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Abstract

Consensus theory has been widely applied to collective motion planning related to
coordinated motion. However, when the collective motion is highly irregular and adver-
sarial, the basic consensus theory does not guarantee collision avoidance by default. As
collision avoidance is a central problem of path planning, the incorporation of avoidance
into the consensus algorithm is a subject of research. This work presents a new method
of incorporating collision avoidance into the consensus algorithm, by applying the
concept of constrained orientation control, where orientation constraints are represented
as a set of linear matrix inequalities (LMI) and solved by semidefinite programming
(SDP). The developed algorithm is used to simulate consensus-based multipath plan-
ning with collision avoidance for a team of communicating soccer robots.

Keywords: consensus, path planning, avoidance, optimization, LMI

1. Introduction

Path planning has found practical applications in areas such as entertainment (e.g. robot

soccer) [1]; self-driving vehicles (e.g. Google’s self-driving cars) [2]; intelligent highways [3],

and multiple unmanned space systems [4]. Because of the potential applications, the topic of

multipath planning has been studied extensively, for example in [5–11].

The simplicity and potential of consensus algorithms to generate collective behaviors, such as

flocking, platooning, rendezvous, and other formation configurations, make it an attractive choice

for solving certain problems in multiagent control. However, the basic consensus algorithm

collision avoidance mechanism is not developed for adversarial situations (i.e., opposite or

attacking motion). To extend the power of the algorithm, it is therefore necessary to develop

more powerful collision avoidance capabilities.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Next, we consider the basic approaches to collision avoidance in consensus. Some researchers,

for example, [12, 13], approached the avoidance problem by introducing potential forces such

as attraction and repulsion. However, the potential force algorithms were not developed for

adversarial reconfigurations, for example, vehicles moving in opposite directions. Potential

functions also have a problem of getting into local minima, coupled with slow speed of

convergence. It is observed in [12] that any repulsion based on potential functions alone is not

sufficient to guarantee consensus-based collision avoidance. Moreover, the attitude change

maneuver presented in [12] was not developed for three-dimensional space (see [14] for a

comprehensive literature survey on this topic).

Thus, in this work, we present an approach which we previously developed [5, 9] for incorpo-

rating collision avoidance into the consensus framework by applying quadratically constrained

attitude control (Q-CAC), via semidefinite programming (SDP), using linear matrix inequalities

(LMI). The main benefit of this approach is that it can solve the collision avoidance problem in

adversarial situations and any configurations, and the formulation can be applied to two-

dimensional as well as three-dimensional spaces. Table 1 shows the notation frequently used in

this chapter.

Notation Meaning

xi Position vector of vehicle number i

(xij)off Offset vector of vehicles i and j

x Stacked vector of more than one position vector

xoff Stacked vector of more than one offset vector

ui, _x i Control input of vehicle i

u, _x Stacked vector of control inputs of more than one vehicle

L Laplacian matrix

S
m The set of m�m positive-definite matrices

S Bounding sphere or circle of a vehicle or obstacle

ε Width of safety region

r∗ Radius of S

r r∗ + ε

vi Attitude vector of vehicle i

viobs Obstacle vector of vehicle i

v
ij
obs

Obstacle vector of vehicle i emanating from vehicle j

Dij Euclidean distance between vehicles i and j

Lij Line passing through the mid points of vehicles i and j

ρ
ij Perpendicular bisector of Lij separating vehicles i and j

PLi Plane passing through the midpoint of vehicle i

lij Line of intersection of PLi and PLj

dix Distance from xi to lij (for 3D) or pij(for 2D)

Advanced Path Planning for Mobile Entities4



2. Problem statement

The basic consensus problem is that of driving the states of a team of communicating agents

to a common value by distributed protocols based on their communication graph. The agents

(or vehicles) i(i = 1,⋯, n) are represented by vertices of the graph, whereas the edges of the

graph represent communication links between them. Let xi denote the state of a vehicle i and

x is the stacked vector of the states of all vehicles. For systems modeled by first-order

dynamics, the following first-order consensus protocol (or its variants) has been proposed,

for example in [12, 13]

_x tð Þ ¼ �L x tð Þ � xoff
� �

: (1)

Consensus is said to have been achieved when kxi� xjk! (xij)off, as t!∞, ∀i 6¼ j.

The consensus-based multipath planning with collision avoidance problem can be stated as follows:

Given a set of vehicles i, with initial positions xi(t0), desired final positions xid, at time tf, a set of

obstacles with positions x
j
obs j ¼ 1;⋯;mð Þ, and the Laplacian matrix of their communication

graph L find a sequence of collision-free trajectories from t0 to tf such that xi tf
� �

¼ xid∀i.

Protocol (Eq. (1)) on its own does not solve the collision avoidance problem in adversarial

Notation Meaning

div Distance from vi to lij (for 3D) or pij(for 2D)

zi A point on the Z axis of PLi

pij
Point of intersection of the lines passing through xi tð Þvi tð Þ

������!

and xj tð Þvj tð Þ
������!

Ni Normal vector perpendicular to xi, vi, and zi

D Attitude control plant matrix, D∈S
m

⊗ Kronecker multiplication operator

A State or plant matrix for dynamics of x

B Input matrix for dynamics of x for input u

F Feedback controller matrix

K Proportional constant

Ip Identity matrix of size p� p

Γ Γ =L⊗ Ip

Η A vector or matrix in the Schur inequality

R A positive-definite matrix in the Schur inequality

Q A symmetric matrix in the Schur inequality

η Positive real number for scaling the consensus term

β Positive real number for scaling the proportional term

Table 1. Frequently used notation in this chapter.
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situations. A comprehensive presentation of the necessary mathematical tools for this work

(including graph theory and consensus theory) can be found in [14].

3. Solutions

In this section, we develop solutions to the problem stated in Section 2.

3.1. Consensus-based arbitrary reconfigurations

It was shown that for the dynamic system.

_x ¼ Axþ Bu, (2)

there exists a stabilizing feedback controller F, such that the protocol

_x ¼ Axþ BFu (3)

drives x to xf [15]. Here, x = [x1,⋯, xn] is a stacked vector of the initial positions of the vehicles,

u = �Γ(x� xoff), Γ =L⊗ Ip, Ip is the identity matrix of size p� p, and p is the state dimension of

the vehicles.

To begin, we first consider the reference consensus path planning problem. To this end, the

following protocol is proposed for a leader-follower communication graph architecture

u ¼ �Γ x� xoff
� �

þK xoff � x
� �

: (4)

The corresponding protocol for a leaderless architecture is

u ¼ �Γ x� xoff
� �

þK xd � xð Þ, (5)

where xd 6¼ xoff is the desired final position and is different from the formation configuration,

K = eIn, (0 < e≪ 1), and n is the dimension of x.

Theorem 1 The time-varying system (Eq. (2)) achieves consensus.

Proof: see [14].

Figure 1 shows a simulation of consensus-based reconfiguration, using the communication

graph in Figure 2, which is an example of a leader-follower graph. Node 1 is the leader, and each

of the other nodes is connected to their adjacent neighbors. In Figure 1, the dots inside small

circles indicate initial positions, whereas the dot in the diamond is the initial position of the

leader. The stars indicate desired final positions. The larger circles with dashed lines are posi-

tions where collisions occurred, and the diameters of the circles indicate the size of intersection of

the safety regions of the vehicles. The simulation proves that for arbitrary reconfigurations, the

basic consensus algorithm does not guarantee collision avoidance.

Advanced Path Planning for Mobile Entities6



Figure 1. Consensus-based reconfiguration in adversarial situation using topology.

Figure 2. Topology: a leader-follower graph.
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3.2. Quadratically constrained attitude control-based collision avoidance

The collision avoidance problem is that of avoiding static obstacles and other moving vehicles

while driving the state of a vehicle from one point to another. For simplicity, we approximate a

vehicle or an obstacle by S, as shown in Figure 3. A nonspherical obstacle may be represented

by a polygon as shown in Figure 4. For the S-type obstacle (or vehicle), let the obstacle be

centered on a point xobs; it is desired that the time evolution of any vehicle state xi(t) from t0 to tf
should avoid the constraint region shown in Figure 3.

The feasible region is thus defined by

xfeas ¼ x∈Rm�mj x� xobsk k > r∗f g, m∈R, (6)

where r∗ is the radius of S, bounded by a safety region of width ε.

There is no direct representation of the nonlinear nonconvex equation (Eq. (6)) as LMI. How-

ever, some non-LMI methods, for example, mixed integer linear programming (MILP) [7],

Figure 3. Constrained control problem for a static spherical obstacle.

Figure 4. Constrained control problem for static nonspherical obstacle.

Advanced Path Planning for Mobile Entities8



have been developed for approximating its solution. In this section, we present an approach,

which we previously developed in [5, 9, 10, 14], based on the principles of quadratically

constrained attitude control (Q-CAC) algorithm [16], initially developed for the spacecraft

attitude control problem.

At any time t, suppose the safety region of vehicle i centered on xi(t) intersects the safety region

of an obstacle, obs, centered on xobs. Let v(t) be the unit vector extending from the centre of xobs
or xi(t) in the direction of the point of intersection. The vectors v(t) will be different for each

vehicle or obstacle. Considering the case shown in Figure 3, assume xobs is known and v(t) is

also known in the frame of obs. Then, to guide vehicle i safely around the obstacle, define a unit

vector vi(t) in the direction of v(t) in the frame of obs. The vector vi(t) will be regarded as an

imaginary vector whose direction can be constrained to change with time. The vector vi(t) can

then be used to find a sequence of trajectories around obs which guides i from xi(t0) to xi(tf)

without violating (Eq. (6)).

The problem reduces to the Q-CAC problem. It is desired that the angle θ between vi(t) and v(t)

should be larger than some given angle ∅, ∀t. The constraint is

vi tð ÞTv tð Þ ≤ cos∅, ∀t∈ t0; tf
� �

: (7)

The idea is to control the angle between the unit vectors vi(t) and v(t). This implies that one of

the vectors vi(t) or v(t) must remain static, whereas the other moves with time. Vector vi(t) is

used to control the position of the vehicle; therefore, vi(t) will move with time. The positions of

vi(t) define a trajectory path for xi(t). Thus, xi(t) is forced to move on the surface of the safety

region bounding S. At some time tk, x
i(t) will arrive close to a point indicated by vi(tk), at which

a translation to xi(tf) is unconstrained. This is shown by the black dots on the boundary of the

safety region in Figure 4. To obtain the unit vector v(t), the actual vector extending from the

centre of xobs or x
i(t) in the direction of the point of intersection is normalized. After the solution

vi(t) is obtained as a unit vector, vi(t) is multiplied by r = r∗ + ε to obtain the actual safe trajectory.

Let v(t) = [vi(t)Tv(t)T]T, then the dynamics of v(t) is defined as

_v tð Þ ¼ D tð Þv tð Þ, (8)

where D∈S
pn, p is the dimension of the state vector xi, and n is the number of vehicles. The

above differential equation represents the rotational dynamics of the two vectors contained in

v(t).D is a semidefinite matrix variable whose contents are unknown. Its purpose is to vary the

angle between the two vectors in v(t) with time while also keeping them normalized.

The discrete time equivalent of the above differential equation is

v kþ 1ð Þ ¼ ΔtD kð Þv kð Þ, (9)

where k = 0,⋯,N (N∆t = tf) is the discrete time equivalent of t and ∆t is the discretization time-

step. To implement Eq. (9), D is declared in a semidefinite program which chooses the appro-

priate values to rotate the vectors in v(t) while satisfying norm constraints. Note in the above

discretization of the differential equation, the identity matrix cannot be added to the solution;

Consensus-Based Multipath Planning with Collision Avoidance Using Linear Matrix Inequalities
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instead, the matrix D is chosen implicitly to satisfy the rotation. The vectors in v(t) are unit

vectors; they are not translating, but they are rotating and must be preserved as unit vectors.

To enforce the attitude constraint (Eq. (7)) in a SDP, it should be represented as a LMI using the

Schur complement formula described in [17]. The Schur complement formula states that the

inequality

HR�1HT �Q ≤ 0, (10)

where Q =QT, R =RT, and R > 0 are equivalent to and can be represented by the linear matrix

inequality

Q H

HT R

� �

≥ 0: (11)

Note that Eq. (7) is equivalent to

vi tð ÞT v tð ÞT
h i

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

v tð ÞT

03
1

2
I3

1

2
I3 03

2

6
4

3

7
5

vi tð Þ

v tð Þ

" #

≤ cos∅, (12)

which also implies that

vi tð ÞTv tð ÞT
h i

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

v tð ÞT

03 I3

I3 03

� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

G

vi tð Þ

v tð Þ

" #

≤ 2 cos∅, (13)

Note also that some of the eigenvalues of theG in Eq. (13) are nonpositive. To make the matrix

positive definite, one only needs to shift the eigenvalues of G, by choosing a positive real

number μ which is larger than the largest absolute value of the eigenvalues of G, then

vi tð ÞT v tð ÞT
� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

v tð ÞT

μI6 þ
03 I3

I3 03

� �
 �
vi tð Þ

v tð Þ

" #

|fflfflfflffl{zfflfflfflffl}

v tð Þ

≤ 2 cos∅þ μ
� �

: (14)

Let M ¼ μI6 þ
03 I3

I3 03

� �
 ��1

, then M is positive definite. Therefore, following the Schur

complement formula, the LMI equivalent of Eq. (14) is

2 cos∅þ μ
� �

v tð ÞT

v tð Þ M

" #

≥ 0: (15)

For collision avoidance, the dynamic system (Eq. (8)) is solved whenever it is required, subject

to the attitude constraint (Eq. (15)) and norm constraints kvi(t)k = 1 and kv(t)k = 1. Thus, the

Advanced Path Planning for Mobile Entities10



optimization problem of collision avoidance is essential to find a feasible vi subject to the

following constraints:

vkþ1 ¼ ∆tD tð Þvk, (16)

vT
k
vkþ1 � vkð Þ ¼ 0, (17)

2 cos∅þ μ
� �

v tð ÞT

v tð Þ M

" #

≥ 0: (18)

Eq. (17) is essentially the discrete time version of v tð ÞT _v tð Þ ¼ 0 which guarantees that v(t)Tv(t)

= 2, ifkvi(0)k = 1 and kv(0)k = 1. This solution works for 2D and 3D spaces. The next step is to

extend the formulation to the case of dynamic obstacles. First, consider two vehicles i and j

with states xi(t), xj(t) and attitude vectors vi(t), vj(t), respectively. Collision avoidance requires

that they must avoid each other always. As shown in Figure 5, any time their safety regions are

violated and the point of their intersection in the coordinate frame of i is viobs tð Þ.

The avoidance requirements are

θi tð Þ ≥∅ � vi tð ÞTviobs tð Þ ≤ cos∅, (19)

θj tð Þ ≥∅ � vj tð ÞTv
j
obs tð Þ ≤ cos∅, (20)

∀t∈ [t0, tf],

Figure 5. Constrained control problem for dynamic obstacles.
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where ∅ ≥π/2. For this dynamic situation, it is sufficient to enforce the following avoidance

constraints:

2 cos∅þ μ
� �

vi kþ 2ð Þ

viobs kþ 2ð Þ

2

4

3

5

T

vi kþ 2ð Þ

viobs kþ 2ð Þ

2

4

3

5 M

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

≥ 0, (21)

2 cos∅þ μ
� �

vj kþ 2ð Þ

v
j
obs kþ 2ð Þ

2

4

3

5

T

vj kþ 2ð Þ

v
j
obs kþ 2ð Þ

2

4

3

5 M

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

≥ 0, (22)

i, j ¼ 1,⋯, n, i 6¼ j:

Note that (k + 2) is used because the optimization is performed two steps ahead of time to

ensure that the future trajectories are collision free. However, when this avoidance protocol is

applied to dynamic collision avoidance, some vehicle configurations pose challenges and this

is considered next.

3.3. Conflict resolution for multiple vehicles

A collision between two vehicles i and j is imminent at time t whenever

Dij tð Þ ¼ xi tð Þ � xj tð Þ
�

�

�

� ≤ ri þ rj
� �

, (23)

which can be computed using position feedback data determined by onboard or external

sensors or communicated among the vehicles.

There are two aspects of collision problems: (i) collision detection and (ii) collision response.

Collision detection is the computational problem of detecting the intersection of two or more

objects. This can be done either using sensors or numerically using concepts from linear

algebra and computational geometry. Collision response is the initiation of the appropriate

avoidance maneuver. In this section, we present methods to detect different configurations of

collisions and classify them. Then, an appropriate response technique is developed for each of

the collision configurations.

Consider two vehicles i and j, whose current states are xi(t) and xj(t) and the desired final states

are xi(tf) and xj(tf). We identify three different basic collision configurations as: (i) simple

collision; (ii) head-on collision; and (iii) cross-path collision. Solutions will be developed for each

of these configurations, and when combined synergistically, they will provide sufficient colli-

sion avoidance behavior for fast collision-free reconfiguration for the team of vehicles.

Advanced Path Planning for Mobile Entities12



3.3.1. Detecting and resolving a simple collision

A simple collision problem is any configuration in which Dij(t) ≤ (ri + rj) and the current vector

directions (or attitude vectors) vi(t) and vj(t) of vehicles i and j are on different sides of the plane

or infinite line Lij(t) passing through the points xi(t), xj(t); and the attitude vectors xi tð Þvi tð Þ
�����!

and

xj tð Þvj tð Þ
�����!

are not parallel. Note that when xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are not parallel, a point or line

of intersection can be computed for both vectors. Examples of simple collision problems are

shown in Figures 5 and 6.

This is the easiest collision problem to solve because the attitude vectors are already on

opposite sides of Lij(t). Considering Figure 6 (b), the plane or line ρij(t) tangent to the

point of intersection of both vehicles constrains the current motion spaces of the vehicles

to either of the two sides of the plane at time t. A pure optimization-based solution will

attempt to search the space on the right side of ρij(t) to seek for a point which is closest to

the goal of i, and this will be used as the next trajectory. The algorithm will also search the

left side of ρij(t) to find the next trajectory for j. Once the positions are updated, a new

ρij(t) is computed.

Indeed, the solution is provided by the basic collision avoidance protocols (Eqs. (21) and (22))

without having to do a set search. It is easy to observe that by expanding the angles θi(t) and

θj(t) and choosing the next feasible trajectories r∗/2 along the new direction vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

, the new trajectories are bound to satisfy the feasible regions separated by ρij(t),

provided εi > r∗i for any i. The rest of the avoidance strategies developed in the remaining part

of this section are attempts to reduce more complex collision configurations to a simple

collision configuration.

3.3.2. Detecting and resolving a head-on collision

A head-on collision problem is any configuration in which Dij(t) ≤ (ri + rj) and vi(t)Tvj(t) ≈π rad.

Figure 7(a) illustrates the head-on collision problem.

Figure 6. Simple collision problem.
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The paths from the current positions xi(t) and xj(t) to the goal positions xi(tf) and xj(tf) lead to a

configuration in which the attitude vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are parallel (or close to

parallel) and in opposite directions, in the sense that a point of intersection cannot be com-

puted. Figure 7(b)–(d) shows several examples of head-on collision. Figure 7(b) is a direct head-

on collision because the vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are lying directly on Lij(t). Figure 7(c) is

an approximate head-on collision and Figure 7(d) is a head-on collision that can be easily

converted to a simple collision configuration.

For the configurations in Figure 7(b) and (c), the Q-CAC formulation presented earlier easily

solves this problem without any modifications to the algorithm. However, whenever

vi tð ÞTviobs tð Þ ≈ 0 for any i, the optimization algorithm takes some significant time to solve.

Even though the resulting trajectory is desirable, this delay is undesirable for real-time

collision avoidance. Therefore, whenever this configuration is encountered for any two

vehicles, a one-step elementary evasive maneuver is initiated, in which either vi(t) or vj(t) is

rotated by a small angle ψ > 0. This rotation effectively transforms the head-on collision

Figure 7. Head-on collision problem.

Advanced Path Planning for Mobile Entities14



configuration to a simple collision configuration. Once this is done, the avoidance con-

straints defined in Eqs. (21) and (22) solve in real time. The trajectory obtained using this

strategy for two-vehicle reconfiguration with head-on collision avoidance is shown in [14].

3.3.3. Detecting and resolving cross-path collision for two vehicles

A cross-path collision problem is any configuration in which Dij(t) ≤ (ri + rj) and the current

vector directions vi(t) and vj(t) are on the same side of Lij(t), and the attitude vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

are not parallel. Because the vectors are not parallel, a point (for 2D) or line (for

3D) of intersection can be computed for both vectors. Figure 8 is an example of a cross-path

collision problem.

Note that for the avoidance process, the attitude control algorithm attempts to expand the

angles θi(t) and θ
j(t) to an angle = π/2. Based on this initial configuration, therefore, vi(t) and

vj(t) will remain parallel or close to parallel, but not in opposite directions. If this continues, the

desired goal positions may never be reached, or may be reached after a great deal of effort. To

resolve this problem, it is required to determine whether the two vehicles are indeed in a cross-

path configuration. The task is therefore to see if there exists a point or line of intersection

between xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

, and if such an intersection lies on one side of Lij.

Figure 8. Cross-path collision trajectory.
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3.3.4. Determining cross-path collision in 3D and 2D.

To determine cross-path collision between i and j in 3D, two planes PLi and PLj are defined,

both parallel to the z axes of the world coordinate frame (Figure 9). Each plane must contain

the vectors xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

as shown in the figure. Therefore, the plane PLi is defined as

the set (Ni(t), xi(t), vi(t), z(t)), where zi(t) is a point chosen above or below xi(t) or vi(t) on the

z axis and Ni(t) is the normal vector perpendicular to xi(t), vi(t), and zi(t). Once Nj(t) is similarly

defined, the intersection of the two planes can be computed using techniques from computa-

tional geometry. If the two planes are not parallel, the computation of planes’ intersection will

return a line lij. Once this line is determined, the next step is check if it is on one side of the

plane parallel to the z axis and containing the points xi(t) and xj(t).

An easy way to do this is to compute the perpendicular distances from the points xi(t), vi(t),

xj(t), and vj(t), to lij.

Let the corresponding distances be:

dix tð Þ ¼ xi tð Þ � lij
�
�

�
�, (24)

div tð Þ ¼ vi tð Þ � lij
�
�

�
�, (25)

djx tð Þ ¼ xj tð Þ � lij
�
�

�
�, (26)

djv tð Þ ¼ vj tð Þ � lij
�
�

�
�

: (27)

If div tð Þ ≤ dix tð Þ and djv tð Þ ≤ djx tð Þ, then the line of intersection is in front of both vehicles, and a

cross-path collision is imminent as shown in Figure 9(a) and (b). Otherwise, there is no cross-

path conflict as shown in Figure 9(c).

Figure 9. Determination of cross-path collision in 3D.
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The analysis is simpler in the 2D case. Instead of lij, we search for a point pij, which is the point

of intersection of the lines passing through xi tð Þvi tð Þ
�����!

and xj tð Þvj tð Þ
�����!

as shown in Figure 10. If

indeed such a point is found, we use pijinstead of lijin the previous set of equations.

Figure 11 shows an illustration of the computation of dix and div for any i.

Figure 12(a) is a cross-path collision configuration, but (b) is a simple collision configuration.

The solution strategy adopted is to convert any cross-path configuration such as Figure 12 (a)

to a simple configuration such as (b). To do this, one only must move either vi(t) or vj(t) to the

other side of Lij(t) (or onto the line Lij(t)). A simple strategy to decide which v(t) should be

Figure 10. The point pij is the point of intersection of the infinite lines passing through direction vectors xi tð Þvi tð Þ
������!

and

xj tð Þvj tð Þ
������!

. The position of pij in relation to both direction vectors determines if a cross-path collision is imminent. If pij is in

front of both vectors as in (a) and (b), then a cross-path collision is imminent; otherwise, no cross-path collision is

imminent as in (c).

Figure 11. Continuing the explanation from Figure 10, dix is the distance from any xi (vehicle i) topij, whereas div is the

distance from vi to pij, that is, the distance of the outer boundary (where vi lies) of the safety region of vehicle i to pij.
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moved to obtain smoother phase transition is to measure θi(t) and θj(t). If θj(t) <θi(t), then vj(t)

should be moved. This is done by swapping vj(t) and v
j
obs tð Þ, which immediately results in a

simple collision reconfiguration. Thereafter, when the Q-CAC algorithm expands θj(t), it is the

former v
j
obs tð Þ (which is now the new vj(t)) that moves, whereas the former vj(t) (which is now

the new v
j
obs tð Þ) remains static.

Therefore, if a cross-path trajectory is determined, to resolve the problem it is sufficient to swap

the variables in one of the avoidance constraints (Eq. (21) or Eq. (22)). For example, Eq. (21)

may be left as it is and Eq. (22) is rewritten in the form

2 cos∅þ μ
� �

v
j
obs kþ 2ð Þ

vj kþ 2ð Þ

2

4

3

5

T

v
j
obs kþ 2ð Þ

vj kþ 2ð Þ

2

4

3

5 M

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

≥ 0: (28)

The trajectories obtained by applying this strategy to cross-path collision avoidance for two

vehicles in 2D and 3D are shown in [14].

3.3.5. Resolving cross-path collision for more than two vehicles

If more than two vehicles are involved as shown in Figure 13, for any vehicle i, whose attitude

vector vi(t) is in a cross-path configuration with vehicles j and k, we are concerned only about

the two bounding obstacle vectors v
ij
obs tð Þ and vikobs tð Þ.

In order not to get into a stalemate situation (undesirable for aircraft), only positive nonzero

velocities are required to be generated. We adopt a counterclockwise avoidance measure to

achieve this, where, for each vehicle, the left bounding obstacle vector is always chosen as the

Figure 12. The effects of cross-path conflict resolution.
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cross-path obstacle vector for avoidance. For example, for k to turn counterclockwise, it

chooses the vector vkiobs tð Þ to avoid instead of v
kj
obs tð Þ. Thus, for the configuration of Figure 13,

the following set of attitude constraints is enforced:

2 cos∅þ μ
� �

v
ij
obs kþ 2ð Þ

vi kþ 2ð Þ

2

4

3

5

T

v
ij
obs kþ 2ð Þ

vi kþ 2ð Þ

2

4

3

5 M

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

≥ 0, (29)

2 cos∅þ μ
� � v

jk
obs kþ 2ð Þ

vj kþ 2ð Þ

2

4
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5

T

v
jk
obs kþ 2ð Þ

vj kþ 2ð Þ

2
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5 M

2

6

6

6

6

6

6
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7

7

7

7

7
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5

≥ 0, (30)

Figure 13. Three-vehicle cross-path trajectory problem.
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2 cos∅þ μ
� �

vkiobs kþ 2ð Þ

vk kþ 2ð Þ

2

4

3

5

T

vkiobs kþ 2ð Þ

vk kþ 2ð Þ
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5

≥ 0: (31)

3.4. Consensus with Q-CAC–based avoidance

Once a safe attitude vector vi(k) is computed at time k for any i, the next position x
i(k + 1) is

computed as a point a distance r∗i/2 from the current position, along the vector vi(k). Note that

v
i(k) is normalized to keep the computed control bounded. Whether there are intersections of

the safety regions or not, one can guarantee the safety of the algorithm by bounding the control

size within the interval 0 <ui ≤ r∗i/2. This means that a vehicle never steps beyond its safety

region at any single time step.

Another important consideration is the size of control computed at each time using Laplacian

matrices, which is directly proportional to the algebraic connectivity of the communication

graph, and inversely proportional to the magnitude of the current time k. This means that,

while the early values of u are large and therefore unsafe for collision avoidance (and must be

bounded), the latter values of u are very small and therefore slow down the rate of conver-

gence. One can observe that collisions are less likely to occur in the latter times when the

vehicles are closer to their goal positions; consequently, convergence is slower at that time.

Therefore, there is need to obtain constantly bounded control u which can guarantee both

collision avoidance and a high speed of convergence. The following modifications to Eq. (4)

and Eq. (5) were proposed in our previous works [5, 9, 14]. For the leader-follower architecture,

u ¼ �η log 10 kþ 1ð Þ
Δt

2λ2 Lð Þ
Γ x� xoff
� �

� β log 10 kþ 1ð Þ
Δt

2λ2 Lð Þ
K x� xoff
� �

: (32)

And for the leaderless architecture,

u ¼ �η log 10 kþ 1ð Þ
Δt

2λ2 Lð Þ
Γ x� xoff
� �

� β log 10 kþ 1ð Þ
Δt

2λ2 Lð Þ
K x� xdð Þ, (33)

where λ2(L) is the second smallest eigenvalue of the Laplacian L. The parameter η is for scaling

the consensus term and β is for scaling the proportional term in Eqs. (32) and (33). The

logarithmic term log10(k + 1) and the term Δt
2λ2 Lð Þ are used to reduce kuk when k is small and

increase kukwhen k is large. The choices of parameters η and β should depend on the radius of

S and safety region ε for each vehicle. Alternatively, one may choose to compute an

unbounded u using Eqs. (4) or (5), then for each ui > r∗ i

2 , normalize ui and set ui ¼ r∗ i

2 ui.

The step-by-step procedure for implementing the algorithm including a flowchart can be

found in Ref. [14].
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4. Simulation results

To demonstrate the solutions developed in this chapter, we revisit the experiment presented in

Figure 1. The robots are homogeneous, and S for each robot is 85 mm, ε = 90 mm, whereas the

dimensions of the soccer pitch are 6050 mm x 4050 mm. In Figure 14 (a), Eq. (5) was applied

with the cyclic communication topology with one leader (Figure 2). In Figure 14 (b), Eq. (33)

was applied with a full communication topology (i.e., every vehicle can communicate with

each other). The simulation was done with MATLAB R2009a on an Intel® Core(TM)2 Duo

P8600 @ 2.40 GHz with 2 GB RAM, running Windows 7. For Figure 14(a), the multipath

planning problem took 244 time-steps to solve, resulting in a total computation time of 7.343 s,

in which 203 avoidance attempts were made, and there were no collisions. For Figure 14(b),

using a full communication topology, the computational time was 0.0131 s, and there were

no collisions.

In [14], more simulations and analyses are presented, together with the limitations of this

approach, which remains to be explored for future development.

5. Conclusion

In this chapter, we considered consensus-based multipath planning. An approach to incorpo-

rating collision avoidance in adversarial situations in the consensus algorithm by applying

Q-CAC is presented. Simulation results are presented here to show that for a sizable number of

Figure 14. Collision-free reconfiguration: (a) using topology with Eq. (5) and (b) using fully connected graph with Eq. (33).
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vehicles, collision avoidance and fast convergence are guaranteed. Future work will include

implementation on a team of mobile robots and autonomous aerial vehicles.
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