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Abstract

The process of DNA repair, be it a response to replication dysfunction or genotoxic insult, 
is critical for the resolution of strand errors and the avoidance of DNA mismatches that 
could result in various molecular pathologies, including carcinogenic development. 
Here, we will describe the five main mechanisms by which DNA avoids mutation, 
namely the processes of base excision repair, mismatch repair, nucleotide excision repair, 
homologous recombination, and nonhomologous end joining. In particular, we will dis-
sect the functional significance of various posttranslational modifications of the essential 
proteins within these pathways, including but not limited to ubiquitination, acetylation, 
and phosphorylation.

Keywords: base excision repair (BER), mismatch repair (MMR), nucleotide excision 
repair (NER), homologous recombination (HR), nonhomologous end joining (NHEJ), 
posttranslational modification

1. Introduction

The mammalian genome is under constant barrage by exogenous and endogenous insult that 

can beget damage and instability. Exogenous insults include exposure to UV radiation and 

chemical carcinogens found in the environment, while endogenous factors include ROS pro-

duced by cellular metabolism, spontaneous chemical reactions like base deamination and 

mistakes made during the replicative process. It is critical to the survival of the organism that 

each cell have the ability to resolve the damage induced by this wide variety of insults, and 

that the machinery responsible for responding to damage must be equally diverse.

There are five main mechanisms responsible for repairing damaged DNA, and their conserva-

tion from bacteria all the way to humans exemplifies their critical role in the maintenance of 
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an organism’s genome. These mechanisms consist of base excision repair, nucleotide excision 

repair, mismatch repair, homologous recombination, and nonhomologous end joining.

2. Ubiquitination and the proteasome degradation pathway

The ubiquitin proteasome pathway (UPP) is a mechanism used for the maintenance of proper 

levels of cellular proteins and the destruction of old or misfolded proteins by targeting them 

for degradation. This targeting comes in the form of ubiquitination, the process of covalently 

linking a polyubiquitin chain to the protein that is recognized and bound by the 26S protea-

some, which degrades the protein and releases the ubiquitin. Ubiquitin is a highly conserved 

76-amino acid protein that serves as the subunit of the polyubiquitin chain. Ubiquitin is cova-

lently linked to its target in a three-step cascade conducted by a ubiquitin-activating enzyme 

(E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-ligating enzyme (E3) [1]. Apart 

from protein degradation, ubiquitination can also mediate protein-protein interaction.

3. Detection and repair within the DNA strand

3.1. Base excision repair

Base excision repair enzymes are responsible for correcting lesions induced by a wide vari-

ety of both endogenous and exogenous insults, including sites of base loss, nonbulky base 

lesions, and DNA single-strand breaks (SSBs) [2]. DNA glycosylases are responsible for the 

first step of base excision repair (BER) by initially detecting the damage and excising the base 
via hydrolyzing the N-glycosylic bond linking the DNA base to the sugar phosphate back-

bone. This process generates an abasic site (AP site) that AP endonuclease 1 recognizes and 

acts upon by cleaving the phosphodiester bond 5′ to the AP site, leaving a SSB with a 5′-sugar 
phosphate. A DNA repair complex composed of DNA pol β, XRCC1, and DNA ligase IIIα can 
recognize this SSB and remove the 5′-sugar phosphate through its AP lyase activity, and add 
a single nucleotide to the 3′-end through its DNA polymerase activity. The damage is finally 
resolved when Lig 3 seals the DNA ends together, thus completing what is referred to as short 

patch BER, the process by which human cells conduct the majority of their BER [3, 4].

At the moment, much of the work focusing on ubiquitination of the proteins involved in BER has 

been pursued by Dianov et al. [5]. This group has been able to demonstrate that, under normal 

conditions, BER components are targeted for destruction by the E3 ubiquitin ligase CHIP. When 
DNA damage occurs in cells, the BER components undergo stabilization to increase their ability 

to correct the damage. Specifically, pol β, XRCC1, and DNA ligase III are polyubiquitinated by 
CHIP and Mule when not bound to chromatin, and thus targeted for degradation [6].

DNA pol λ can also be targeted by posttranslational modifications. Pol λ contains four distinct 
phosphorylation sites, but phosphorylation of the Thr553 has the strongest impact on the 

stability of the protein. Pol λ can be phosphorylated on all of these sites by the Cdk2/cyclin A 
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complex, but its levels of phosphorylation are reduced when it is interacting with proliferat-

ing cell nuclear antigen (PCNA) [7], a sliding clamp that associates with DNA polymerases 

and ensures accurate and possessive DNA synthesis [8]. Increased phosphorylation of Thr553 

on pol λ positively correlates with its protein levels in the cell, likely due to the fact that phos-

phorylation at this site protects pol λ from ubiquitination and degradation. This stabilization 
occurs in the late S and G2 phase. Pol λ is closely related to pol β, and indeed both polymer-

ases can be ubiquitinated by CHIP and Mule. It is thought that pol λ is needed in late S and 
G2, specifically whenever oxidative DNA damage presents at this phase and induces 8-oxo-G 

lesions [9, 10]. When these lesions occur, it is Mule that is responsible for regulating protein 
levels of pol λ. When Mule is able to ubiquitinate pol λ, this action targets both pol λ for deg-

radation and decreases its enzymatic activity. Mule is responsible for the monoubiquitination 

of pol β, which can be further polyubiquitinated by CHIP and targeted for degradation [11]. 

While pol β is continuously expressed in unstressed cells, it is almost immediately targeted by 
Mule and CHIP in the absence of damage. Upon DNA damage detection, alternative reading 
frame (ARF) begins to accumulate and eventually inhibits Mule activity [12], allowing for pol 

β accumulation and activation of further BER proteins. Once the lesion(s) have been resolved 
ARF levels drop, Mule activity is restored, and pol β will once again be ubiquitinated and 
degraded. ARF is a BER protein frequently mutated in cancer cells; it functions by responding 

to DNA damage by directly inhibiting Mule, as well as regulating p53. The amount of ARF 

produce in response to DNA damage is dependent on the extent of the damage; and by inhib-

iting Mule activity, it allows p53 to halt replication while pol β complexes conduct repair [13]. 

Without ARF, both Mule and Mdm2 repress p53 activity. ARF is a 482 kDa protein belonging 
to the homologous to E6-AP carboxyl terminus (HECT) family of E3 ubiquitin ligases [14], 

named such due to their ubiquitous presence of a C-terminal HECT domain of ~350 amino 
acids that house their E3 catalytic activity. The HECT domain of Mule contains two sub-
domains connected by a flexible linker allowing these domains to undergo ubiquitin chain 
transfer [15]. Aside from allowing for p53 accumulation and activation of the DNA damage 

response in damaged cells, ARF also plays a p53-independent role in tumor suppression due 

to its ability to induce proliferation delay in cells lacking functional p53 and p21 [16, 17].

3.2. Nucleotide excision repair

Nucleotide excision repair is a process undertaken in both prokaryotes and eukaryotes to 

enzymatically remove bulky, helix-distorting base adducts from DNA. This process is the 

predominant method of DNA repair in mammals, especially when resolving damage induced 

by ultraviolet light from the sun. About 30 proteins are involved in eukaryotic nucleotide exci-

sion repair (NER), including nine major proteins identified by their mutation in humans and 
the development of UV-hypersensitivity as a result. Seven of these proteins, when mutated, 

lead to the development of Xeroderma pigmentosum syndrome (XPA to XPG) and two lead 
to the development of Cockayne’s syndrome (CSA and CSB) [18]. Additional players in the 

process of NER include excision repair cross-complementing 1 (ERCC1), replication protein A 
(RPA), and Rad23 homologs (HR23A and HR23B) [19, 20]. The Rad23 homologs share redun-

dancy with the function of Rad23 in yeast during the recognition of the lesion in NER. Upon 

initial recognition of a lesion, eukaryotic NER can continue by either the process of global 
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genome NER (GG-NER) or transcription-coupled NER (TC-NER). GG-NER removes DNA 
from untranscribed regions of DNA; XPC-HR23B and UV-DDB (damaged DNA-binding pro-

tein) can recognize UV damage and recruit XPA to this resultant lesion [21]. In TC-NER, RNA 
polymerase II recognizes the lesion when it is a mediating transcription but finds its progress 
blocked by the break. This stalling of RNA pol II is recognized by CSA and CSB, which will 
localize to the lesion and load XPA on the site to initiate NER. After initial lesion recognition, 
GG-NER and TC-NER follow the same pathway to resolve the damage. XPA further recruits 
XPB (5′ to 3′ helicase) and XPD (3′ to 5′ helicase) to unwind the DNA at the damage site and 
allow for incisions on the 3′ and 5′ sides of the gap to be made by XPG and XPF-ERCC1 endo-

nucleases, respectively [22–24].

The first association between the ubiquitin proteasome pathway (UPP) and nucleotide exci-
sion repair (NER) was due to the identification of the ubiquitin-like domain present at the 
N-terminus of Rad23 [25, 26] that can serve as a ubiquitin receptor, similar to the subunit of 

the 26S proteasome Rpn1 [27]. Both can recognize polyubiquitinated chains and transport the 

target proteins to the proteasome [28]. The Rad23 ubiquitin-like domain is required for suf-

ficient NER activity, and deletion of this domain can result in UV radiation sensitivity [29]. 

Russell et al. demonstrated that complete inhibition of the proteasome does not affect NER, 
while specifically targeting 19S activity does. Further, 19S influence on NER is mediated by 

the Ubl domain of Rad23, suggesting to them that 19S may be acting as a molecular chaperone 

in the context of NER by altering the conformation of certain NER proteins [29, 30]. Rad23 

avoids proteasomal degradation due to its ubiquitin-like domain via a C-terminal ubiquitin-
associated (UBA) domain [31] and can impart this protection on its binding partner XPC in a 
mechanism that will be detailed later.

XPE-deficient cells lack the ability for UV-damaged DNA-binding component (DDB), com-

posed of DDB1 (p127) and DDB2 (p48), to bind DNA. DDB2 and CSA are present in separate 
but nearly identical molecular complexes, both associated by their interaction with DDB1 

[32]. Both complexes contain CUL4A and ROC1, both ubiquitin ligase subunits, as well as 
the constitutive photomorphogenesis 9 (COP9) signalosome (CSN). When the complex is 
devoid of CSN, they are able to display robust ubiquitin ligase activity. After UV exposure, 
CSN rapidly dissociates from the DDB2 complex and CUL4A is modified by NEDD8 (via 
neddylation and polyubiquitination) [33], leading to ubiquitin ligase activity from the com-

plex. This complex ubiquitinates XPC (which is bound to HR23, the specifics of this complex 
detailed later), allowing both of these complexes to bind the damaged DNA. DDB2 itself 

is also polyubiquitinated, causing it to dissociate from the complex, and get degraded by 

the proteasome. Ubiquitinated XPC and HR23 remain on the DNA, where they activate the 
process of NER. The CSA complex is not as well characterized as the DDB2 complex. What is 
known is that unlike the DDB2 complex, UV-induced damage stimulates the rapid associa-

tion of CSN with CSA, suppressing all ubiquitin ligase activity from the complex. A target of 
DDB2 complex ubiquitination is XPC, which is required for GG-NER at the damage site [34]. 

In undamaged cells, XPC exists in a heterotrimeric complex with either mammalian homolog 
of Rad23, HR23A, or HR23B. XPC is normally bound to HR23B, but in its absence HR23A is 
sufficient [35, 36]. This XPC complex recognizes physical aberrations in the structure of DNA 
rather than the lesions themselves, and is recruited after ubiquitination by the DDB2 complex. 
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The ubiquitination appears to be protective, as XPC is not a target of proteosomal degradation 
and is further stabilized through its interaction with the ubiquitin-associated (UBA) domain 

of the HR23 protein it is bound to [37, 38]. It is of great interest that both DDB2 and XPC are 
ubiquitinated and this ubiquitination yields drastically different outcomes, yet there are still 
parts of this mechanism that have not been defined. The specific ubiquitination sites on these 
two proteins have not been mapped, and the factors that specifically interact with these two 
proteins upon ubiquitination have yet to be defined.

Returning to the CSA complex, after UV exposure, it rapidly associates with CSN and its 
ubiquitin ligase activity is suppressed. This action has implications on the function of RNA 

polymerase II, which stalls on DNA strands during transcription when it encounters a break 

or adduct (any transcriptional blockade) and signals for the assembly of TC-NER machinery. 
Reports have indicated that UV exposure can activate CSA- and CSB-dependent polyubiq-

uitination of RNA pol II [39], an observation that contrasts with the previously discussed 

reports of CSN inhibiting the CSA complex’s ubiquitin ligase activity. Groisman et al. have 
suggested that CSN can differentially regulate the activity of DDB2 and CSA complexes, and 
that its interaction with CSA may not in fact be inhibitory [32]. It is also possible that there is 

an additional member of the CSA complex, or a separate complex is mediating ubiquitination 
of RNA pol II. Svejstrup et al. have argued that RNA pol II ubiquitination is conducted by a 

Rad26-Def complex [40]. Def1 is a protein discovered in yeast that complexes with Rad26 on 

chromatin, and when this protein is deleted in yeast, these cells are unable to degrade stalled 

DNA pol II in response to DNA lesions [40]. RNA pol II stalling has been reported to induce 

ubiquitination and degradation of Rpb1, the largest RNA pol II subunit, in a Def1-dependent 

manner [41]. When RNA pol II is polyubiquitinated after UV-induced damage (an additional 
E3 ligase is BRCA1/BARD1 of the homologous recombination pathway), it is either degraded 
or bypasses the transcriptional block, allowing mRNA synthesis to continue [42] and the 

damage is to be resolved later by GG-NER [43].

UV radiation has often been used to elucidate the mechanisms of NER components, as helix-

distorting damage (cyclobutane pyrimidine dimers, 6-4 photoproducts) is repaired by NER 

[44]. These studies have also revealed the posttranslational modifications necessary for the 
functional relevance of these proteins. UV radiation experiments were responsible for the 

initial observation that genes encoding certain components of the UPP influenced the abil-
ity of cells to survive after being irradiated, and the researchers interpreted this data in a 

manner that highlights the proteolytic activity for the proteasome in NER [45–47]. After 

these initial observations, Rad23 was investigated and determined not to be targeted for 

ubiquitination, and Rad4 (yeast homolog of XPC) became the next potential target for ubiq-

uitination. This focus was based on the observation that Rad4 overexpression can increase 

NER activity [47]. Further studies in human cells revealed that XPC also accumulated after 
DNA damage, and like their yeast counterparts, increased NER activity [37]. This accumula-

tion was correlated to hHR23 in mouse cells, and it was found that Rad23 could use its UBA 

domains to stabilize Rad4/XPC by acting in trans [48] as well as controlling its own turnover 

by acting in cis [49]. The C-terminal tail of H2A is a target for posttranslational modification, 
with as much as 5–15% of H2A being monoubiquitinated in mammals [50]. Ubiquitinated 

H2A is associated with condensed DNA and gene repression, and Ring2 is the predominant 
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E3 ubiquitin ligase responsible for this modification [51, 52]. UV-induced DNA damage can 

induce monoubiquitination of H2A in close proximity to the lesions [53] in a manner very 

similar to its phosphorylation. Both of these histone modifications occur in UV treated, non-
S-phase cells and are dependent on functional NER, and ATR signaling is required for the 

tail modification to occur [54, 55]. Ubiquitination of XPC, DDB2, and PCNA can still occur in 
NER-deficient XP-A cell lines, but H2A ubiquitination relies upon NER-sufficiency. Ubc13 
and RNF8 are responsible for perpetuating sustained H2A ubiquitination so that NER can 

occur, but do not initially ubiquitinate H2A [56].

3.3. Mismatch repair

The DNA mismatch repair pathway is responsible for correcting mispaired nucleotides and 

insertion/deletion loops (IDLs) that are a consequence of replication, recombination, and 
repair errors [57].

The role of ubiquitination in the process of mismatch repair is relatively uncharacterized, 

compared with the rest of the DNA repair pathways detailed in this chapter. However, 

research conducted in our lab has identified that the stability of MutS protein homolog 2 
(MSH2), an essential DNA mismatch repair protein, is regulated through ubiquitination by 

histone deacetylase 6 [58]. Ubiquitination of MutSα was first reported by Lautier et al. [59], 

although the enzyme responsible remained undetermined until our 2014 publication [58]. 

MSH2 forms two heterodimers, MSH2-MSH6 (MutSα) and MSH2-MSH3 (MutSβ). MutSα 
recognizes single base mismatches and 1-2 nucleotide insertions and deletions [60] while 

MutSβ recognizes bulky DNA adducts and larger insertions and deletions [61]. MutSα 
specifically recognizes DNA lesions induced by a wide variety of DNA-damaging agents 
(6-thioguanine, cisplatin, doxorubicin, etoposide) [62]. In the absence of MutSα, cells dis-

play resistance to these DNA-damaging agents and do not undergo apoptosis as a result 

of a futile repair cycle [63, 64]. Elucidation of the mechanism of MSH2 stability in cells is 

critical to the field of mismatch repair, as the initiation of MMR is controlled by the binding 
of MutSα and MutSβ to the mispair. These proteins subsequently signal the downstream 
effectors of MMR; MutLα (MLH1-PMS2), PCNA, and RPA, which can further lead to the 
recruitment of excision protein exonuclease 1 (EXO1). EXO1 excises the mismatched base, 
forming a gap that is filled by polymerase δ and a nick that is resolved by DNA ligase 1. 
When MSH2 is acetylated, it cannot be ubiquitinated, and thus is retained and is able to 
form MutSα and Mutsβ complexes. MSH2 turnover can be induced by HDAC6 activity, 
which subsequently deacetylates and ubiquinates MSH2 to target it for proteosomal deg-

radation. This action is possible because of the E3 ubiquitin ligase activity HDAC6 pos-

sesses in its DAC1 domain (HDAC6 has two active sites: DAC1 and DAC2). HDAC6 can 
target MSH2 even when it is in its heterodimeric complex; MSH2 deacetylation causes it 

to dissociate from its stabilizing partner MSH6 [65], and as a free monomer MSH2 can be 

ubiquitinated [58]. MSH2 can be acetylated at four lysine residues (K845, K847, K871, and 

K892), and all of these sites can also be ubiquitinated. MSH2 can be protected from ubiqui-

tination and degradation by protein kinase C (PKC), which can phosphorylate the MutSα 
complex [66].
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Further research out of our lab has indicated that ubiquitin-specific peptidase 10 (USP10) also 
plays a role in MSH2 stability, but rather than targeting it for degradation like HDAC6, USP10 
is responsible for stabilizing MSH2 by deubiquitinating it [67]. USP10 has recently been iden-

tified as a regulator of p53 in response to DNA damage in a tumor development context 
[68–70]; ATM phosphorylation of USP10 induces its translocation to the nucleus, where it sta-

bilizes p53. However, we now know that USP10 can work in opposition to HDAC6 by interact-
ing with the N-terminal region of MSH2, while HDAC6 interacts with the C-terminal region. 
Under stress conditions (IR, carcinogen treatment), USP10 phosphorylation is increased [68] 

suggesting enhanced translocation to the nucleus where it may increase stabilization of the 

MutSα complex.

MMR can respond to endogenous insult to genomic integrity as well as exogenous. Oxidative 

DNA damage, for example, can induce MutSα-dependent PCNA ubiquitination, a process 
dependent on the PCNA E3-ubiquitin ligase RAD18 [71] in a process of noncanonical MMR 

(ncMMR) described by Jiricny et al. [72]. Briefly, ncMMR is mostly independent of DNA rep-

lication, lacks strand directionality, and could potentially play a role in genomic instability. 

This type of MMR occurs outside of S-phase when the dNTP pool is limited and replicative 

polymerases are not present, and the activity of MutLα in this situation can result in nicks in 
either strand of the DNA. This noncanonical MMR activation can itself promote ubiquitina-

tion of PCNA, which is directly responsible for recruiting pol-η (an error-prone polymerase) 
to chromatin [72] in the absence of higher fidelity polymerases. ncMMR is currently consid-

ered a stress response to genotoxic agents that contribute to genomic instability.

4. Repair of DNA strand breakage

While base and nucleotide damage can occur both by mistakes of the replicative machinery 
and chemical carcinogens, more robust insults to genome stability can induce single-strand 

and double-strand DNA breaks. These breaks can be caused by chemical carcinogens operat-

ing by different mechanisms than the ones previously mentioned, as well as ionizing radiation.

4.1. Homologous recombination

Homologous recombination (HR) is a major DNA repair pathway in which a sister strand 

of DNA is used to accurately repair DSBs. DSBs generally occur in euchromatin (as hetero-

chromatin is relatively protected in its condensed state), and must be sensed, identified, and 
stabilized so that repair machinery can be recruited to the site without further damage occur-

ring. The initial sensing of these ends occurs via the joint effort of ATM, and to a lesser extent, 
the MRN complex. ATM is a resident protein of the nucleus, existing in its inactive dimerized 

form, but upon the detection of a lesion it can activate itself via autophoshorylation. ATM can 

recognize large-scale changes in the chromatin structure [73], RNF8- and CHFR-mediated 
chromatin relaxation by histone ubiquitination [74], and R-loops (RNA/DNA hybrids) at 
lesions blocking the transcriptional machinery [75]. Thus, begins the ATM signaling cascade, 

recruiting a wide variety of DNA damage response elements and break responders, as well 
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as the proteins that modify these responders to activate or enhance their function. To open 

the damage site to this massive recruitment effort, ATM phosphorylates the methyltransfer-

ase MMSET to methylate the surrounding histones and promote 53BP binding [76, 77]. ATM 

can also phosphorylate MDC1, which leads to the recruitment of ubiquitin ligase RNF8 via 
its FAA domain [78], which subsequently ubiquitinates histones H2A and H2AX, and pro-

motes the retention of the factors recruited by ATM until the damage has been fully resolved 

[79]. MDC1, once initially activated by ATM, can bind ATM as well as the MRN complex, 
thus stabilizing these critical responders at the site of damage and amplifying their contin-

ued colocalization with the breaks [80, 81]. Ubiquitinated H2A and H2AX in the presence 
of RNF8 can recruit a second ubiquitin ligase, RNF168, which amplifies the ubiquitination 
signal at these histones and ensures that BRCA1, Rap80, Rad18, and 53BP1 localize to the site 
of damage [82, 83].

BRCA1 is a crucial responder to DNA damage that plays roles in cell cycle checkpoints, DNA 
cross link repair, and replication fork stability at the sites of DNA damage. Mutations in this 

gene severely limit its function and force cells to repair their DSBs via the error-prone process 

of NHEJ, which can predispose individuals to developing breast or ovarian cancer. BRCA1 
can recruit RAD51 to the sites of DSBs and is necessary for the cell to repair the damage via 

homologous recombination and subsequent progress through the G2/M checkpoint [84, 85]. 

BRCA1 can also form a complex with BRCA2, which contributes to DNA break resolution. 
One of the proteins that can recruit BRCA1 to the DSB site is Rap80, which directs BRCA1 
to K63-linked ubiquitin chains present on postreplication repair effector and sliding clamp 
PCNA [86]. These ubiquitin chains are generated by RING type E3 ubiquitin ligases RNF8 

and RNF168 previously recruited by ATM action [79, 87]. Depletion of RAP80 has been dem-

onstrated to increase the frequency of HR in reporter cells, and these cells eventually devel-

oped large chromosomal rearrangements.

BRCA1 itself can also serve as an E3 ubiquitin ligase by forming an obligate RING heterodi-
mer with binding partner BARD1 [88], and this dimerization is required for BRCA1 to exert 
its tumor suppressor function. BRCA1’s RING domain is adjacent to a large sequence of α 
helices that interact with a similar α helix sequence on BARD1 [89], while the RING domain is 

left free to interact with E2 enzymes and exert its ubiquitin ligase activities on target proteins 

[90]. BRCA1-BARD1 is a type I dimeric RING E3 ubiquitin ligase, but is missing a conserved 
positive residue for these E3 ligases that is required for its binding activity, so this residue 

must be supplied by their binding partner [91]. The BRCA1-BARD1 heterodimer can tar-

get histones (H2A and H2AX), RNA polII, TFIIE, NPM1, CtIP, γ-tubulin, ER-α, and claspin 
[88]. BRCA1-BARD1 can also interact with 53BP1, and its ligase activity is thought to relocate 
53BP1 to the periphery of the damage foci to allow for damage proteins like RPA and RAD51 

to localize. E3 ligase-defective cells demonstrate reduced, but not entirely eliminated RPA and 

RAD51 foci in S-phase cells after being hit with a dose of IR [92]. However, in their normal 

S-phase counterparts, BRCA1 can counter the 53BP1-mediated stall on resection and allows 
HR to occur [93] by removing 53BP1 to the periphery and allowing RPA foci to form at the 

damage site [94]. These observations are thought to be mediated by the human homolog of 

the yeast SWI/SNF-like chromatin remodeler Fun30, SMARDCAD1, which is recruited by 
BRCA1-BARD1 to interact with BP531 and remove it from the vicinity of the break [95, 96]. 
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53BP1 appears to serve as a regulator of end resection and DSB resolution based on its asso-

ciations with factors implicated in transcriptional silencing as well as its previously discussed 

functions. It can control the length of the resected ends in HR, and serves to prevent aberrant 

resection that can lead to RAD52-mediated ssDNA annealing and subsequent chromosomal 

rearrangements [97]. Further evidence for the interplay between BRCA1 and 53BP1 comes 
from mouse studies, where researchers found that lacking BRCA1 exon two (but expressing a 
RING-less BRCA1) is an embryonic lethal condition that can be rescued if the deletion occurs 
in a 53BP−/− embryo, suggesting that murine embryos lacking RING die because of the pres-

ence of 53BP [98]. BRCA1 and BARD1 interact with cyclin-dependent kinase 9 (CDK9) via 
their RING finger and BRCT domains, and localize to γ-H2AX foci indicative of damage to 
induce the process of HR over NHEJ [99].

Neddylation is a form of posttranslational modification similar to ubiquitination that has also 
been implicated in the process of double-strand break repair. Neural precursor cell expressed 

developmentally down-regulated 8 (NEDD8) is a ubiquitin-like protein involved in regulat-

ing cell growth, viability, and development [100]. Neddylation can serve as yet another layer 

of regulation in the function of DNA repair in damaged cells, and targeting this process has 

demonstrated some efficacy in preclinical models. Given the ubiquitous nature of BRCA1 in 
HR, it makes sense that this protein is a target of neddylation. In order for a cell to undergo HR, 

it must recognize the damage and be in the correct stage of the cell cycle (in this case, S/G2) so 
that a sister chromatid is present for the repair machinery to use as a template. This process of 

choice can be mediated by BRCA1 in complex with CtIP (RBBP8) in a number of different ways. 
For instance, CtIP must be phosphorylated on serine residue 327 for the cell to undergo HR, 
otherwise repair will be conducted via the error-prone process of microhomology-mediated 

end joining [101]. If this complex undergoes RNF111/UBE2M-mediated neddylation, the com-

plex is rendered unable to perform its 5’→3′ nucleolytic end resection at the DSB, and with-

out the ssDNA overhang tails HR cannot occur [102]. The COP9 signalosome is an additional 
mediator of the choice between types of DSB repair mechanisms [103]. COP9, the constitutive 
photomorphogenesis 9 signalosome, has significant homology with the 19S lid complex of the 
proteome and functions by deneddylating cullin-RING ubiquitin ligases, which may subse-

quently coordinate CRL-mediated ubiquitination of downstream protein targets [104]. COP9 
is recruited to sites of DNA damage in a neddylation-dependent mechanism, and once there 

mediates deep end resection of the breaks, the first step of HR.

Targeting the process of neddylation as a preclinical strategy to sensitize tumors to chemo-

therapy is an avenue that has just recently began to garner attention. In a model of nons-

mall cell lung cancer, neddylation inhibitor MLN4924 was able to inhibit the recruitment of 

members of the BRCA1 complex to sites of DNA damage. Examining expression of NEDD8, 
BRCA1, and PARP via Kaplan–Meier survival analysis revealed that high expression of these 
three factors correlated with a poor overall survival [105].

4.2. Nonhomologous end joining

The first step of nonhomologous end joining is the detection of the DSB by the Ku70/80 het-
erodimer, a 150 kDa Ku forms a ring-like structure that surrounds a single-strand of DNA 

The Five Families of DNA Repair Proteins and their Functionally Relevant Ubiquitination
http://dx.doi.org/10.5772/intechopen.71537

27



with its central channel, and threads the broken DNA ends through this channel [106]. 

Because this protein can only accommodate one strand of DNA, in order for DNA replication 

to continue after resolution of the DSBs, Ku70/Ku80 must be removed [107]. The E3 ubiquitin 

ligase RING finger protein 8 (RNF8) has been found to down-regulate Ku80 at sites of DNA 
damage. Depletion of RNF8 leads to prolonged retention of Ku80 at damage sites and impairs 

NHEJ [108].

DNA-PK plays a central role in NHEJ of DNA DSBs largely during the G1 phase of the cell 

cycle as well as in V(D)J recombination [109, 110]. A poorly characterized ringer finger protein 
RNF144A has been reported as an E3 ubiquitin ligase for DNA-PK catalytic subunit (DNA-

PKcs). RNF144A induces ubiquitination of DNA-PKcs in vitro and in vivo and promotes its 

degradation.  Depletion of RNF144A results in an increased level of DNA-PKcs and resistance 

to DNA damaging agents [111]. Overall, there is no doubt that ubiquitination – either by regu-

lating protein degradation or protein-protein interaction- plays a critical role in all five DNA 
repair families. Futures studies to better understand the role of ubiquitination, ubiquitin-like 
modifications, and enzymes responsible for these modifications in DNA repair pathways will 
be warranted.
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