to 
consider only a subset of the whole neighbouring pairs set by evaluating only horizontal 
and vertical neighbouring pixels. Hence, the considered pairs are reduced to 18, as shown in 
Fig. 1.  
In particular, in order to quantify how well the ordering is preserved between the two 
image patches Ir and It we propose to correlate the differences between the considered 
corresponding pairs within the 3×3 window. If the ordering is preserved for a given pair, 
the result of the pointwise correlation is a positive coefficient regardless of the sign of the 
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intensity difference, which tends to increase the correlation score associated with the 3 × 3 
window. Conversely, if the order is not preserved the correlation coefficient is negative, and 
the correlation score is decreased. Moreover, since horizontal and vertical differences may 
be thought as the discrete approximation of the horizontal and vertical derivatives of the 
image, the proposed measure can also be interpreted as the cross-correlation between two 
vectors made out of derivatives computed within the two 3×3 patches. 
 

           

Fig. 1. considered subset of horizontal and vertical pairs of neighbouring pixels in a 3x3 
patch 

In the general case of two MxN patches, the considered pairs of pixels in each set include all 
pixels at distance 1 and 2 along horizontal and vertical directions. In order to compute this 
set, we define a vector of pixel differences computed at a point (i, j) on Ir: 
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and, similarly, at a point (i, j) on It: 

 
1,2

( 1, ) ( , )

( , 1) ( , )
( , )

( 1, ) ( 1, )

( , 1) ( , 1)

t t

t tt

t t

t t

I i j I i j

I i j I i j
i j

I i j I i j

I i j I i j

δ

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− − +
⎢ ⎥

− − +⎣ ⎦

 (21) 

Hence, the MF function consists in correlating these two vectors for each point of Ir, It, and 
in normalizing the correlation with the L2 norm of the vectors themselves: 
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It is worth noticing that the normalization allows the measure to range between [−1,1]. It is a 
peculiarity of this method that, because of the correlation between differences of pixel pairs, 
intensity edges tend to determine higher correlation coefficients (in magnitude) with respect 
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to low-textured regions. Thus, this can be seen as if the measure mostly relies on the patch 
edges. For this reason, MF can be usefully employed also in presence of high levels of noise, 
as this disturbance factor can typically violate the ordering constraint on low-textured 
regions, but seldom along intensity edges. Similar considerations can be made in presence of 
partially occluded patches. 
The set of pixel pairs in (21, 22) can be seen as made out of two subsets: the set of horizontal 
and vertical lateral derivatives (i.e. all pixels at distance 1 one to another along horizontal 
and vertical directions), and the set of horizontal and vertical central derivatives (i.e. all 
pixels at distance 2 one to another along same directions). Theoretically, the former should 
benefit of the higher correlation given by adjacent pixels, while the latter should be less 
influenced by quantization (“sampling”) noise that is introduced by the camera sensor. We 
will refer to two additional measures of the MF class applied on each of these two subsets 
as, respectively, MF1 and MF2. For these last two cases, we define the vector of pixel 
differences at distance 1 pixel: 
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and the pixel differences relative to the case of distance 2 pixels: 
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Then, MF1 and MF2 are defined respectively as: 
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and: 
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A graphical representation of the 3 different pixel pair sets used by MF1,2, MF1 and MF2 is 
shown in Fig. 2.  
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                            MF1,2                                                            MF1                                           MF2 

Fig. 2. The 3 considered sets of neighbouring pixel pairs. 

4. Application to pattern matching 

This section shows the application of the class of measures referred to as MF in a typical 
pattern matching scenario. Pattern matching aims at finding the most similar instances of a 
given pattern, P, within an image. In particular, in this section MF measures are compared 
against traditional general purpose approaches as well as against proposals specifically 
conceived to achieve robustness. One goal of the proposed comparison is to determine 
which measure is more suitable to deal with the aforementioned disturbance factors 
represented by photometric distortions, noise and occlusions.  
More precisely, in the comparison with MF we will consider the following matching 
measures:  GC (Crouzil et al., 1996), OC (Fitch et al., 2002), G-NCC, G-SSD (Martin and 
Crowley, 1995). Considered traditional measures are NCC, ZNCC and SSD. All the 
considered measures  are tested on 3 datasets which represent a challenging framework for 
what regards the considered distortions. These datasets, which are publicly available at 
www.vision.deis.unibo.it/pm-eval.asp, are characterized by a significant presence of the 
disturbance factors discussed previously, and are now briefly described. 
Guitar. In this dataset, 7 patterns were extracted from a picture which was taken with a 
good camera sensor (3 MegaPixels) and under good illumination conditions given by a lamp 
and some weak natural light. All these patterns have to be sought in 10 images which were 
taken with a cheaper and more noisy sensor (1.3 MegaPixels, mobile phone camera). 
Illumination changes were introduced in the images by means of variations of the rheostat 
of the lamp illuminating the scene (G1−G4), by using a torch light instead of the lamp 
(G5−G6), by using the camera flash instead of the lamp (G7− G8), by using the camera flash 
together with the lamp (G9), by switching off the lamp (G10). Furthermore, additional 
distortions were introduced by slightly changing the camera position at each pose and by 
the JPEG compression. 
Mere Poulard - Illumination Changes. In dataset Mere Poulard - Illumination Changes (MP-
IC), the picture on which the pattern was extracted was taken under good illumination 
conditions given by neon lights by means of a 1.3 MegaPixels mobile phone camera sensor. 
This pattern is then searched within 12 images which were taken either with the same 
camera (prefixed by GC) or with a cheaper, 0.3 VGA camera sensor (prefixed by BC). 
Distortions are due to slight changes in the camera point of view and by different 
illumination conditions such as: neon lights switched off and use of a very high exposure 
time (BC − N1, BC − N2, GC − N), neon lights switched off (BC − NL, GC−NL), presence of 
structured light given by a lamp light partially occluded by various obstacles (BC−ST1, …, 

www.intechopen.com



 Stereo Vision 

 

324 

BC−ST5), neon lights switched off and use of the camera flash (GC−FL), neon lights 
switched off, use of the camera flash and of a very long exposure time (GC−NFL). Also in 
this case, images are JPEG compressed. 
 
 

 
 

Fig. 3. Guitar dataset 

Mere Poulard - Occlusions. In the dataset Mere Poulard - Occlusions (MP-Occl) the pattern is 
the same as in dataset MP-IC, which now has to be found in 8 images taken with a 0.3 VGA 
camera sensor. In this case, partial occlusion of the pattern is the most evident disturbance 
factor. Occlusions are generated by a person standing in front of the camera (OP1, …, OP4), 
and by a book which increasingly covers part of the pattern (OB1, …, OB4). Distortions due 
to illumination changes, camera pose variations, JPEG compression are also present. 

G1 G2

   G3                           G4 G5

G6 G7 G8

G9 G10
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Fig. 4. MP-IC dataset 

The number of pattern matching instances is thus 70 for the Guitar dataset, 12 for the MP-IC 
dataset and 8 for the MP-Occl dataset, for a total of 90 instances overall. The result of a 
pattern matching process is considered erroneous when the coordinates of the best matching 
subwindow found by a certain measure are further than ±5 pixel from the correct ones. 

BC-N1 BC-N2 GC-N

GC-FL BC-ST1 BC-ST2

BC-ST3 BC-ST4

Pattern

BC-ST5

BC-NL GC-NL GC-NFL
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Fig. 5. MP-Occl dataset 

Figures 6 and 7 report the matching errors yielded by the considered measures respectively 
on each of the 3 datasets and overall. As it can be seen, approaches specifically conceived to 
achieve robustness generally outperform classical measures, apart from the ZNCC which 
performs badly in presence of occlusions but shows good robustness in handling strong 
photometric distortions. The two measures which yield the best performance are MF and 
GC, with a number of total errors respectively equal to 6 and 8. In particular, MF performs 
better on datasets characterized by strong photometric distortions, conversely GC seems to 
perform better in presence of occlusions.  
For what regards the 3 MF measures themselves, it seems clear that the use of differences 
relative to adjacent pixels suffers of the sampling noise introduced by the camera sensor, 
hence they appear less reliable compared to differences computed on a distance equal to 2. 
Moreover, as a consequence of the fact that MF1,2 and MF2 yield the same results on all 
datasets, MF2 seems the more appropriate measure of the class since it requires only 2 
correlation terms instead of the 4 needed by MF1,2. Finally, for what regards traditional 
approaches, it is interesting to note that the application of NCC and SSD on the gradient 
norms rather than on the pixel intensities allows for a significantly higher robustness 
throughout all the considered datasets. 

O-P1 O-P2 O-P3

O-P4 O-B1                                           O-B2  

O-B4O-B3
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Fig. 6. results of the comparison on the 3 datasets. 

 
Fig. 7. overall results of the pattern matching evaluation. 

5. Application to change detection 

In this section we present the application of the proposed MF measures to the change 
detection task. Change detection aims at detecting structural changes occurring in time in a 
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scene by analyzing a sequence of frames. This is a key task in most advanced video-
surveillance applications, for the mask highlighting changed pixels (change mask) typically 
represents the input data to higher level vision algorithms. This is the case of traditional 
single view as well as more recent and advanced multiple-views systems. The most 
common change detection approach is referred to as background subtraction: given the 
current frame, F, and a model of the background of the scene, B, the change mask is 
obtained by comparing F and B. This approach assumes that the background model is 
available or can be obtained by processing a short sequence of frames at initialization time. 
A wide variety of change detection algorithms has been proposed in literature, so as to 
address issues such as illumination changes, camouflage and vacillating background. A 
recent survey providing good coverage of this research area is given by (Radke et al., 2005). 
Sudden illumination changes occurring in the scene represent a major issue for most 
practical change detection applications. Properly dealing with such a problem is a 
challenging task for change detection algorithms since the resulting photometric variations 
can be easily misinterpreted as structural changes, leading to many false positives in the 
change mask. As depicted in Fig. 8, the proposed change detection algorithm consists of 
three processing stages. In the first stage, the MF measure is used to extract a subset of 
pixels in the current frame that can be marked as background with a high confidence level. 
Once such a subset, referred to as FB, is obtained, it can be usefully employed to remove the 
photometric distortion between F and B. To this purpose, in the second stage the algorithm 
computes the transformation that aligns tonally the current frame, F, to the background 
image, B, using as support subset FB. In the third stage, the final change mask is achieved by 
a pixelwise subtraction between F and the tonally registered background image, BR.  
 

 

Fig. 8. Flow diagram of the proposed change detection algorithm 

Robust visual correspondence In order to get FB we match the points in the background 
image to the current frame. To achieve robustness with respect to outliers and noise, a block-
based approach is used: that is, for each pair of correspondent points in B and F, a M × M 
surrounding block is considered, and the MF measure is computed between the two blocks. 
Points having a score higher than a given threshold are included into FB . To explain the 
usefulness of the MF measure, let’s discuss Fig. 9 where, for the sake of simplicity, we 
consider only two kind of regions, i.e. uniform and highly-textured. When dealing with a 
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uniform region in both F and B (case a in Fig. 9), photometric differences between F and B 
can occur due to either variations of the illumination conditions of the background scene as 
well as to structural changes induced by a uniform foreground object. Thus, in this case the 
required matching measure should yield a low score, for nothing can be said reliably on 
whether the point belongs to the background or not. As for cases b,c,d, it is easy to observe 
that the matching score should be low too, since there’s evidence of the presence of a 
foreground object. Finally, when the background is highly textured and the texture pattern 
does not change in spite of possible photometric changes (case e), it is reasonable to flag the 
point as background with a high confidence level. Hence, in case e we should get a high 
score from the required matching measure. Based on the above considerations, we adopt the 
MF measure which, as previously mentioned, matches corresponding blocks of two images 
by implicitly checking an ordering constraint. Since photometric variations tend not to 
violate the ordering of intensities in a neighbourhood of pixels, MF allows handling sudden 
and strong illumination variations between the background scene and the current frame. As 
previously discussed, MF tries to match the high contrast regions (i.e. the intensity edges) of 
the two blocks under comparison, since only high intensity differences can provide high 
contributions to the correlation score. Hence, MF behaves exactly as pointed out in Fig. 9. In 
fact, only two highly textured and highly correlated patterns can provide a high matching 
score (case e), while the presence of at least one untextured region (cases a,b,c) or of two 
textured but uncorrelated patterns (case d) yields a low score. 
 

   

Fig. 9. Reasoning concerning the robust visual correspondence stage 
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Tonal alignment At this point of the algorithm, FB represents a subset of F denoting pixels 
that reliably belong to the current background. Hence, B is tonally aligned to F by applying 
the histogram specification method (Gonzalez and Wood, 2002). In the evaluation of the IMF 
(Intensity Mapping Function) that aligns B to F only the set of corresponding points that 
belong to the mask FB is taken into account. By applying the IMF obtained from the 
histogram specification method to B we get a novel background, BR, where the photometric 
distortions have been removed. 
Background subtraction Finally, a simple pixelwise difference between BR and F highlights 
structural changes by correctly extracting foreground regions. It is worth pointing out that 
since background subtraction is carried out pixelwise, it is not affected by the aperture 
problem and allows for accurately detecting the borders as well as interior parts of 
foreground objects. Obviously, false negatives can still be found due to the possible 
camouflage between the tonally registered background and the foreground objects. 
Experimental Results We now show the results dealing with a quantitative comparison 
between our approach and other proposals. The testing sequence was a synthetic sequence 
(available at: http://muscle.prip.tuwien.ac.at/data here.php) which comes together with 
groundtruth. For what regards the comparison, as representative of change detection 
algorithms that model false image changes according to a linear relation we consider the 
Normalised Cross Correlation (NCC) between pixel intensities. As for algorithms relying on 
checking the order preservation of intensities we consider the Rank transform (Zabih and 
Woodfill, 1994). We also consider as baseline for comparison the basic pixelwise background 
subtraction approach (BBS). For a fair comparison, we used the same block side for each 
algorithm (i.e. equal to 7). Then, for what regards the other parameters of each algorithm (in 
particular, the threshold for the final change mask), in order to determine the best parameter 
set of each algorithm we selected as a measure of comparison the Precision, i.e. the ratio 
between the true positives (TP) and the sum between true positives and false positives (FP), 
and the Recall, i.e. the ratio between the true positives and the sum between true positives 
and false negatives (FN).  
In order to obtain experimental results, we started from the observation that most change 
detection algorithms, especially for video-surveillance applications, require to have a 
minimum guaranteed value of Recall. Hence, for different thresholds of minimum Recall 
(i.e. 70%, 80%, 90%, we selected for each algorithm the optimal parameter set maximizing 
the Precision value. Such results are shown in Tab. 1. It is worth pointing out that we fixed 
the maximum constraint value of Recall to 90%, since with higher values all algorithms 
would provide Precision values lower than 50%, which would result in very poor change 
masks (the number of false positives being higher than the number of true positives). 
Moreover, it is worth noting that also for these results no post processing was added to the 
output of the evaluated algorithms, similarly no morphology operator was used at any stage 
of the evaluated algorithms.  
From the Table it is easy to infer that the proposed algorithm is the most robust and accurate 
between the evaluated ones, since it always outperforms the other approaches in terms of 
Precision for all different constraint values of Recall. In addition, Fig. 10 shows, for a single 
frame of the evaluated testing sequence, the outputs of the various algorithms at the 
different constraint values of Recall. In addition, in the first row of the Figure the 
background model as well as the current frame together with the correspondent ground 
truth frame are shown. These results qualitatively confirm the trend shown in Tab. 1, 
proving that our approach provides overall the most accurate results.  
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  > 70% > 80%  > 90% 

Proposed 87.3 81,7 52,2 

NCC 59,6 57,2 43,0 

Rank 24,5 18,8 13,1 

BBS 2,2 1,9 1,7 

Table 1. Best values of Precision yielded by the evaluated algorithms with different 
constraint values on Recall. 

 

Fig. 10. Comparison of outputs yielded by the evaluated algorithms on the same sequence 
and with the same constraint values on Recall used for results in Tab. 1. First row, from left 
to right: background model B, current frame F, Ground Truth 
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6. Application to video-surveillance 

In this section a case study is presented where access to a high security gate has to be 
monitored to assess for the presence/absence of people as well as to ensure that only one 
person occupies the gate at a given time (anti-tailgating). To accomplish this surveillance 
task, first of all we apply a change detection algorithm in order to discriminate between 
foreground (i.e. occupants) and background (i.e. the gate floor) regions of incoming frames. 
The change detection algorithm relies on the MF measure: at each point of the current frame 
and background image MF is computed on the window centred on the current point, then a 
threshold is used to discriminate background points from foreground points. The images 
are subject to heavy photometric distortions due to reflections on the gate floor, changes in 
indoor illumination and unpredictable light coming from outside. Fig. 11 shows the results 
where 3 frames acquired in different moments and with different subjects are compared 
with the same background image acquired previously (shown on the left). The 3 images on 
the right show the shape of the region detected as the gate floor using a fixed set of 
parameters (window side = 15, threshold = 0.2) and, as post-processing, a fixed sequence of 
simple morphological operators such as erosion and dilation. Results show that the 
proposed measure is able to extract a good shape of the gate floor with good robustness 
towards the ongoing disturbance factors. 
 

 

Fig. 11. The background (left) and 3 examples dealing with the presented video-surveillance 
application. 

7. Conclusions 

A review of the state of the art and a novel class of measures for robust visual 
correspondence under disturbance factors such as photometric distortions, noise and 
occlusions have been proposed. The proposed approach is based on the order preservation 
hypothesis, and aims at measuring how well the ordering constraint between neighbouring 
pixels is preserved. The novel measures were demonstrated to perform effectively in task 
such as pattern matching and change detection, as well as in a challenging surveillance 
scenario considered as a case study.  
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