
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 5

Game Engine Solutions

Anis Zarrad

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71429

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Anis Zarrad

Additional information is available at the end of the chapter

Abstract

The rapid development of hardware and system platforms provides a favorable foun-
dation for game development. A game engine overview is introduced first. Then, key
features and available solutions of game engines are discussed. Typical products of game
engines are shown and evaluated. Finally, we summarize our findings.

Keywords: game engine, game builder, 3D game, 2D game, engine architecture

1. Introduction

Game engines are a new way to develop high-quality games easily and rapidly without need-

ing intensive programming skills and computational resources. Today, there is growing inter-

est in game engines due to the rapid development of hardware and system platforms.

3D game engines help game companies reduce their cost, time, and manpower, since
game developers can use the available functionalities of the engine. However, with over
100 engines available in the market for commercial and educational purposes, with a wide
range of diverse features, each with its own performance levels, license types, and cost
structures, selecting an appropriate game engine for a specific purpose becomes a challeng-

ing problem.

Game engine systems hit the headlines only a few years ago. Before the appearance of game

engine technologies [1, 2], existing systems were often developed as virtual augmented real-
ity systems to handle specific tasks such as NPSNET [3], DIVE [4], and SPLINE [5]. Thus, any
modification required a hard change in the programming environment and architecture. As
game engine technology matures and becomes more flexible, implementing a 3D environ-

ment will become easier. Despite these improvements, programming skills remain a concern,
and usually sabotage developers who want to create complex environments.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Game developers usually have advanced programming skills and often block the system
from user manipulation or misuse, which further complicates the task. Most game engines
are limited to specific tasks and their features are typically coupled with specific game char-

acteristics. Thus, developing extensions or modifications that force a game engine to adopt a
new class of applications is almost impossible. Recently, many techniques and programming
approaches such as virtual reality modeling language (VRML) [6], OpenGL [7], DirectX [6],
X3D [6], and MPEG-4 [8] have been developed to build game applications. However, many
of these new methods cannot provide native support to extend existing games. Systems like
Bamboo [9] and JADE [10] have been proposed to overcome the limitations, brought about
by the interconnected gaming engine and development platform, to offer a better solution.

In this chapter, we evaluate the latest released game engine from a variety of aspects like
modularity, performance, usability, library, speed, and the realism. The readers will obtain
an overview of game engine research, while becoming familiar with the recent developments
and technologies in this area.

2. Existing game engine solutions

As technology moves forward, the need for multiuser game applications is getting more attrac-

tive. Before game engines, games were typically written as singular entities. Any modification
to a game system required a collaborative effort from graphic designers, game designer, and
3D programmers to develop the required new scenario. Then, a player would need to stop
and restart the game to reflect the modifications. Today, most researchers seek to build a gam-

ing platform that facilitates the development and modification of such applications easily and
rapidly without having intensive programming skills. For this reason, a game engine concept,
which separates the engine and content development, arose in the mid-1990s. By the end of
1998, many games like ID Software’s Quake III [11] Arena and Epic Games’ 1998 Unreal [12]

were designed with a game engine approach in mind.

Currently, there are many modern 3D engine games such as Unity engine [13], Unreal engine
[12], Gamebryo engine [14], CryEngine [15], and Software’s Source engine [16]. Choosing an

adequate game engine depends on the type of game you want to create and the platform you

want to use.

Unity engine [13] is a well-known game engine developed by Unity Technologies in Denmark;
it is used to create interactive 3D content using JavaScript. Unity does not offer as many fea-

tures as other tools like Unreal and CryEngine. Therefore, making excellent games without
having a full license, which can cost nearly $2000, is very difficult. Unity integrates a custom
rendering engine with an NVIDIA PhysX physics engine [17].

The Unreal engine [12] offers a completely royalty-free version with a powerful rendering engine
and environment editor. It contains a variety of application programming interface (APIs) and
tools to let you create a 3D virtual environment that closely resembles the real world. Unreal
comes with partial documentation, while Unity and Source engines provide a complete docu-

mentation with detailed examples. Unreal Engine uses C++ while Unity uses C# or JavaScript.

Simulation and Gaming76

Software’s Source engine [16], developed by Valve Corporation, uses Half-Life 2 [18] and Portal.
The overall system architecture is based on the popular modular architecture to provide indepen-

dent updates. It uses an SDK source and a few GUI-based programs to handle complex functions.

Compared to the Unreal Engine [19] and CryENGINE [15], Emergent Game Technologies’
Gamebryo engine [14] is used to develop a variety of games, ranging from action games to
strategy games like Fallout 3, Empire Earth, and Civilization IV games. Gamebryo also sup-

ports a variety of platforms such as Windows, Wii, Xbox 360, and PlayStation.

CryEngine [15] is a game-development tool developed by Crytek Company. It facilitates event
scripting, animation, and 3D object creation in the free CryEngine SDK. CryEngine is designed
to support PC platforms and consoles, including Xbox 360 and PlayStation. Panda 3D [20] is

a complete game and simulation engine with a very rich feature set. It uses advanced shaders
and rendering effects, with different techniques. Torque 3D [21] is designed from the ground

up to allow developers to make their game abstracted completely away from the underlying
hardware. This represents a vast benefit for game developers, allowing them to work on game
project without focusing on platform-specific requirements or restrictions.

Before the Game Engine, virtual environments were developed using dedicated systems
to implement a specific scenario model. Some of the most well-known systems of this kind
include DIVE [4], MASSIVE [22], NPSNET [3], SPLINE [5], and VLNET [23]. These systems

focus on specific applications to reduce the overall implementation complexity. The major
problems stem from the fact that systems are tightly coupled in terms of implementation.

Consequently, any modifications in the application require modifications in the supporting
architecture, which occurs because the complexity property is gained through the combina-

tion of the internal architecture with the specific application functionalities.

Bamboo [9] uses a microkernel-based architecture to separate the system elements from the
kernel in such a way that the add, remove, and modify functions can be performed at runtime.
Unfortunately, this highly accredited approach incurs a great deal of complexity, particularly
in terms of facilitating communication between components written in different languages.
Oliviera et al. [10] developed a Java Adaptive Dynamic Environment (JADE) based on Java
architecture. It consists of a lightweight cross-platform kernel that permits system evolution
at runtime. The adoption of JADE does not provide an efficient solution to problems that arise
from extending virtual reality applications.

In [24], the authors developed the Virtual Environment Mark-up Language (VEML) based on
the nonlinear story [24] concept defined by Szilas [25] to build virtual reality applications. This

model allows the progress of the story, during the simulation, to be specified independently from
the implementation of the 3D object geometry and from the 3D-environment programming.

3. Game engine architecture and principles

An engine is an essential part of a game; it influences the structure and the organization
of game graphics, configuration files, and all other inputs such as user inputs, maps, and
sounds. Figure 1 shows a game engine component diagram in a game development context.

Game Engine Solutions
http://dx.doi.org/10.5772/intechopen.71429

77

Game tools, Game Utility, and Game Content are also vital components of a game. Game tools
refer to all the tools used to develop a game, such as the character editor, ability editor, config-

uration files, and game map. Game content refers to all related features in any game. Graphics
and audio files are the most important type of data. Network components allow multiple
users to connect to each other and access game data. Utility components define all needed data
types, message formats, and required files, with respect to the game characteristics. The game
tool component plays a bridge role between Game content and the Game engine components.

Currently, no specific standard architecture has been developed in the literature. Figure 2

shows a detailed game engine architecture. We consider only some features that are most

likely important.

Manager components are essential to all games. A physical manger is important for games
dependent on physical reactions. For example, car racing needs physical laws, but this is not
so important for a card matching game. However, the input manager and the GUI system are
important, even for a simple game, to process the user input. The scene manager is required to
organize and control the scene content and monitor the game’s logic. The game loop is used to
control an infinite loop that keeps the game running over-and-over again. The network com-

ponent is responsible for managing user connections and game data access. The AI System
is a special module designed and written by software engineers with specialized knowledge.

Figure 1. Game engine component diagram.

Simulation and Gaming78

Additional manager components, which depend on programmer and coding approaches like
game states, Rule engine, and Speech recognizer, may be needed at specific times.

Designing a game engine solution to fit all game purposes is a challenging problem for an
engine developer. There is a need to define key design principles and provide advice to cre-

ate successful engines. The five principles listed in this section and referred with the acronym
MULER are modularity, usability, library resources, efficiency, rendering effects, and picture
quality. Each of these features is detailed below and will be used to evaluate available existing
popular game engines in Section 4.

3.1. Modularity

Game engine should be implemented via several unique modules. Each manager component
is independent much like a single functional unit. Engine developers should invest time in
implementing a modular game architecture to reduce the system complexity and offer robust-
ness. Testing process and maintenance becomes easier for the programmer when needed. As

shown in the proposed architecture in Figure 2, the principle of modularity is satisfied and
each component has a unique function.

3.2. Usability

Engine developers are the main actors; therefore, usability of a game engine is an important
criterion to evaluate. As defined by [26], usability includes ease of learning, efficiency of use,
memorability, error frequency and severity, and subjective satisfaction. Ease of learning and
efficiency of use are the main aspects of usability. We evaluated available tutorials, project
examples, forum communities, programming languages, and technical support. Information
is retrieved from the engine’s website. For efficiency of use, we investigated game engine
application editors including map editor, GUI editor, animation editor, programming editor,
and scene editor. We considered the Debugger as part of the programming editor. This option
helps a developer to stop applications at specific lines of the source code and check values.
This is helpful for developers because they can easily find the error and fix it.

Figure 2. Detailed game engine architecture.

Game Engine Solutions
http://dx.doi.org/10.5772/intechopen.71429

79

3.3. Library resources

3D game engine systems are implemented by assembling many resource libraries together.
The engine developer selects a game engine based on its available programming resource

libraries. A common library for a simple 3D game engine consists of 3D graphics, physics,
collision detection, input/output, audio, AI, 3D graphics, and a network library. Modern
game engines can include more powerful libraries including physics laws, collision detection,
and special effects. In addition, resources in the game engine contain project examples, user
guides, and tutorials; these available resources are extremely useful for a game developer. We
believe this is the most useful criterion for game engine comparison

3.4. Efficiency

Game engine efficiency refers to the successful use of all inputs and available resources to pro-

duce a given game output. It includes memory allocation, CPU usage, rendering process, and
other features. We may produce an efficient engine but not an efficient game. This is because
the game workflow is designed by the game creator, which has an impact on the game effi-

ciency. Resource managers play an important role for this criterion. It loads the game data
and files from disk into the memory to be used for rendering and game scenario creation.

Game designers should consider the reusability and modularity concepts to improve engine

efficiency. Single resources can be used to create many instances.

3.5. Rendering effects and picture quality

The rendering process produces 3D animated graphics using specific techniques like raster-

ization [27], image-based rendering (IBR) [28], ray tracing [27], or any different technique.
These techniques are valuable for 3D game engines.

Unlike 2D graphics, the implementation of a 3D graphics rendered requires advanced
programming and 3D modeling skills. 3D graphics have countless rendering algorithms
from extremely fast to extremely slow. Hardware and software rendering have an impact
on the acceleration of the 3D graphics. Most available engines render a scene using the
default settings. These features may be good for a quick preview, but not for production
work. With modern engines, you can get a very sharp, clear, and high-quality output; this
comes at the price of increased rendering time even though the overall final output will
be much better.

4. Game engine evaluation

In this section, we evaluate the selected game engines based on the most important prin-

ciples MULER: modularity, usability, library resources, efficiency, rendering effects, and
picture quality. Currently, there are 376 game engines listed in the DevMaster.net data-

base [29]. We set a game engine selection filter based on the following criteria:

Simulation and Gaming80

• Game engines that lack important features are excluded.

• No high-quality games are implemented.

• No recent update or released versions.

We studied all game engines listed in DevMaster. Only 20 game engines are selected for eval-
uation. Table 1 shows the details of the selected engines.

Our goal is to provide a complete evaluation of game engines. Developers want to know
which game engine to invest on. Selected engines will have an impact on the game output.
Table 2 will help users to pick the optimal 3D game engine based on their purpose and
needs.

The evaluation criteria for each principle are defined as follows:

• Modularity: from “0” to “3” to indicate the modularity level. “0” means modularity is not
considered in the game engine architecture.

• Usability: from “1” to “5” to indicate the usability level. “5” represents complete user satis-

faction. Score assignment is based on user reviews and forum community responses.

• Library resources: limited resources, acceptable resources, very rich resources.

• Efficiency: poor, good, excellent.

• Rendering effects and picture quality: poor, good, excellent.

4.1. Discussion and general findings

Unity 3D has a poor usability because GUI and AI editor are not implemented. There is also no
real demo or technical support provided in the last release. Unity 3D implements a very basic
PhysX module, which affects the performance and rendering aspects of the system. Similarly,
Jmonkey [30] has a poor performance for heavy games because NiftyGUI library used a
JavaBuilder pattern for creating controls on the screen, this way preventing for subclassing
elements, which renders the code unreadable. Many users complain about Jmonkey’s “very
slow engine.” Nevertheless, the system-provided documentation covers almost every topic.

Shiva3D’s engine can be deployed in more than 10 platforms. It is a quite powerful engine
with many features. The dynamic and static shadow management on a custom textured
model needs more enhancement, especially for real-time games. Marmalade engine has a
poor rendering process since the engine uses limited animation and a mesh library.

One of the best engines available in the community is Unigine. It has a good performance
for large-scale games. It also has a full-fledge rendering engine with the latest implemented
features (full-dynamic lighting, DX11 tessellation). Recently, a 3D planet system with geo-

graphic coordinates is integrated into the engine. Rendering and physics features are com-

parable to engines like CryEngine and Unreal. However, Unigine’s lack of tutorial and
example availability is a negative. We cannot decide on the modularity score due to missing
information.

Game Engine Solutions
http://dx.doi.org/10.5772/intechopen.71429

81

Game engine Language Supported platforms 2D 3D License/price

Unity 3D C# and JavaScript Desktop: Windows, Mac OS, Linux
Mobile: Android, IOS,

No Yes Free for Indie
version

Jmonkey
Engine

Java, Python, and
JavaScript

Desktop: Windows, Mac OS, Linux
Mobile: Android

No Yes Free

Marmalade C/C++ Desktop: Windows, Linux,
Mobile: Android, and IOS

— Yes Commercial

LibGDX Java Desktop: Windows, Mac OS, Linux
Mobile: Android, IOS, Blackberry, HTML5

Yes Yes Free

Panda3D Python and C++ Desktop: Windows and Mac OS No Yes Free/open source

Blender C/C++, Python Desktop: Windows, Mac OS, Linux No Yes Free

Unreal engine C++,
VisualScripting

Desktop: Windows, Mac OS, Linux,
HTML5
Mobile: NA

Free/open source

CryEngine C/ C++ Desktop: Windows, and Mac OS
Mobile: Android, and IOS,

No Yes Unspecified

Crystal Space C/C++, Python Desktop: Windows, Mac OS, Linux
Mobile: NA

— Yes Free

CopperCube JavaScript, Flash,
WebGL

Desktop: Windows, Mac OS
Mobile: Android

Yes Yes Free

Leadwerks C++, C#, VB.Net,
Python

Desktop: Windows
Mobile: NA

$99.95

Raydium C/C++ Desktop: Windows, MacOS, Linux
Mobile: IOS

No Yes Free

SunBurn C# Desktop: Windows

Mobile: Windows Phone
No Yes $ 150

UDK C/C++ Desktop: Windows
Mobile: iOS

No Yes $99.00

Corona SDK 61 Lua Desktop: Windows, Mac OS
Mobile: iOS; Android; Windows Phone

Yes No Free

3D Game
Studio

C++, C# Desktop: Windows

Mobile: NA
Yes Yes Free for the basic

version

Unigine C/C++ Desktop: Windows, and Linux
Mobile: iOS; Android

No Yes $ 25,000

Torque3D C++, TorqueScript Desktop: Windows, Mac OS, and Linux
Mobile: NA

— Yes Free/open source

ShiVA C/C++, Lua Desktop: Windows, Mac OS, and Linux
Mobile: iOS; Android; Windows Phone,
and Blackberry

— Yes Free for personal

use

Irrlicht C++, C#, VB.Net Desktop: Windows, Mac OS, and Linux
Mobile: iOS; Android;

Yes Yes Free

Table 1. Details of the selected game engines.

Simulation and Gaming82

Unreal engines handle shading in an efficient way by using a DirectX 11 pipeline that
includes deferred shading, global illumination, lit translucency, and postprocessing. It also
integrates NVIDIA technologies. The physics management component in the CryEngine
is excellent. The game engine has built-in rendering paths for OpenGL and DirectX 8/9,

Game engine Modularity Usability Efficiency Library resources Rendering effects and picture
quality

Unity 3D 1 4 Acceptable Acceptable

resources

Acceptable

Jmonkey Engine 3 2 Poor Rich resources Acceptable

Marmalade 1 1 Poor Limited resources Poor

LibGDX 2 3 Acceptable Rich resources Acceptable

Panda3D 3 4 Acceptable Acceptable

resources

Excellent

Blender 3 5 Acceptable Rich resources Acceptable

Unreal engine 4 4 Excellent Rich resources Excellent

CryEngine 3 5 Excellent Rich resources Excellent

Crystal Space 5 1 Poor Acceptable

resources

Acceptable

CopperCube 2 3 Poor Limited resources Poor

Leadwerks 4 1 Excellent Acceptable

resources

Excellent

Raydium 1 1 Poor Acceptable

resources

Acceptable

SunBurn 1 2 Good limited resources Good

UDK 2 5 Excellent Very rich
resources

Excellent

Corona SDK 61 1 4 Good Acceptable

resources

Acceptable

3D Game Studio 1 4 Good Acceptable

resources

Poor

Unigine — 4 Excellent Very rich
resources

Excellent

Torque3D 2 3 Good Acceptable

resources

Acceptable

ShiVA 3 3 Poor Acceptable

resources

Good

Irrlicht — 2 Good Acceptable

resources

Good

Table 2. Game engine evaluation based on MULER.

Game Engine Solutions
http://dx.doi.org/10.5772/intechopen.71429

83

allowing to support Linux, Apple, and Microsoft operating systems. The various rendering
paths also allow more hardware to be supported by the engine.

SunBurn has a basic physics module and only support windows and windows phone 7. It
uses flexible rendering and provides both advanced deferred rendering and traditional for-

ward rendering, allowing you to choose the ideal technique for your project. It does not have
a network or AI library. Raydium does not offer a GUI editor, scene editor, and animation
editor. It also does not have mapping or AI modules implemented.

UDK [31] is a complete professional development framework. It includes a set of features
packed with power and ease of use. UDK has a very easy interface while offering power and
flexibility. The rendering process is exceptional due to the use of a multithreaded rendering
system. UDK makes the most beautiful graphic games in mobile devices because UDK can
transform global illumination to texture.

In Panda 3D [20], the C++ documentation is lacking compared to the Python documentation.
It uses C++ to solve the performance issue. Projects developed with Torque can be easily
ported to other operating systems and platforms as explained by Nilson and Söderberg [32].

Blender [30] engine is built into an exceptional 3D modeler, which means that “importing”
models into your game is as simple as playing it. The Python scripts and game logic are
very powerful and easy to use. Blender has a layered architecture including utilities, kernel,
computer, render, UI, and applications. LibGDX [33] is mainly developed for 2D mainly with
cross-platform tool so you can make games for Windows, Linux, OS X, HTML, Android, and
iOS. 3D game Studio engine offers allow developers to build a complete game without know-

ing C++. In addition, the engine has an integrated 2D engine. However, the engine cannot be
used to developed large-scale game with excellent graphics quality.

Irrlicht [34] uses a low-quality rendering model. It supports a wide range of 3D/textures for-

mats. Irrlicht has a very large and friendly community. CrystalSpace [35] requires Cygwin

when compiling on windows. Thus, it is too hard for developers to set up modeler and man-

agement components. Compared to other engines, CrystalSpace and Jmonkey [34] seem to

have the lowermost usability level.

Leadwerks has a very limited support that affects its usability principle. Performance is
enhanced with the last release, Leadwerks Game Engine 5. It now decouples the game loop
from the renderer. Similarly, usability in CopperCube is not satisfied, the option to drag and
move objects into the space is not implemented, and JavaScript API should be extended to
include more advanced features.

5. Conclusion

A comparison table shows that there is no best game engine for all games. Each game engine
has its own advantages and disadvantages. Cleary Shiva3D and LibGDX are the best in terms
of platform deployment criterion. It can be deployed in more than eight platforms. However,
when we consider performance and rendering efficiency criteria, UDK, CryEngine, and
Unigin are the clear winners.

Simulation and Gaming84

If you are a developer with mixed skills, then try out UDK and Unreal Engine 4. Making a
good game is not risked by choosing a wrong engine. They are just a tool. In my opinion, the
best way to find your suitable tool is to play around with the engine and then decide.

Author details

Anis Zarrad

Address all correspondence to: anis.zarrad@gmail.com

Prince Sultan University, Riyadh, Saudi Arabia

References

[1] Cowan B, Kapralos B. A survey of frameworks and game engines for serious game devel-
opment. In: Advanced Learning Technologies (ICALT): IEEE 14th International Conference
on Greece; 2014

[2] Jacobson J, Lewis M. Game engine virtual reality with caveut. IEEE Computer. 2005;
38(4):79-82

[3] Michael RR, Macedonia M, Zyda J, David R, Pratt R. NPSNET: A network software
architecture for large scale virtual environments. Presence: Teleoperators and Virtual
Environments (USA). 1994;3:256-287

[4] Hagsand O. Interactive MUVEs in the DIVE system. IEEE Computer. 1996;3(1):30-39

[5] Waters R, Anderson D, Barrus J, Brogan D, Casey M, McKeown S, Nitta T, Sterns I,
Yerazunis W. Diamond Park and Spline: A Social Virtual Reality System with 3D
Animation, Spoken Interaction, and Runtime Modifiability TR-96-02a November; 1996

[6] Xie W, Yanrong L. The virtual furniture store constrution based on VRML/X3D. In: 2012
International Conference on Computer Science and Information Processing (CSIP),
China. 2012

[7] Lee H, Baek N. Implementing OpenGL ES on OpenGL. In: ISCE '09: IEEE 13th Inter-
national Symposium on Consumer Electronics, Japan; 2009

[8] Battista S, Casalino F, Lande C. MPEG-4: A multimedia standard for the third millen-

nium 1. IEEE MultiMedia. 1999;6(4):74-83

[9] Magerko B, Laird JE. Building an interactive drama architecture. In: 1st International
Conference on Technologies for Interactive Digital Storytelling and Entertainment,
Germany. 2003. pp. 24-26

[10] Oliveira M, Crowcroft J, Slater M. Component framework infrastructure for virtual envi-
ronments. In: Proceedings of the third international conference on Collaborative virtual
environments. USA. 2000. pp. 139-146

Game Engine Solutions
http://dx.doi.org/10.5772/intechopen.71429

85

[11] Mamei M, Zambonelli F. Motion coordination in the Quake 3 arena environment: A
field-based approach. In: International Workshop on Environments for Multi-Agent
Systems, 2004. pp. 264-278

[12] Lewis J, Brown D, Cranton W, Mason R. Simulating visual impairments using the unreal
engine 3 game engine, In: IEEE 1st International Conference on Serious Games and
Applications for Health (SeGAH), Portugal. 2011. pp. 45-53

[13] Polančeć D, Mekterović I. Developing MOBA games using the unity game engine. In:
2017 40th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Croatia. 2017

[14] Emergent: Gamebryo Game Engine, Available from: http://www.emergent.net/

[15] Juarez A, Schonenberg W, Bartneck C. Implementing a low-cost CAVE system using the
CryEngine2. Entertainment Computing. 2010;1:157-164

[16] Kovacs D, Mitchell J, Drone S, Zorin D. Real-time creased approximate subdivision sur-

faces with displacements. IEEE Transactions on Visualization and Computer Graphics.
2010;16(5):742-751

[17] Zhonghua L, Sankaranarayanan G, Deo D, Chen D, Suvranu D. Towards physics-based
interactive simulation of electrocautery procedures using PhysX. In: IEEE Haptics
Symposium, USA. 2010. pp. 125-137

[18] Cricenti L, Branch A. A generalised prediction model of first person shooter game traffic.
In: IEEE Local Computer Networks, LCN 34th Conference, Switzerland. 2009

[19] Ferreyros C, Wendorf M, Juárez P. Developing a Videogame Using Unreal Engine Based
on a Four Stages Methodology. Peru: IEEE ANDESCON; 2016

[20] Goslin M, Mine MR. The Panda3D graphics engine. Computer Journal. 2004;37(10):
112-114

[21] Shiratuddin F, Fletcher D. Development of southern Miss’s innovation and commercial-
ization park virtual reality environment. Proceeding Sixth Conference on Construction
Applications of Virtual Reality, USA; 2006. pp. 278-285

[22] Benford S, FahlŽn L. A spatial model of interaction in large virtual environments. In:
Proceedings of the 3rd conference on European Conference on Computer-Supported
Cooperative Work, Italy. 1993. pp. 109-124

[23] Pandžić S, Tolga K, Elwin L, Thalmann N, Thalmann D. A flexible architecture for virtual
humans in networked collaborative virtual environments. Proceedings Eurographics,
Hungary; 1997. pp. 177-188

[24] Boukerche A, Duarte D, Araujo R, Andrade L, Zarrad A. A novel solution for the devel-
opment of collaborative virtual environment simulations in large scale. Ninth IEEE
International Symposium on Distributed Simulation and Real Times DS-RT Proceedings,
Canada; 2005. pp. 86-97

Simulation and Gaming86

[25] Szilas N. IDtension: A narrative engine for interactive drama. In: Proceedings of TIDSE’03.
Frauenhofer: IRB Verlag; 2003

[26] Williges T, Hartson R. The effectiveness of usability evaluation methods: Determining
the appropriate criteria. In: Proceedings of the Human Factors and Ergonomics Society
43rd Annual Meeting, USA. 1999. pp. 1090-1094

[27] Davidovič T, Engelhardt T, Georgiev I, Slusallek P, Dachsbacher C. 3D rasterization:
A bridge between rasterization and ray casting. Proceedings of Graphics Interface,
Canada; 2012. pp. 201-208

[28] Lai J, Chen C, Chien Y. Architecture design and analysis of image-based rendering
engine. In: 2011 IEEE International Conference on Multimedia and Expo (ICME), Spain

[29] DevMaster.net. Game Development. 2017. Available from: http://devmaster.net

[30] Navarro A, Vicente Pradilla J, Rios O. Open source 3D game engines for serious games
modeling. Book Chapter ISBN 978-953-51-0012-6, March, 2012

[31] Shiratuddin M, Thabet W. Virtual office walkthrough using a 3D Game Engine. Inter-
national Journal of Design Computing. 2002;4(10):24-28

[32] Nilson B, Söderberg M. Game engine architecture. Mälardalen University 2007. Available

from: http://www.idt.mdh.se/kurser/cd5130/jgms/2007lp4/report9.pdf

[33] Scacchi W. Practices and technologies in computer game software engineering. IEEE
Software. 2017;35(1):110-116

[34] Rocha RV, Rocha RV, Araújo RB. Selecting the best open source 3D games engines. In:
Proceedings of SBGames. 2010

[35] DeChiara R, Erra U, Andreoli R, Scarano V. Interactive 3D environments by using video-

game engines. In: 17th International Conference on Information Visualisation. Vol. 1(2).
2013. pp. 515-520

Game Engine Solutions
http://dx.doi.org/10.5772/intechopen.71429

87

