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Abstract

Simulating the three-dimensional flow features generated by heaving wings constitutes
a great challenge due to the computational effort required to compute the complex
three-dimensional flow produced as a function of the kinematics parameters, wing
geometry, and Reynolds number. Hereafter, we study the wake topology generated by
oscillating rigid wings and the validity of the Strouhal number as the fundamental
parameters used to assess the aerodynamic performance of heaving wings. The unsteady
laminar incompressible Navier-Stokes equations are solved on moving overlapping
structured grids using a second-order accurate in space and time finite-difference
numerical method. The numerical simulations are performed at a Reynolds number of
Re = 250 and at different values of Strouhal number and heaving frequency.

Keywords: heaving wings, aerodynamic performance, wake topology, Strouhal
number, overlapping grids

1. Introduction

Flappingwings for flying and oscillating fins for swimming stand out as one of themost complex

yet widespread propulsion methods found in nature. Natural flyers and swimmers (which have

evolved over millions of years) represent illuminating examples of biokinetics, unsteady aerody-

namics, high maneuverability, endurance, and large aero/hydrodynamics efficiency.

In the field of flapping flight, biologist, zoologist, and engineers are sharing findings and

conducting research together. From the point of view of a biologist or zoologist, studying

flapping flight in nature is of great importance for understanding the biology, allometry, flight

patterns, flight skills, and the migratory habits of avian life. From an engineering point of view,

the main reason for studying flapping flight is the use of animal locomotion as inspiration for

improving existing applications or developing new technologies by just mimicking nature

evolutionary-optimization process (biomimetics). Such applications may include drag reduction,
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noise reduction, and flow control by using feather-like structures [1] and flippers tubercles [2];

the development of new propulsion/lift generation systems for micro-air-vehicles (MAVs), nano-

air-vehicles (NAVs), and autonomous-underwater-vehicles (AUVs) is inspired by flapping

wings or oscillating fins [3–8], energy harvesting applications [9], and even robotic extraterres-

trial exploring missions [10].

An important aspect of flying using flapping wings or swimming by using oscillating fins or

fanning is the ability to generate thrust with relatively high propulsive efficiency. Early

attempts at building fish-inspired mechanisms achieved disappointingly low propulsive effi-

ciencies [11]. It was only through a deeper understanding of the vorticity and wake produced

by swimming animals, significant progress was achieved [12].

Many researchers [13–15] have found that flying and swimming animals cruise in a narrow

range of Strouhal numbers (between 0.2 and 0.4), corresponding to a regime of vortex growth

and shedding in which the propulsion efficiency peaks. The Strouhal number St is a dimen-

sionless parameter defined as,

St ¼
f h

U
(1)

where f is the flapping frequency, h is the peak to peak amplitude of the flapping stroke, and U

is the forward velocity. This definition describes a ratio between the oscillating speed (fh) and

the forward speed. Another dimensionless parameter that characterizes the aero/hydrody-

namic performance and wake signature of flying and swimming animals is the reduced

frequency k, which is a measure of the residence time of a vortex (or a particle) convecting

over the wing/fin chord compared to the period of motion and is defined as,

k ¼
πfc

U
(2)

Hence, it becomes evident that gaining a better understanding of the wing/fin motion param-

eters driving forces generation, vortices generation and shedding, the manner in which the

vortices interact with the moving surfaces and themselves, and how they contribute to lift and

propulsion would aid in better understanding the propulsion mechanism of birds, insects, and

fishes, independently of their possible practical applications.

In the current numerical study, we aim at performing a comprehensive analysis of the wake

signature and aerodynamic performance of finite-span rigid wings undergoing pure heaving

motion. The laminar incompressible Navier-Stokes equations are numerically approximated,

and all unsteady, viscous, and three-dimensional effects are solved. The simulations are

conducted for Strouhal numbers values between 0.15 ≤ St ≤ 0.5, and for two different reduced

frequency values, one corresponding to high frequency and the other one to low frequency,

this was done to study leading edge vortex shedding dependency.

The remainder of this paper is organized as follows. In Section 2, we give a brief description of

the numerical method and gridding methodology. In Section 3, we present a description of the

computational domain, case setup, and heaving kinematics. In Section 4, we present a short
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discussion of the quantitative and qualitative results obtained from a grid dependence study.

In Section 5, we present a detailed discussion of the results. Finally, in Section 6, we present the

conclusions and future developments.

2. Numerical method

Hereafter, we summarize the numerical method used to solve the governing equations on

structured overlapping grids. For a complete description of the numerical method and

gridding methodology, the interested reader should refer to the papers by Henshaw [16],

Henshaw and Petersson [17], and Chesshire and Henshaw [18].

In primitive variables (u, v, w, p), the governing equations of the initial-boundary-value prob-

lem (IBVP) for the laminar incompressible Navier-Stokes equations can be written as

∂u

∂t
þ u � ∇u ¼

�∇p

ρ
þ ν∇

2u for x∈D, t ≥ 0, (3)

∇ � u ¼ 0 for x∈D, t ≥ 0, (4)

with the following boundary conditions and initial conditions,

B u; pð Þ ¼ g for x∈ ∂D, t ≥ 0, (5)

Q
∘

x; 0ð Þ ¼ q0 xð Þ for x∈D, t ¼ 0: (6)

In this IBVP, the vector x = (x, y, z) contains the Cartesian coordinates in physical space

P ¼ P(x, y, z, t), D is a bounded domain in P ∈R
N (where N is the number of space dimen-

sions), ∂D are the boundaries of the bounded domain D, t is the physical time, u is a vector

containing the velocity components (u, v,w), the scalar p is the pressure, and the constants ν

and ρ are the kinematic viscosity and density. In Eq. (5), B is a boundary operator (that can

leave to a Dirichlet or Neumann boundary condition), and g is the boundary condition input

value. In Eq. (6), Q
∘

is the initial condition, and q0 is the input value of the initial conditions

(which can be a uniform or nonuniform field).

An alternative formulation of the system of Eqs. (3)–(6), called the velocity-pressure formula-

tion, can be written as follows,

∂u

∂t
þ u � ∇u ¼

�∇p

ρ
þ ν∇

2u for x∈D, t ≥ 0, (7)

∇
2p

ρ
þ ∇u � ux þ ∇v � uy þ ∇w � uz ¼ 0 for x∈D, t ≥ 0, (8)

with the following boundary and initial conditions,
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B u; pð Þ ¼ g for x∈ ∂D, t ≥ 0, (9)

∇ � u ¼ 0 for x∈ ∂D, t ≥ 0, (10)

Q
∘

x; 0ð Þ ¼ q0 xð Þ for x∈D, t ¼ 0: (11)

The system of Eqs. (7)–(11) is equivalent to the original formulation (Eqs. (3)–(6) [16, 19, 20])

and is the form of the equations that will be discretized. Hence, we look for an approximate

numerical solution of Eqs. (7) and (8), in a given domain D, with prescribed boundary

conditions ∂D and given initial conditionsQ
∘

(Eqs. (9)–(11)). Eqs. (7)–(11) are solved in logically

rectangular grids in the transformed computational space (the interested reader should refer to

the following papers for a detailed derivation [16, 18, 21, 22]), using second-order centered

finite-difference approximations on structured overlapping grids.

The structured overlapping grids method consists in generating a set of conforming structured

component grids Gg that completely cover the domain D that is being modeled in physical

space P and overlap where they meet. In this newly generated overlapping grid system G,

domain connectivity is obtained through proper interpolation in the overlapping areas, and in

the case of moving bodies, grid connectivity information is recomputed at each time step.

As the problem of heaving wings is implicitly a problem with moving bodies, we need to solve

the governing equations in a frame that moves with the component grids. For moving

overlapping grids, Eqs. (7) and (8) can be expressed in a reference frame moving with the

component grids as follows,

∂u

∂t
þ u�G

�� �

� ∇
h i

u ¼
�∇p

ρ
þ ν∇

2u for x∈D, t ≥ 0, (12)

∇
2p

ρ
þ ∇u � ux þ ∇v � uy þ ∇w � uz ¼ 0 for x∈D, t ≥ 0, (13)

where G
�
represents the velocity of the components grids. It is worth noting that the new

governing equations (Eqs. (12) and (13)) must be accompanied by proper boundary conditions.

For a moving body with a corresponding moving no-slip wall (e.g., a heaving wing), we

should impose the velocity at the wall as follows,

u xwall; tð Þ ¼ G
�

xwall; tð Þ, where xwall ∈ ∂Dwall tð Þ: (14)

After spatial discretization of the governing equations, we can proceed with the temporal

discretization. By proceeding in this way, we are using the method of lines (MOL) [23, 24].

The main advantage of the MOLmethod is that it allows to select numerical approximations of

different accuracy for the spatial and temporal terms. Each term can be treated differently to

yield different accuracies.

At this point, the discretized equations can be integrated in time by using any time discre-

tization method. In this work, we used a semi-implicit multistep method, where the viscous
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terms are approximated using the Crank-Nicolson scheme, and the convective terms are

approximated using the Adams-Bashforth/Adams-Moulton predictor-corrector approach

(where the velocity is advanced in time by using a second-order Adams-Bahforth predictor

step, followed by a second-order Adams-Moulton corrector step). We chose to implicitly

treat the viscous terms because if they were treated explicitly, we could have a severe time

step restriction proportional to the spatial discretization squared. The solution method

previously described yields to a second-order accurate in space and time numerical scheme

on structured overlapping grids.

To assemble the overlapping grid system and solve the laminar incompressible Navier-Stokes

equations in their velocity-pressure formulation, the overture framework was used (http://

www.overtureframework.org/). The large sparse system of linear algebraic equations arising

from the discretization of the laminar incompressible Navier-Stokes equations is solved using

the PETSc library (http://www.mcs.anl.gov/petsc/), which was interfaced with overture. The

system of equations is then solved using a Newton-Krylov iterative method, in combination

with a suitable preconditioner and in parallel computational architectures.

3. Geometry, boundary conditions, initial conditions, and wing

kinematics

In Figure 1, we present an illustration of the overlapping grid system layout used to conduct

this parametric study. In the figure, c is the wing’s chord, and h is the heaving amplitude of the

heaving wing. The background grid (BG) extends 4.0� c away from the wing’s leading edge

(LE), 10.0� c away from the wing’s trailing edge (TE), 2.0� c away from the left and right

wing’s tips (LH-WT and RH-WT, respectively), and 4.0� c + h away from the point of maxi-

mum thickness of the upper and lower surfaces. This overlapping grid system layout corre-

sponds to the instant, when the wing is in the mid position of the heaving cycle (as illustrated

in Figure 1). In this manuscript, all the base units are expressed in the international system.

Figure 1. Left: computational domain layout in the xy plane. Right: computational domain layout in the zy plane. The

figure is not to scale.
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In all the cases studied, a rectangular wing with an aspect ratio AR equal to 2 was used. The

cross-section of the wing is an ellipse, with a corresponding major axis a = 0.25 and a minor axis

b = 0.025. Therefore, the wing’s chord c is equal to 2� a = 0.5.

The initial conditions used for all the heaving wings simulations are those of a fully converged

solution of the corresponding fixed wing case. In Figure 1 (left), the left boundary of the BG

corresponds to an inflow boundary condition (u = (1.0, 0.0, 0.0), ∂n̂p ¼ 0), and the top, bottom,

and right boundaries of the BG are outflow boundaries (velocity extrapolated from the interior

points). In Figure 1 (right), all the boundaries of the BG correspond to outflow conditions. On

the wing surface (which is a moving body), we impose a no-slip boundary condition for

moving walls (u ¼ G
�

x,G
�

y,G
�

z). The rest of the boundaries is interpolation boundaries, where

we used a nonconservative Lagrange interpolation scheme. The Reynolds number (defined as

Re =U� c/ν) is equal to 250 for all the simulations.

In all the simulations conducted, we assumed that the wing is undergoing pure heaving

motion, wherein the wing cross-section heaves in the vertical direction (or y axis in Figure 1)

and according to the following function,

y tð Þ ¼ h� sin 2� π� f � tþ φ
� �

(15)

where y(t) is the heaving motion (and is defined positive upwards), h is the heaving amplitude,

f is the heaving oscillating frequency, φ is the phase angle of the heaving motion (0 in this case),

and t is the physical time.

4. Grid dependence study and vortical structures visualization

When conducting numerical simulations, it is well known that the grid resolution can affect

the results from a quantitative and qualitative point of view. In this section, we present the

outcome of the grid dependence study used to determine the best overlapping grid system G

in terms of computing time, stability, and accuracy of the solution. To conduct this study, we

used the grid convergence index method or GCI, as described by Roache in [25, 26].

During this study, fixed and moving wings were considered, but for simplicity, we will only

present the results related to pure heaving motion (where the uncertainties are higher). Several

simulations were run at a Strouhal number St = 0.3 and at a reduced frequency k = 1.570795,

and unsteadiness was observed to disappear typically after 4 to 5 cycles of wing heaving

motion, and further calculations show negligible nonperiodicity. Each simulation was checked

for acceptable iterative convergence.

The different grid sizes, layouts, and mesh stretching ratios considered during this study are

shown in Table 1. In Table 1, the grid spacing ratio (GSR) is the refinement ratio from the finer

grid to the coarser grid and is expressed in reference to the position of the first node normal to

the wing surface (1NW). Therefore, the grid spacing refinement ratio r is equal to 2. In Figure 2,

we illustrate a typical overlapping grid system G used in this study. In Figure 2, the back-

ground grid is shown in images a, b, and c (rectangular grid). The wing grid is made up of
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three component grids (image d), namely, center section, left wing grid tip-section, and right

wing grid tip-section.

Since in the study of heaving wings propulsion, the main task is thrust production, and it is

more convenient to think in terms of thrust force T instead of drag force D. The thrust force is

equal in magnitude but opposite in direction to the drag force (T = �D). To quantify the

unsteady aerodynamics performance, we computed the lift coefficient cl, the drag coefficient

cd, and thrust coefficient ct as follows,

cl ¼
L

1
2ρU

2
A
, cd ¼

D

1
2ρU

2
A
, ct ¼

T

1
2ρU

2
A

(16)

In Eq. (16), the lift force L and the thrust force T (where T = �D) are computed by integrating

the viscous and pressure forces over the wing surface.

Grid Gg BG WG-CS WG-TS GSR 1NW

G1 161 � 121 � 101 221 � 121 � 41 81 � 61 � 41 1 0:001 � 2c

G2 161 � 121 � 101 201 � 101 � 31 61 � 51 � 31 2 0:002 � 2c

G3 161 � 121 � 101 161 � 81 � 31 51 � 41 � 31 4 0:004 � 2c

BG stands for background grid, WG-CS stands for wing grid center-section, WG-TS stands for wing grid tip-section (only

one tip-section), GSR stands for grid refinement spacing ratio, and 1NW stands for position of the first node normal to the

wall.

Table 1. Grid dimensions used for the grid dependence study.

Figure 2. Typical overlapping grid system G used in this study. (A) Side view. (B) Front view. (C) Bottom view. (D)

Perspective view.
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In Table 2, we present the average drag coefficient cd and the root mean square of the lift

coefficient crms
l for the grid dependence study. These values were used to compute the

observed order of convergence pobs, the extrapolated value of the observed quantity at zero

grid spacing χspacing = 0, the fine grid convergence index GCI12 and GCI23, and the constancy

of GCI23 = r
pobs
�GCI12.

Based on the outcome of the GCI study (refer to Table 3), cd at zero grid spacing is estimated to

be 0.057708, with an error band of 0.397203% for grid G1 and an error band of 1.641617% for

grid G2, whereas crms
l at zero grid spacing is estimated to be 0.908738 with an error band of

0.402503% for grid G1 and an error band of 1.567203% for grid G2. The constancy of

GCI23 = r
pobs
�GCI12 indicates that the results for grids G1 and G2 are within the asymptotic

range of convergence. Finally, the observed order of convergence pobs represents a direct

indication of the accuracy of the numerical method. In this study, we obtained a value of pobs
close to 2 for both quantities of interest, which indicate that the method is second-order

accurate in space and time.

To supplement the quantitative GCI study, we conducted an additional grid dependence study

but from the qualitative point of view (vortical structures resolution on the wake of the wing).

The qualitative results for grids G1 and G2 (refer to Table 1) are illustrated in Figure 3. In

Figure 3, we use the iso-surfaces of vorticity magnitude (∣ω∣-criterion), and the iso-surfaces of

Q-criterion [27, 28], to capture the vortices and their corresponding cores. As depicted in this

figure, there are no discernible differences between the solutions, indicating that both grids are

adequate for vortical structures resolution. It can also be seen that the ∣ω∣-criterion, although

capable of capturing the general vortical structures, has the disadvantage of also showing the

shear layers near the wing surface and between the vortices. On the other hand, the Q-criterion

shows the details of the vortical structures more clearly as it does not show the shear layers

close to the wing (as illustrated in Figure 4). Apart from this, both methods provide nearly

Grid Ggg GSR cd crms
l

G1 1 0.057892 0.905822

G2 2 0.058476 0.897486

G3 4 0.060914 0.865326

Table 2. Observed values of cd and crms
l for the grid dependence study.

Outcome cd crms
l

pobs 2.061650 1.947838

χspacing = 0 0.057708 0.908738

GCI12 (%) 0.397203 0.402503

GCI23 (%) 1.641617 1.567203

(GCI23/GCI12) � (1/rpobs) 0.990012 1.009249

Table 3. GCI study results.
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identical structures in the far wake. Based on these qualitative results, we chose the Q-criterion

as the main criterion for wake topology characterization.

Summarizing the quantitative and qualitative results previously presented, we can conclude

that the solutions obtained by using the overlapping grid systems G1 and G2 are grid indepen-

dent. Taking into account the computational resources available, CPU time restrictions, and

Figure 3. Vortex topology at the beginning of the upstroke (t = 5.0). Iso-surfaces of ∣ω∣-criterion are shown in light gray,

and iso-surfaces of Q-criterion are shown in dark gray. Simulation parameters: Re = 250, St = 0.3, and k = 1.570795. A

corresponds to overlapping grid system G1 and B corresponds to overlapping grid system G2.
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solution accuracy, G2 with a value of 1 NW equal to 0.001� 2c is used as the base grid to

perform all further computations. In the case of a smaller or bigger computational domain, the

grid dimensions are scaled in order to keep the same grid spacing as for this domain.

5. Simulation results

Hereafter, we carry out a comprehensive parametric study to assess the wake signature and

aerodynamic performance of heaving rigid wings. In Table 4, we present the kinematics

Figure 4. Shear layers close to the wing at the beginning of the upstroke (t = 5.0). Left column corresponds to iso-surfaces

of Q-criterion, and the right column corresponds to iso-surfaces of ∣ω∣-criterion. Simulation parameters: Re = 250, St = 0.3,

and k = 1.570795.
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parameters governing the heaving motion (described by Eq. (15)). In Table 4, we also present

the quantitative results obtained, where ct is the average thrust coefficient and bcl is the

maximum lift coefficient (which was measured during the downstroke). By inspecting these

results, we observe that as we increase St and k, the values of ct and bcl also increase. This result

is expected because as we increase St and k (therefore, the oscillating frequency and heaving

amplitude), the vertical velocity of the wing is higher. Hence, the forces excerpted on the

wing’s surface are larger. We also observe two different behaviors of the aerodynamic forces

for high and low reduced frequencies k values. Hence, it seems that for heaving wings, the

oscillating frequency plays an important role in the vortex generation and shedding and,

henceforth, on the aerodynamic forces. These frequency dependence observations are similar

to those of Wang [29], Young and Lai [30], and Guerrero [31], but here, we extend them to

three-dimensional cases.

In Table 4, we can read that for values of St < 0.30, the heaving wing produces drag; for values

of 0.30 < St < 0.35, the heaving wing produces little or no drag (or thrust), whereas for values of

St > 0.35, the heaving wing produces thrust. These results suggest that there is a range of St

values, where the heaving wing generates thrust. The results also point at the presence of a

combination of St and k values, where propulsive efficiency peaks. In general, the results are

inline with the hypothesis that flying and swimming animals cruise at Strouhal numbers

corresponding to a regime of vortex growth and shedding in which propulsion efficiency is

high.

Case number St k ct bc l Regime

3DH-1 0.15 1.570795 �0.122675 0.560613 Drag production

3DH-2 0.15 0.785397 �0.111949 0.422249 Drag production

3DH-3 0.20 1.570795 �0.106101 0.784628 Drag production

3DH-4 0.20 0.785397 �0.087877 0.597156 Drag production

3DH-5 0.25 1.570795 �0.086136 1.040502 Drag production

3DH-6 0.25 0.785397 �0.068118 0.798169 Drag production

3DH-7 0.30 1.570795 �0.058294 1.238780 Drag production

3DH-8 0.30 0.785397 �0.052475 1.024220 Drag production

3DH-9 0.35 1.570795 0.022962 1.651670 Thrust production

3DH-10 0.35 0.785397 �0.036191 1.257870 Drag production

3DH-11 0.40 1.570795 0.061370 2.030980 Thrust production

3DH-12 0.40 0.785397 0.008296 1.539740 Thrust production

3DH-13 0.45 1.570795 0.143680 2.417032 Thrust production

3DH-14 0.45 0.785397 0.010296 1.891345 Thrust production

3DH-15 0.50 1.570795 0.199366 2.944020 Thrust production

3DH-16 0.50 0.785397 0.024617 2.150710 Thrust production

Table 4. Simulation results for the pure heaving parametric study (positive ct indicates thrust production whereas

negative ct indicates drag production).
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To understand how the heaving wing generates thrust, we need to take a closer look at the

vortex shedding process. In Figures 5 and 6, we illustrate the vortex topology for a heaving

case in the thrust producing regime (case 3DH-11 in Table 4). These figures show that the

downstream wake (or far field wake) of this case consists of two sets of doughnut-shaped

vortex rings (VR) which convect at oblique angles about the centerline of the heaving motion.

Thus, the flow induced by each vortex ring along its axis is expected to have a net streamwise

component linked to thrust production. This net streamwise momentum excess in the wake is

connected with the thrust production of heaving wings. The process by which the vortex rings

are formed can be explained by examining the vortex formation and shedding close to the

Figure 5. Vortex wake topology at the beginning of the upstroke for case 3DH-11 (t = 5.0). Heaving parameters: Re = 250,

St = 0.4, and k = 1.570795 (thrust producing wake).
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wing’s surface. During the heaving motion and close to the wing, four vortices are formed;

namely, one leading edge vortex (LEV), one trailing edge vortex (TEV), and two wing-tip

vortices or WTV (one WTV on the left wing-tip or LH-WTV and another WTV on the right

wing-tip or RH-WTV). These four vortices are all connected and form a closed vortex loop

(VL). During the heaving motion and as this vortex loop is convected downstream, it discon-

nects from the wing, creating in this way the doughnut-shaped vortex rings. It is also of interest

in the fact that each vortex loop has two sets of thin contrails (TC) that connect the VL to the

VR generated in the previous stroke; these structures are segments of the wing-tip vortices,

and, as the vortex rings are convected downstream, they become weaker and ultimately

Figure 6. Vortex wake topology at the beginning of the upstroke for case 3DH-11 (t = 5.0). Heaving parameters: Re = 250,

St = 0.4, and k = 1.570795 (thrust producing wake).
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disappear (as in vortex ring VR2 in Figure 5). During a complete heaving cycle, two VRs are

formed, one at the end of the upstroke and the other one at the end of the downstroke.

In Figure 7, we present the wake topology for a drag-producing case (which corresponds to

case 3DH-3 in Table 4). It is clear from this figure that the wake topology is very different from

the one of the thrust producing case. In this case, as the vortex loops are convected down-

stream, they do not morph into vortex rings. Instead, they keep their original shape, and as

they are convected, they diffuse. We can also observe that the wake height is very compact, in

comparison to that of the thrust production case (as depicted in Figure 8). Finally, notice how

the flow induced by each vortex loop is inclined in the same direction of the wing’s travel

direction, resulting this in a momentum surfeit linked to drag production. The momentum

Figure 7. Vortex wake topology at the beginning of the upstroke for case 3DH-3 (t = 5.0). Heaving parameters: Re = 250,

St = 0.2, and k = 1.570795 (drag-producing wake).
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deficit and momentum excess scenarios can be better appreciated in Figure 8, where A corre-

sponds to drag production (momentum deficit) and B corresponds to trust production

(momentum excess).

Animations of several simulation cases are available at the author’s web site: http://www.dicat.

unige.it/guerrero/flapsim1.html (last accessed: Sep 2017).

6. Conclusions and perspectives

In this manuscript, we studied the unsteady aerodynamics of heaving rigid wings. The lami-

nar incompressible Navier-Stokes equations were solved in their velocity-pressure formulation

using a second-order accurate in space and time finite-difference numerical method, and to

efficiently deal with moving bodies, we used overlapping structured grids. To study the

dependence of the aerodynamic forces and wake topology on the wing kinematics, many

simulations were conducted at different values of Strouhal number and at two reduced fre-

quency values (low and high oscillating frequency).

The simulations show that the wake of thrust producing, rigid heaving wings is formed by two

sets of interconnected vortex loops that slowly convert into vortex rings as they are convected

downstream. It is also observed that the vortex rings are inclined with respect to the free-

stream flow, whereas for thrust producing configurations, the angle of inclination of the vortex

rings is in the same direction of their travel, and for drag-producing configurations, the angle

of inclination of the vortex rings is opposite to the direction of their travel. The presence of thin

contrails that link the vortex loops is of interest; these structures are segments of the wing-tip

vortices, and as the vortex loops are convected downstream, they become weaker and ulti-

mately disappear. In general, the observed structures are qualitatively similar to those

observed in the experiments by Parker et al. [32] and Von Ellenrieder et al. [33] and the

numerical simulations of Dong et al. [34] and Blondeaux et al. [35].

Figure 8. Wake comparison of a drag-producing case (A) and thrust producing case (B). The wake height was measured

approximately at 3� c behind the trailing edge.
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From the force measurement study, two different behaviors were observed for the average

thrust coefficient ct and maximum lift coefficient bcl. It seems that the reduced frequency k (and

hence the oscillating frequency) plays an important role in the vortex generation and shedding

frequency, therefore, on the aerodynamic forces. Thus, LEV convection and separation intro-

duce a frequency dependence into the results. This provides a mechanism of optimal selection

of heaving frequency (in the sense of propulsive efficiency) as discussed by Wang [29], Guer-

rero [31], and Young and Lai [36]. It is worth mentioning that the results presented in the

previous references were obtained for two-dimensional airfoils. The results presented in this

manuscript extend these observations to three-dimensional wings.

Finally, for the limited range of St and k values studied and the simplified wing geometry and

heaving kinematics covered in this study, all the qualitative and quantitative results presented

are in close agreement with the experimental observations of Rohr and Fish [12], Triantafyllou

et al. [13], Nudds et al. [14], Taylor et al. [15], and Parker et al. [32]; this supports the hypothesis

that “flying and swimming animals cruise at a Strouhal number tuned for high power efficiency” [15].

The results presented in this manuscript are limited to laminar flow; nevertheless, they provide

an excellent insight into the wake signature of the unsteady aerodynamics of heaving wings.

We envisage to extend the current study to higher Reynolds numbers and turbulent cases and

use more realistic wing geometries and kinematics. Finally, in this manuscript, we did not

cover propulsive efficiency and optimal frequency selection, but we hope to address these

issues in future studies.
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