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Abstract

This work proposes two novel adaptive fuzzy controllers and applies them to vibration
control of a vehicle seat suspension system subjected to severe road profiles. The first
adaptive controller is designed by considering prescribed performance of the sliding
surface and combined with adaptation laws so that robust stability is guaranteed in the
presence of external disturbances. As for the second adaptive controller, both the H-
infinity controller and sliding mode controller are combined using inversely fuzzified
values of the fuzzy model. In order to evaluate control performances of the proposed
two adaptive controllers, a semi-active vehicle suspension system installed with a
magneto-rheological (MR) damper is adopted. After determining control gains, two
controllers are applied to the system and vibration control performances such as dis-
placement at the driver’s position are evaluated and presented in time domain. In this
work, to demonstrate the control robustness two severe road profiles of regular bump
and random step wave are imposed as external disturbances. It is shown that both
adaptive controllers can enhance ride comfort of the driver by reducing the displace-
ment and acceleration at the seat position. This excellent performance is achieved from
each benefit of each adaptive controller; accurate tracking performance of the first
controller and fast convergence time of the second controller.

Keywords: adaptive fuzzy control, sliding mode control, H-infinity control,
prescribed performance of the sliding surface, vibration control, seat
suspension system

1. Introduction

Nowadays, modern control-based technical devices such as robotics, assistive machines and

home appliances are popularly used to improve the level of human being’s life. In these devices,

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



control algorithm is one of the most important components which brings comfortable require-

ments to the consumer. The development of control algorithms in recent years is abundantly

being undertaken from the aspect of classical control to salient characteristics of intelligent

control. The classical control methods are frequently combined with modern control technique

to resolve parameter uncertainties and disturbances those are existed in most of control devices.

A controller which is formulated using more than two different control schemes is called “a

hybrid controller” or “composite controller” [1, 2]. Among many candidates of the hybrid

controller, the type of hybrid adaptive controller is the most popular since its structure is

relatively simple and its control performance is very robust against the uncertainties or/and

external disturbances. A hybrid adaptive control with fuzzy model and wavelet neural networks

was presented in [1, 3] in which the sliding mode control was used to connect the parameters of

the fuzzy model and the neural networks. This method is the typical model to develop the

adaptive control in the last few years. Besides of uncertain nonlinear system, the problem of

unknown input nonlinearity such as dead-zone or backlash-like hysteresis was also studied

through the hybrid adaptive control [4]. It has been also shown that the neural works can be

designed for a good performance of the hybrid adaptive control to deal with the uncertain

system [5]. A hybrid adaptive controller possessing the robustness against input and parameter

uncertainties was studied using the sliding mode controller associated with the fuzzy model [6,

7]. When a hybrid adaptive controller is formulated, in general the adaptation laws are simulta-

neously calculated. Furthermore, the back-stepping method was integrated with the fuzzy mode

to achieve high performance of the hybrid adaptive controller [8].

As mentioned earlier, both the fuzzy model and the neural networks model are frequently

used for the formulation of high performance of a hybrid adaptive controller [9]. Recently, a

modified type of the fuzzy model called interval type 2 was combined with the back-stepping

method to design of a hybrid adaptive control [10, 11]. It is remarked that the fixed fuzzy

model always provides a safe choice in design of a hybrid adaptive control. However, this

choice may cause a large error in finding the final values. To resolve this problem, an adaptive

interval type 2 fuzzy neural network was developed on the basis of the online technique which

can strengthen the flexibility of design parameters against the uncertainties [12]. Besides the

above, there are many approaches to formulate new hybrid adaptive controllers such as

output feedback control approach to take account for unknown hysteresis [13]. From the

aspect of experimental implementation of hybrid adaptive controllers, several dynamic sys-

tems featuring magneto-rheological (MR) mount and MR damper are adopted for vibration

control [2, 14–18]. Most of hybrid adaptive controllers used in these experimental realizations

have been formulated by combining the models of interval type 2 fuzzy and interval type 2

fuzzy neural networks, and the control techniques of H-infinity control and sliding mode

control. The advantage of using the interval type 2 fuzzy model is its flexibility in which

optimized fuzzy values can be achieved unlike the classical fuzzy rule with the fixed value

[19]. In order to improve the fuzzy model, clustering method [20] and data-driven for fuzzy

rules [21] were also introduced.

As a subsequent work to develop a new hybrid adaptive controller, in this work two different

new hybrid adaptive controllers are developed and their control performances are evaluated

by investigation on vibration control of a semi-active seat suspension system installed with

MR damper. The first hybrid adaptive controller is designed by combing online interval type 2

Adaptive Robust Control Systems4



fuzzy neural networks model and prescribed performance of the sliding surface associated

with adaptation laws to guarantee robust stability (HAC-PP in short). The second hybrid

adaptive controller is formulated by combining inversely fuzzified value with H-infinity con-

trol to minimize computational cost algorithm (HAC-IFV in short).The stability of both adap-

tive controllers are rigorously proved based on the Lyapunov stability and appropriate control

gains are determined to evaluate vibration control performance. It is shown that both pro-

posed adaptive controllers are very effective and robust for controlling unwanted vibrations or

excitations from the road profiles. These are validated by presenting control results showing

significant reduction of both the displacement and acceleration at the seat position subjected to

external excitations.

2. Formulation of HAC-PP

As mentioned in Introduction, the online interval type 2 fuzzy neural networks (OIT2FNN in

short) model is used to formulate two adaptive controllers. The rule base of OIT2FNN can be

expressed as follows [22].

R
j
f : Ifh1 isH

j
f 1 and…andhn isH

j
fnTheng isa

j
0 þ

X

n
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ihi (1)

where, H
j
f i i ¼ 1;…; n; j ¼ 1;…;mð Þ are fuzzy sets, m is the number of rules, and a

j
i are interval

sets. The calculation process of OIT2FNN is clearly explained in [22]. The defuzzified output is
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As a problem formulation, consider a single-input and single-output (SISO) nonlinear system

governed by the following equation:

_x ¼ f xð Þ þ g xð Þu tð Þ þ d tð Þ (3)

where f(x)∈Rn and g(x)∈Rn are two unknown non-linear function vectors, u(t)∈R1 is control

function, d(t)∈Rn is an external disturbance vector, |d(t)| ≤δd where δd∈Rn is upper bound
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of d(t), x ¼ x1; x2;…; xn½ � ¼ x1; _x1;…; x1
n�1ð Þ

� �T
∈Rn is the state vector of the system. The first

sliding surface ss is defined as follows:

ss ¼ k1x1 þ k2x2 þ k3x3 þ…þ knxn ¼
X

n

i¼1

kixi (4)

where, K = [kn, kn� 11, kn� 2,…, k1] is defined as the coefficients such that all of the roots of the

polynomial σn + kn� 1σ
n� 1 + kn� 2σ

n� 2 +… + k1 are in the open left-half complex plane. The

sliding surface (4) is rewritten using the state variables as follows:

xn ¼ �k1x1 � k2x2 � k3x3 �…� kn�1xn�1 þ ss (5)

A new vector ~x is defined by ~x ¼ x1 x2 x3…xn�1½ �T, and thus the system (3) is rewritten as

follows:

_~x ¼ S1~x þ S
T
2 ss (6)

where,

S1 ¼

0 1 0 … 0

0 0 1 … 0

: : : … :

�k1 �k2 �k3 … �kn�1

2

6

6

6
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3

7

7

7

5

,S2 ¼

0

0
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6

6

4

3

7

7
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5

The tracking error is defined as e = x1� xd with the desired states of xd. Then the error perfor-

mance function is defined as follows [23]:

λ tð Þ ¼ λ 0ð Þ � λ
∞

ð Þe�lt þ λ
∞

(7)

where, l > 0, 0 < |e(0)| <λ(0),λ
∞
> 0,λ

∞
<λ(0) then λt > 0 and λ(t) tend to λ

∞
exponentially. In

order to guarantee fast convergence of tracking error, and obtain a certain convergence accu-

racy, the tracking error is set as follows:

e tð Þ ¼ λ tð ÞS ϕ
� �

(8)

In the above, the prescribed error performance function S(ϕ) found as follows:

S ϕ
� �

¼
e tð Þ

λ tð Þ
(9)

The function S(ϕ) must satisfy the following conditions.

(i) S(ϕ) is smooth continuous and monotone increasing function

iið Þ � 1 < S ϕ
� �

< 1 (10)

(iii) limϕ! +∞S(ϕ) = 1 and limϕ! �∞S(ϕ) = � 1

Adaptive Robust Control Systems6



From the above conditions (10), the function S(ϕ) can be determined as follows:

S ϕ
� �

¼
eϕ � e�ϕ

eϕ þ e�ϕ
(11)

Then using Eq. (8), the tracking error is obtained by

�λ tð Þ < λ tð ÞS ϕ
� �

< λ tð Þ⇔ � λ tð Þ < e tð Þ < λ tð Þ (12)

Hence, the tracking error can be summarized as Ξ = {e∈R : |e(t)| <λ ∀ t ≥ 0 and e(t) <λ∞

for t!∞}. On the other hand, the inverse function of (11) is expressed as:

ϕ ¼
1

2
ln

1þ S

1� S
¼

1

2
ln

1þ e λ=ð Þ

1� e λ=ð Þ
¼

1

2
ln

λþ e

λ� e
¼

1

2
ln λþ eð Þ � ln λ� eð Þ½ � (13)

Hence, the derivatives of Eq. (13) are obtained as:

_ϕ ¼
1

2

_λ þ _e

λþ e
�

_λ � _e

λ� e

" #

(14)

€ϕ ¼ M1 þM2 þM3€e (15)

where,

M1 ¼
€λ λþ eð Þ � _λ þ _e

� �2

2 λþ eð Þ2
,M2 ¼ �

€λ λ� eð Þ � _λ � _e
� �2

2 λ� eð Þ2
,M3 ¼

λþ e

2 λþ eð Þ2
þ

λ� e

2 λ� eð Þ2

 !

:

In order to realize ϕ! 0, the second sliding surface is defined as follows:

σs ¼ _ϕ þ csϕ (16)

where cs > 0. The derivative of Eq. (16) is obtained as:

_σs ¼ €ϕ þ cs _ϕ ¼ M1 þM2 þM3 f xð Þ þ g xð Þu tð Þ þ d tð Þ � €xdð Þ þ cs _ϕ (17)

The lumped uncertainty of system is defined as:

w ¼ M3~γ f ξf þM3~γgξguþM3d tð Þ (18)

where γf = f(x)� f∗(x), γg = g(x)� g∗(x). Using Eqs. (17) and (18), the derivative Eq. (17) is

rewritten as:

_σs ¼ M1 þM2 þM3f
∗ xð Þ þM3g

∗ xð Þu tð Þ �M3€xd þ cs _ϕ þ w (19)

Based on Eq. (2), the relationship between Eq. (19) and OIT2FNN is expressed as follows:

Robust Adaptive Controls of a Vehicle Seat Suspension System
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_σs ¼ M1 þM2 þM3θf
∗ξf þM3θg

∗ξgu�M3€xd þ cs _ϕ þ w (20)

where

θ∗

f ¼ arg minθf ∈Δθf
supx∈Δx f xð Þ � f ∗ xð Þj j
� �

, θ∗

g ¼ arg minθg ∈Δθg
supx∈Δx g xð Þ � g∗ xð Þj j
� �

, Δθf =

{θf∈Rn, kθfk ≤Θf}, Δθg = {θg∈Rn, kθgk ≤Θg}, Δx = {x∈Rn, kxk ≤Θx}

Now, an equivalent control is determined from Eq. (20) based on the assumption _σs ≈ 0:

u1 ¼
1

M3
bθgξg

�M1 �M2 �M3
bθ f ξf þM3€xd � cs _ϕ

� �
(21)

The equivalent control u1 cannot control the system because it cannot compensate the error

from the fuzzy approximation. To guarantee the robustness and stability in control, a robust

control part u2 should be introduced as follows:

u2 ¼
1

M3
bθgξg

�
Xn�1

i¼1

P n�1ð Þixi �
σs
β
þ
1

2
M3Γξz~xPS2S

T
2P~x

TÞ

 

(22)

Then, the total control u of the system is determined as follows:

u ¼ u1 þ u2 (23)

The control u2 is the combination of two sliding surfaces ss and σs. The value Γ is the adaptive

parameter where its boundary is given by ΔΓ = {Γ∈R, kΓk ≤ΘΓ,σsΓξfz ≤ρ}, and ΘΓ is constant

boundary. The matrix P =PT
≥ 0 in which its result is a solution of Riccati-like equation given by

PS1 þ ST
1PþQ� σsΓξzPS2S

T
2Pþ ρPS2S

T
2P ¼ 0 (24)

where, ρ ≥σsΓξz, ρ is the prescribed attenuation level, Q =QT
≥ 0, ξz is consequent membership

value of the OIT2FNN. When the value ρ =σsΓξz, the Riccati-like equation is rewritten as:

PS1 þ ST
1PþQ ¼ 0 (25)

Now, Eq. (20) can be analyzed as follows:

_σs ¼ M1 þM2 þM3~γ f ξf þM3~γgξgu�M3€xd þ cs _ϕ þ wþ M3
bθ f ξf þM3

bθgξgu
h i

(26)

where ~γf ¼ θf
∗ � bθf , ~γg ¼ θg

∗ � bθg. Using Eqs. (23) and (26), Eq. (26) is rewritten by

_σs ¼ �
Xn�1

i¼1

P n�1ð Þixi �
σs
β
þ
1

2
M3Γξz~xPS2S

T
2P~x

T � þ M3~γf ξf þM3~γgξguþ w
h i"

(27)

Now, the stability of the proposed adaptive control system can be solidly proved with

Eqs. (21)–(23) and adaptation laws as follows:

Adaptive Robust Control Systems8



_~γ f ¼ �μ1M3σsξf ; _~γg ¼ �μ2M3σsξgu; _Γ ¼ �μ3M3σsξz~xPS2S
T
2P~x

T (28)

In order to make a proof, in this work the following Lyapunov function candidate is proposed.

Lv ¼
1

2
σ2s þ

1

2
~xP~xT þ

1

2μ1

~γ2
f þ

1

2μ2

~γ2
g þ

1

2μ3

Γ2 (29)

The derivative of Eq. (29) is then obtained by

_Lv ¼ σs _σs þ
1

2
_~xP~xTþ

1

2
~xP

_
~xTþ

1

μ1

~γf
_~γ f þ

1

μ2

~γg
_~γg þ

1

μ3

Γ _Γ (30)

Substituting Eq. (27) into Eq. (30), Eq. (30) is rewritten as follows:

_Lv ¼ M3σs~γ f ξf þ
1

μ1

~γf
_~γ

� 	

þ M3σs~γgξguþ
1

μ2

~γg
_~γg

� 	

þ M3Γξzσs~xPS2S
T
2P~x

T þ
1

μ3

Γ _Γ � þ σsw�
σ2s
β

�
1

2
ρPS2S

T
2P�

1

2
~xTQ~xT

� 	� (31)

It is noted that Eq. (24) is used in finding Eq. (31). Substituting Eq. (28) into Eq. (31), the

following is achieved.

_Lv ¼ �
1

2
~xTQ~xT �

1

2

σs
ffiffiffi

β
p �

ffiffiffi

β
p

w

 !2

þ βw2

2

4

3

5�
1

2
ρPS2S

T
2P ≤ �

1

2
~xTQ~xT þ βw2 (32)

Eq. (32) cannot use for conclusion of stability. Hence, it will be integrated from t = 0 to t =T, we

have:

Lv 0ð Þ � Lv Tð Þ þ β

ð

T

0

w2dt ≥
1

2

ð

T

0

~xQ~xTdt (33)

where, Lv 0ð Þ ¼ 1
2σ

2
s 0ð Þ þ 1

2
~x 0ð ÞP~xT 0ð Þ þ 1

2μ1
~γ2

f 0ð Þ þ 1
2μ2

~γ2
g 0ð Þ þ 1

2μ3
Γ2 0ð Þ. The value Lv(T) is

always positive, so Eq. (33) is determined as:

Lv 0ð Þ þ β

ð

T

0

w2dt ≥
1

2

ð

T

0

~xQ~xTdt ≥ 0 (34)

From Eqs. (32) and (34), the stability is guaranteed.

From the boundedness of the parameters ~γ f and ~γg, the closed sets are defined as

Ξ1¼ ~γf ~γf

�

�

�

�

�

�≤ℵf

�

�

�

on

, Ξ2¼ ~γg ~γg

�

�

�

�

�

�≤ℵg

�

�

�

on

, Ξδ1¼ ~γf ~γf

�

�

�

�

�

�≤ℵf þδ1

�

�

�

on

, Ξδ2¼ ~γg ~γg

�

�

�

�

�

�≤ℵgþδ2

�

�

�

on

.

In here, ℵf, ℵg, δ1, δ2 are the choosing parameters. Hence, the adjusted adaptation laws are

redefined as follows:
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_~γ f ¼

�μ1M3σsξf if ~γf

�

�

�

� < ℵf or ~γf

�

�

�

� ¼ ℵf and M3σsξf ~γf ≥ 0
� �

�μ1M3σsξf þ μ1

~γ f

�

�

�

�

�

�

2

� ℵf


 �

M3σsξf ~γf

δ1 ~γf

�

�

�

�

�

�

2
if ~γf

�

�

�

� ¼ ℵf andM3σsξf ~γf < 0

8

>

>

>

>

<

>

>

>

>

:

(35)

_~γg ¼

�μ2M3σsξgu if ~γg

�

�

�

�

�

� < ℵg or ~γg

�

�

�

�

�

� ¼ ℵg and M3σsξgu~γg ≥ 0
� �

�μ2M3σsξguþ μ2

~γg

�

�

�

�

�

�

2

� ℵg


 �

M3σsξgu~γg

δ2 ~γg

�

�

�

�

�

�

2
if ~γg

�

�

�

�

�

� ¼ ℵg and M3σsξgu~γg < 0

8

>

>

>

>

>

<

>

>

>

>

>

:

(36)

_Γ ¼

�μ3M3σsξz~xPS2S
T
2P~x

T if Γk k < ΘΓ or Γk k ¼ ΘΓ þ δ3 and M3σsξz~xPS2S
T
2P~x

TΓ ≥ 0
� �

�μ3M3σsξz~xPS2S
T
2P~x

T þ μ3

Γk k2 �ΘΓ

� �

M3σsξz~xPS2S
T
2P~x

TΓ

δ3 Γk k2

if Γk k ¼ ΘΓ and M3σsξz~xPS2S
T
2P~x

TΓ < 0

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(37)

Figure 1. Control flow chart of the HAC-PP.
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In the above, δ1, δ2 and δ3 are choosing parameters related boundaries of f(x), g(x) and Γ. It is

noted here that in order to utilize the states of the system, the Luenberger observer [24] has

been used in this work. Figure 1 presents a flow chart of the HAC-PP showing the combination

of each controller and the prescribed performance.

3. Formulation of HAC-IFV

As a first step to design the controller, consider the system (3) rewritten by

_x ¼ f0 xð Þ þ g0 xð Þu tð Þ þD (38)

where, the function f0(x) and g0(x) are the functions of f(x) and g(x) which are determined as:

f xð Þ ¼ f0 xð Þ þ δf xð Þ; 0 < δf xð Þj j < δfk k
∞
, g xð Þ ¼ g0 xð Þ þ δg xð Þ; 0 < δg xð Þj j < δgk k

∞
:

f0 xð Þ ¼ x2;…; xn; f 0
� �T

, g0 xð Þ ¼ 0;…; 0; g0
� �T

,δf ¼ 0; 0;…; δf 0
� �T

,δg ¼ 0; 0;…; δg0
� �T

:

In the above, δf and δg are two positive vectors. It is noted that D =δf +δgu(t) +d(t) denotes

the uncertain disturbance and D = [0, 0,…,D0]
T. In order to formulate the controller, the fol-

lowing assumption is made: There exists a constant gm∈ℜ
+ to satisfy |g(x)| > gm. Without

loss of generality, it is assumed that the equation g(x) > gm. The error between a desired

output xd and the measured output x is e = xd� x. Hence, the error vector is defined by

E ¼ e0; e1; e2;…; en½ � ¼ e; _e; €e;…; e n�1ð Þ
� �

. The sliding surface ss can be written as s(x, t) =KTE,

and its derivative is found as _s x; tð Þ ¼ KT _E ¼KT
_xd�KT

_x. Using this derivative function of the

sliding surface and Eq. (38), the initial control law u is determined by:

u ¼
1

g0 xð Þ
�f 0 xð Þ þ _xd þKTEþD0

� �

(39)

Assuming the disturbance of D ≈ 0, then Eq. (39) can be rewritten as:

u ¼
1

g0 xð Þ
�f 0 xð Þ þ _xd þKTE
� �

(40)

The relationship of Eq. (40) and OIT2FNN is expressed by

u ¼
1

g00 xð Þ
�f 00 xð Þ þ _xd þKTE
� �

(41)

where, f00(x) and g00(x) are the fuzzified functions of f(x) and g(x), respectively. The derivative

of E is expressed through Eqs. (40) and (41) as follows:

Robust Adaptive Controls of a Vehicle Seat Suspension System
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_E ¼ _xd � _x ¼ g00 xð Þ � g0 xð Þ
� �

uþ f 00 xð Þ � f 0 xð Þ
� �

�KTE

¼ S1Eþ S2 g00 xð Þ � g xð Þ
� �

uþ f 00 xð Þ � f xð Þ
� �� � (42)

Define the minimum approximation error due to fuzzy approximation as follows.

w ¼ f ∗00 xð Þ � f xð Þ
� �

þ g∗00 xð Þ � g xð Þ
� �

u (43)

Substituting functions of f00(x), g00(x) and (43) into Eq. (42) yields the following equation.

_E ¼ S1Eþ S2 θ∗

f � θf

� �
ξf þ θ∗

g � θg

� �
ξguþ w

h i
(44)

Let γf ¼ θ∗

f � θf

� �
, γg ¼ θ∗

g � θg

� �
. From Eq. (44), the equivalence control u1 established

without the minimum approximation error w is defined as follows:

u1 ¼
1

bγgξg
�bγf ξf

� �
(45)

where, bγf and bγg are the estimates of γf and γg, respectively. The control u1 cannot use for

control the system because of the error from the fuzzy approximation. To deal with this

problem, a new robust compensator based on the inversely fuzzified value is suggested as

follows:

u2 ¼ �
1

Γξz
ETPS2 (46)

where, Γ is a constant, and P =PT
≥ 0 is the solution of the following Riccati-like equation.

PS1 þ ST
1PþQ�

1

Γξz
PS2S

T
2Pþ ρPS2S

T
2P ¼ 0 (47)

where, ρ ≥ 1
Γξz

, ρ is the prescribed attenuation level, Q =QT
≥ 0, ξz is consequent membership

value of the OIT2FNN. When the value ρ ¼ 1
Γξz

, the Riccati-like equation is obtain as given in

Eq. (25). It is noteworthy that Eq. (25) is objective to guarantee the stability of the system. If this

condition is obtained, the fuzzy approximation error is removed, and then the control u1 is the

main controller to retain the stability of the system. From Eqs. (45) and (46), the final fuzzy

control of the system is determined as follows:

u ¼ u1 þ u2 ¼
1

bγgξg
�bγf ξf

� �
�

1

Γξz
ETPS2 (48)

Now, substituting Eq. (48) into (44) yields he following.
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_E ¼ S1Eþ S2 ~γf ξf þ ~γgξgu1 þ gou2 þ w
h i

(49)

where, ~γf ¼ γf � bγf , ~γg ¼ γg � bγg. Consider the Lyapunov function candidate of the system as

follows:

V ¼ 1

2
ETPEþ 1

2α1
~γ2
f þ

1

2α2
~γ2
g (50)

The derivative of Eq. (50), and then substituting Eq. (25) into the derivative, the result is

obtained as follows:

_V ¼� 1

2
ETQE� gm

Γξz
ETPS2

� �2 þ ETPS2wþ 1

α1
α1E

TPS2ξf � _~γ f

� �
~γ f

þ 1

α2
α2E

TPS2ξgu1 � _~γg

� �
~γg

(51)

From Eq. (51), adaptation laws are established as follows:

_~γf ¼ �α1E
TPS2ξf (52)

_~γg ¼ �α2E
TPS2ξgu1 (53)

Applying Eqs. (52) and (53), Eq. (51) can be written as follows:

_V ≤ � 1

2
ETQE� gm

Γξz
ETPS2

� �2 þ ETPS2w

¼ � 1

2
ETQE�

ffiffiffiffiffiffiffiffi
gm
Γξz

r
ETPS2 �

wm

2ρ


 �2

þ 1

4ρ
wm

2
≤ � 1

2
ETQEþ 1

4ρ
wm

2

(54)

where, wm ¼ wffiffiffiffi
gm

p .

Now, the integration of (54) from t = 0 to t =T yields the following equation.

V 0ð Þ � V Tð Þ þ 1

4ρ

ðT

0

wm
2dt ≥

1

2

ðT

0

ETQEdt (55)

The value of V(T) ≥ 0, and thus Eq. (55) is rewritten as follows:

V 0ð Þ þ 1

4ρ

ðT

0

wm
2dt ≥

1

2

ðT

0

ETQEdt (56)

where, V 0ð Þ ¼ 1
2E

T 0ð ÞPE 0ð Þ þ 1
2α1

~γ2
f 0ð Þ þ 1

2α2
~γ2
g 0ð Þ. Hence the H-infinity tracking performance

is achieved. From the boundedness of the parameters, ~γf and ~γg are guaranteed by closed sets
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defined as Ω1 ¼ ~γ f ~γf

�

�

�

�

�

� ≤ℑf

�

�

�

on

, Ω2 ¼ ~γg ~γg

�

�

�

�

�

� ≤ℑg

�

�

�

on

, Ωδ1 ¼ ~γ f ~γ f

�

�

�

�

�

� ≤ℑf þ δ1

�

�

�

on

,

Ωδ2 ¼ ~γg ~γg

�

�

�

�

�

� ≤ℑg þ δ2

�

�

�

on

where ℑf ,ℑg, δ1, δ2 are the choosing parameters. Hence, the

adjusted adaptation laws are redefined as follows:

_~γ f ¼

�α1E
TPS2ξf if ~γf

�

�

�

� < ℑf or ~γf

�

�

�

� ¼ ℑf and ETPS2ξf ~γf ≥ 0
� �

�α1E
TPS2ξf þ α1

~γ f

�

�

�

�

�

�

2

�ℑf


 �

ETPS2ξf ~γf

δ1 ~γf

�

�

�

�

�

�

2
if ~γf

�

�

�

� ¼ ℑf and ETPS2ξf ~γf < 0

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(57)

_~γg ¼

�α2E
TPS2ξgu1 if ~γg

�

�

�

�

�

� < ℑg or ~γg

�

�

�

�

�

� ¼ ℑg and ETPS2ξfu1~γg ≥ 0
� �

�α2E
TPS2ξgu1 þ α2

~γg

�

�

�

�

�

�

2

�ℑg


 �

ETPS2ξgu1~γg

δ2 ~γg

�

�

�

�

�

�

2
if ~γg

�

�

�

�

�

� ¼ ℑg and ETPS2ξgu1~γg < 0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(58)

Figure 2 presents a flow chart of the HAC-IFV showing the combination process of each

controller with the adaptation laws.

Figure 2. Control flow chart of the HAC-IFV.
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4. Application to seat suspension system

4.1. Control results of the HAC-PP

In order to implement two adaptive controllers, principal parameters of the seat suspension

and MR damper as shown in Figure 3 are given in [25]. And two different road profiles of

random step wave road and regular bump road are adopted to emulate severe external

disturbances as shown in Figure 4. The first excitation is collected from the real road, and the

second excitation is used same as in [25]. The process of simulation is expressed as follows: The

proposed control will be simulated following an objective trajectory, which is control of [25].

Then, the outputs of the proposed control and the objective will be used for calculating error.

This error will be checked by desired prescribed performance. It is remarked that the desired

prescribed performance is different from the applied prescribed performance which is shown

Figure 3. Mechanical model of a vehicle seat suspension system.

Figure 4. Road excitation signals: (a) random step wave road, (b) regular-bump road.
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in Eqs. (7)–(13). The parameters of both the desired and the applied prescribed performance

are listed in Table 1. The damping force of the MR damper is designed 1000 N (�5%) at 2 A.

The fuzzy model is established based on the online model with the centroid vector as shown in

[25]. It is noted that two main variables for the fuzzy models are displacement and accelera-

tion. The fuzzy models include 6 clusters, and then the outputs of fuzzy rules become also 6.

The sigma value for Gaussian function of the fuzzy model is chosen as 0.4 [22, 25], and this

value is not changed through the simulation. The values of the sliding surface [k1, k2] are chose

by [1, 20] for both random step wave road and regular bump road. The constant value Γ of the

Parameter Desired prescribed performance Applied prescribed performance

Initial value λ(0) 0.5 0.5

Infinity value λ
∞

0.001 0.001

Exponential value l 1 0.00047

Table 1. Parameters of desired prescribed performance and applied prescribed performance.

Figure 5. Control results with the HAC-PP at the seat (xs): (a1, a2) random step wave road, (b1, b2) regular bump road.

Adaptive Robust Control Systems16



Riccati-like equation is chosen by 10 for both roads. The constant cs is 500 and 5000 for regular

bump road and the random step wave road, respectively. In addition, the matrix Q of the

Riccati-like equation is chosen as Q = [�2 0; 0 � 2]. The constants μ1,μ2,μ3 of adaptation

laws are chosen as 10 for two road profiles. The values of ℵf ; ℵg; ΘΓ of the expanded adapta-

tion laws are chosen by 0.1 and the values of δ1, δ2, δ3 are chosen by 0.1. In this simulation, the

initial states for the dynamic states are used as 0:035 2:5½ �, 0:035 2:5½ � for random regular

bump, and random step wave bump, respectively. The initial states for the observer are

0:035 0½ � for two excitations. It is noted that the observer is applied to evaluate the results of

the proposed controller.

Figures 5–8 present control responses of the HAC-PP. It is clearly observed from Figures 5 and

6 that the initial excitation has been significantly reduced by activation the proposed adaptive

controller in terms of both displacement and acceleration. In addition, it is seen that the

proposed control well tracks the objective trajectory which directly indicates high performance

of the prescribed performance of the sliding surface. Figure 7 presents the error of performance

of the proposed adaptive controller which is always less than the boundary of the prescribed

(a1) (a2) 

(b1)                                     (b2) 

Figure 6. Control results with the HAC-PP at the driver (x1): (a1, a2) random step wave road, (b1, b2) regular bump road.

Robust Adaptive Controls of a Vehicle Seat Suspension System
http://dx.doi.org/10.5772/intechopen.71422

17



performance. These results mean that the application of the prescribed performance in design

of the hybrid adaptive controller can improve the quality of control with high robustness

against severe excitations.

4.2. Control results of the HAC-IFV

In simulation of the HAC-IFV, the values of the sliding surface [k1, k2] are chosen by [1, 1.10�5].

The constant value Γ of the Riccati-like equation is chosen by 40, 10 for the regular bump road,

the random step wave road, respectively. The constants α1,α2 of adaptation laws are chosen as

10 for all road profiles. The values of εf, εg of the expanded adaptation laws are chosen by 10

and the values of δ1, δ2 are chosen by 0.05. In this simulation, the initial states for the dynamic

states are used as 0:122 2:5½ �, 0:066 2:5½ �, 0:047 2:5½ � for random bump, random regular

bump, and random step wave bump, respectively. The initial states for the observer are

0:06 0½ � for two excitations. It is noted that the observer is applied to evaluate the results of

the proposed controller. The parameters [k1, k2] are chosen as [1, 1.5] for random regular bump

and [1, 5] for random step wave bump.

Figure 7. Tracking error with the HAC-PP: (a1, a2) random step wave road, (b1, b2) regular bump road.
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Figures 8–10 present control responses of the HAC-IFV. As similar to the HAC-PP, the initial

excitations were remarkably reduced by applying the proposed controller. The displacements

at the seat and driver positions are reduced resulting in the improvement of the ride comfort.

In order to demonstrate a salient benefit of the proposed controller, its control response is

compared obtained from the controller proposed in [17, 25]. It is clearly identified that the

convergence time of the displacement of the proposed controller is 2 seconds for both excita-

tions, while that is 15 seconds for the random step wave excitation, 6 seconds for regular bump

excitation in [17, 25]. In Figure 8, the sliding surfaces of three controllers are shown. It is

observed that the proposed control obtains stable motion much faster than the comparative

controls at 0.1 second. It is noted here that the better control responses of the proposed

controller comes from the inversely fuzzified values in given Eqs. (46)–(48). In Eq. (48), the

independent of the inversely fuzzified value helps the controller to increase its robustness. This

new exploration is the outstanding property of the proposed controller in the severe operation

environment subjected to strong and random disturbances.

Figure 8. Control results with the HAC-IFV at the seat (x
s
): (a1, a2) random step wave road, (b1, b2) regular bump road.
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Figure 9. Control results with the HAC-IFVat the driver (x1): (a1, a2) random step wave road, (b1, b2) regular bump road.

Figure 10. Sliding surface motion of the HAC-IFV (s): (a) random step wave road, (b) regular bump road.
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5. Concluding remarks

In this study, two new adaptive controllers were formulated and their effectiveness was

validated by applying them to vibration control of a semi-active vehicle seat suspension

system featuring MR damper. The first adaptive controller includes two sliding mode controls:

one for initial states of the system and the other for prescribed performance associated with the

parameters of the modified Riccati-like equation. By doing this way, the tracking performance

is enhanced resulting in the improved control responses. The second adaptive controller was

formulated on the basis of the inversely fuzzified value with the H-infinity control to minimize

computational cost algorithm. Hence, by doing this way, the convergence time can be reduced

resulting in high stability of the system subjected to severe external disturbances. It has been

sown that the proposed two adaptive controllers can significantly reduce the excitation from

the road profiles at both the seat and driver positions. In reality, this can enhance the ride

comfort of the driver. Especially, the HAC-PP provides good tracking performance with the

error in range of the defined boundary and the HAC-IFV can reduce the convergence time

compared with two comparative adaptive controllers. It is finally remarked that the develop-

ment of a new hybrid adaptive controller needs to be connected with desired control perfor-

mances to appropriately select each control scheme.
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