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Abstract

Nowadays, the statistical studies have revealed that major accidents (MA) are frequent in
diverse industries, which has originated the development of strategies and normative
focussed in foreseeing and preventing these. Thus, the process safety is in continuous
improvement. The experimental studies in this field result in situations of high risks and
are usually expensive. Therefore, the implementation of developments as the computa-
tional fluid dynamics (CFD) techniques is now applied, and has proven to be advanta-
geous. In this work, CFDmodels for pool and jet fires are presented, as these kinds of fires
are usually involved in major accidents. The results of the CFD models show orders of
magnitude and behaviors in good agreement with experimental observations found in
literature. The outputs of the simulations showed values of around 500 and 1400 K for the
pool fires; while the jet fires predictions were of temperatures around 500 and 1050 K.
Furthermore, the information obtained by these models can be used in order to develop
safety plans to diminish risks in the facilities designs, safe zones and emergency exit routes.

Keywords: CFD multiphysics, mathematical modeling, safety, major accident,
process safety

1. Introduction

The development of the chemical industries, as well as emerging fields of nanotechnology,

energy generation, biotechnology and pharmaceutical, among others, as well as the storing,

handling, transport and transformation of their products, has resulted in an increasing need of

handling and storing flammable and explosive substances. Consequently, the risks in chemical

plants have increased dramatically and major accidents (MA) have taken place more fre-

quently [1]. It has been recorded that these kinds of accidents represent great losses in terms

of lives, environmental impact and destruction of equipment and buildings. In fact, only in

2015 the National Fire Protection Association (NFPA) reported that there were 1,345,500 fires

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



in the USA, that caused the death of 3280 civilians and injured 15,700 more, and represented

$14.3 billion dollars in property damage [2].

Statistical studies of MA, such as those shown in Table 1, show how these events have been

constantly present throughout history and throughout the civilized worldwide. And therefore,

further efforts must be carried out in researching on the process safety.

This has conducted to the development of a scientific discipline: The Process Safety [7]. This

concept must be now part of our daily life in order to ensure the sustainable development of

the planet [4], to ensure the safety of the people and to reduce the economical impact. Further-

more, the risk analysis is yet in continuous development. Large multi-sector efforts for identi-

fying hazards to ensure the safe design and operation of a system in process plants and other

facilities [8] are being developed, with the challenge of dealing with real-time support for

decision-making, in the multiple scenarios with unpredictable conditions [7].

Regarding the study of MA in the process safety, three kinds of accidents can be distinguished:

breaching, explosions and fires [5]. All of which have been widely studied, mostly through

experimental methods, that have led to the generation of a great number of semi-empirical

correlations [9, 10]. These have been used like tools or guidelines as assistance for the Inspec-

tion Management in Chemical Plants, and for the calculation of consequences by simplified

procedures [11].

Authors, year Description

Girgin and Krausmann [3] Incidents at US onshore hazardous liquid pipeline systems were analyzed with an emphasis

on natural hazards (natechs). The analysis covered about 7000 incidents in 1986–2012.

Natechs resulted in 317,700 bbl of hazardous substance release and 597 million USD

economic damage.

Kannan Pranav et al. [4] A collection of 96 incidents of process safety from across de world is categorized and

analyzed to identify proximate causes and deficiencies in the safety management. Emphasis

is placed in that these are not statistically representative due to the lack of a universal

database of incidents.

Mannan [5] In Chapter 2, incidents and loss statistics are discussed, with information from proper

sources. The arrangements for the control of major hazards in the European Community and

in the United States are briefly reviewed.

Chapter 26 shows important things to be learned from the incident about case histories and

information from some recognized databases in the world.

Chen Yinting et al. [1] From 1951 to 2012, 318 domino accidents were collected and analyzed. Flammable

substances are the most common material involved in Domino effects. Of all 318 samples,

237 cases associated with flammable substances. 71.1% domino accidents occurred in

developed countries, while only 28.9% occurred in developing countries. It can be explained

by the massive presence of large-scale chemical plants with giant facilities which contain

large quantities of flammable substances and toxic materials. Besides, the accidents

reporting mechanisms in developed countries allow getting information easier.

Vílchez et al. [6] A survey of accidents involving hazardous materials has been performed. A total of 5325

accidents taken from the database MHIDAS, covering from the beginning of twentieth

century up to July 1992. The data show the distribution of percentages of accidents in

various areas.

Table 1. Selection of statistical and historical studies of MA.
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However, despite the extensive efforts and development in the study of fires in MA, the

unpredictability of the phenomena and the difference in the length scales that these take place,

as well as the influence and limitations given by the experimental conditions in the reported

works, have motivated the development of mathematical models that allow the prediction

of fires and their consequences. It is noteworthy that the implementation of these models

implies further complications in the evaluation of parameters and variables that are frequently

unknown, such as the heat transfer coefficient (h), emissivity, radiation models, transmissivity,

reflectance, among others, leading to a great gamut of approaches. For example, the hybrid

models, where the semi-empirical correlations are coupled with the mathematical models in

order to find valid solutions to the transport equations; and also, in recent years, with the

development of computers and numerical methods, the computational fluid dynamics (CFD)

applied in these topics have shown to be advantageous. Principally, due to that these tech-

niques and models provide not only accurate hazard assessments such as thermal energy flux

level, overpressure contour and distribution of toxic cloud, but also detailed information about

the spatial and temporal evolution of accidental events [7], allowing detailed three-

dimensional analysis in the presence of obstacles, bunds and congested industrial layouts

[12]. Thereby, several specialized CFD software in the study of fires have been developed, as

well as applications for general purpose CFD software. A selection of general purpose and

specialized CFD software can be seen in Table 2.

This approach, through CFD simulations, has been of great advantage compared with exper-

imental methods, as experiments are usually expensive, dangerous and practically impossible

Software Characteristics Developer/

License

Platform

COMSOL Multiphysics General-purpose CFD software, based on FEM, specialized in

the modeling of coupled multiphysics phenomena, such as non-

isothermal flows with mass transfer and chemical reactions

COMSOL/

Paid

Windows

Mac OS X

Linux

Ansys CFX CFD software, part of the ANSYS family of products of Fluid

Dynamics. Allows to simulate chemical reactions and

combustions as well as fluid flow

ANSYS/

Paid

Windows,

Linux

FLAIR Special-purpose CFD software for HVAC systems, smoke

movement and fire spreading

CHAM/

Paid

Windows,

Linux

Fire dynamic simulator and

smoke view (FDS – SMV)

FDS is a special-purpose CFD model for fire-driven fluid flow.

SMW is the visualization software for the FDS simulations

results

NIST/Free Windows,

Mac OS X,

Linux

SmartFire Special-purpose CFD software for fires simulation and analysis,

as well as evacuation analysis

FSEG/Paid Windows

Kobra-3D Special-purpose CFD software for smokes simulation and heat

transfer in buildings. Includes mass transfer with generation

equations

IST GmbH/

Paid

Windows

Solvent Special-purpose CFD software for the simulation of fluid flows,

heat transfer and smoke transport in tunnels

Solvent/

Paid

Windows

Table 2. Commercial CFD software with application for process safety and fires analysis.

Applications of CFD for Process Safety
http://dx.doi.org/10.5772/intechopen.70563

141



to perform at very low scales, such as microscales [13], or very large scales of hundreds of

meters. Thus, there are still lots of unsolved issues in the process safety engineering. Many of

those issues related to the domino effect usually presented in MA [3, 6, 14].

It is common to find turbulent flows when studying the MA, and thus this has been a great

motivation for their study and modeling, besides the motivation due to the costs reduction, as

the need to build and test prototypes is avoided [15]. The main approaches through CFD in

order to model the turbulent flows in MA leading to acceptable results are the implementation

of Reynolds-Averaged Navier-Stokes (RANS) models, large eddy simulations (LES), direct

numerical simulation (DNS) and hybrid LES/RANS techniques. However, computational costs

may exceed the computing capacities if the detailed characteristics of reactive turbulent flows

are intended to be observed, such as eddies, velocity patterns, high-vorticity regions, large

structures that stretch and engulf, etc. And thus, generally the standard κ�ε turbulence models

provide good results; although sometimes, certain modifications need to be taken into account.

The procedure to approach the solution of problems through CFD techniques is depicted in

Figure 1. In general, the process consists of three important steps: preprocessing, processing and

postprocessing. It is also of great importance the validation of the outputs of the CFD models

results against experimental data. Special attention should be drawn to the preprocessing step,

as in this step the understanding of the phenomena will be developed; and a correct understand-

ing of the phenomena will allow to take into account the proper considerations and simplifica-

tions. As seen in the diagram, when there is a bad agreement between the models results and the

experimental observations, sometimes the problem lays in the definition of the problem itself,

this means, in the preprocessing steps. In this chapter, following the CFD modeling process

Figure 1. Proposed CFD modeling process considering comparison against experimental approaches.
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aforementioned, two characteristic kinds of fires in MA are presented. Sections 2 and 3 present

the preprocessing steps; the processing step is also depicted in Section 3; and lastly Section 4

presents the postprocessing steps. The models for these fires are developed though COMSOL

Multiphysics CFD simulations, coupling momentum, mass and heat transfer, considering

radiation, for pool and jet fires. The models also consider the turbulence flows through

Reynolds-Averaged Navier-Stokes (RANS) equations, using the κ�ε model. The predictions

obtained with the models properly predict the behavior of experimental observations reported

in literature.

2. Fire modeling

The fire consists of a process where complex physical and chemical phenomena occurs simul-

taneously producing heat. In order to study fires, there are several classifications according to

the materials involved, the source or the place in which they are presented. These are of great

importance in order to understand how to control the fires, which kind of fire extinguisher

should be selected, the consequences of the fire and the radius of impact of these. Two of the

main classifications are the following

i. By the material: Fires involving solid, liquid or gases, which gives rise to the following

classification or class. For each class, there is a suggested kind of fire extinguisher.

a. Combustible materials: wood, paper, textiles, rubber

b. Flammable liquids and gases: gasoline, solvents, hydrocarbons

c. Electrical fires

d. Flammable metals: sodium, potassium, magnesium, titanium, zirconium and other

metals

e. Cooking oils and fats

ii. By the source or the place where they are presented.

a. Wildfire or forest fires: sub classified in other three types: crown fires, surface fires

and ground fires

b. Industrial process fires: vapor clouds fires, fireballs, jet flames, pool fires, running

liquid fires, fires of solid materials, dust fires, warehouse fires, sea fires, fires in oil

spills in the ocean

c. Building fires: Structures of diverse dimensions, from small houses to large buildings

Regarding MA, these take place in uncontrolled places and times, which is actually what

defines, up to a great extent, the characteristics and dynamics of the fire. Thus, in order to

properly model the fire, the behavior of each kind of fire must be understood, as this will allow

the adequate establishment of the differential equations and their most convenient boundary

Applications of CFD for Process Safety
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conditions. Due to the aforementioned, a further discussion of the phenomena in jet and pool

fires is presented in the subsequent pages.

2.1. Pool fire

Pool fires occur when a flammable liquid spills or is poured in the ground and ignites. The

shape and dynamics of these fires depend on many variables, such as obstacles, barriers found,

whether the leaking is continuous or of a brief duration, as well as the surroundings meteoro-

logical and environmental conditions. This prior is highly important as MA usually takes place

in open areas, and thus there is a remarkable effect of the wind over the geometry of the flame,

the oxygen inflow and the heat transfer mechanisms. These kinds of incidents represent a

major complexity as great quantity of phenomena take place simultaneously. Figure 2 depicts

a simplified representation of the phenomena involved in pool fires.

The volatile flammable compounds feed the combustion zone in gas phase under the proper

conditions. The drag of the air can be impelled by the wind force or the free convection,

depending on the conditions surrounding the fire. The combustion can consist of up to

thousands of elementary reactions with intermediate steps that may include hundreds of more

chemical species (this great amount of species is commonly observed in MA involving hydro-

carbons, as fuels and diesel). Also, generally fires produce smokes with solid particles.

Depending on the nature of the combustible, the smoke may contain high concentrations of

finely dispersed particles, commonly known as soot, and somniferous gases, as carbon mon-

oxide, as well as other commonly produced products of combustions. Due to these complexi-

ties, it can be understood why this is yet an issue of research.

Figure 2. Typical pool fire in presence of wind.
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For many years and with diverse approaches, pool fires have been widely studied. Experimen-

tal approaches that have led to correlations to predict the fire characteristics are noteworthy,

such as burning rate [16], flame tilt angle [17], flame length [18], surface emissive power [19],

soot production and radiation [20]. However, it is important to point out that major efforts in

the amount of experiments over diverse scenarios, large scales and wind influence, are yet

required [21]. The theoretical proposal, that consist in the resolution of the transport equations

coupled with the kinetics for the diverse reactions taking place in the phenomena, will be

discussed in the upcoming section.

Despite the great advances in the study of pool fires, there is still no model that accurately

predicts the proper behavior of fires at the diverse length-scales, and describes all the relevant

variables satisfactorily [22]. This is by reason of that most of these have been developed in

small scales, and due to the complexity and variability of fires. Furthermore, in theoretical

studies turbulence models are still being developed [15], and the multiphysic-multiscale

nature is still a challenge to overcome [23]. Moreover, there are also restrictions in theoretical

approaches due to the high computational costs.

2.2. Jet fire

Jet fires are characterized by the presence of stationary turbulent diffusion of flames that can

reach great lengths and short amplitudes. This kind of fires can be present in closed or open

areas. This can be whether generated or accidental, without having notable differences. The

source of generated jet fires are usually valves, and can reach supersonic velocities; while

accidental jet fires are usually due to holes caused by breakings in pipelines or flanges, and

thus the outlet velocities are usually lower, reaching at most (most cases) sonic velocities. Jet

fires can arise from gases, liquids or biphasic mixtures. Figure 3 depicts a simplified diagram

of some of the phenomena present in jet fires.

The properties of jet fires depend on the composition of the fuel, the release conditions, the

amount of released mass, geometry of the outlet hole, wind direction and the surrounding

conditions. These have been widely studied, and thus several models have been developed,

mostly through experimental observations [24–28]. Nowadays, aside from the experimental

studies [29, 30], computational methods have been implemented into the study of jet fires,

allowing the inclusion and development of more complex numerical methods, in order to

solve hundreds of equations simultaneously [31–33].

Jet fires are, in a great extent, of paramount importance due to their frequent presence in

industrial applications. For example, in hydrocarbon process plants to eliminate undesired

gases in the production of crude oil; in oil refineries and industrial processes to evacuate

undesired sub-products, or released gases through security valves; or in controlled areas such

as furnaces, gas turbines or industrial burners.

Regarding MA, it has been observed through historical analysis of accident, that when acci-

dental jet fires are present, one of each two causes another greater accident. [34]; 90% of them

leading to an explosion [35].
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3. CFD modeling

3.1. Geometry

Defining the geometrical representation of the model and the domains is part of the

preprocessing. This will set the regions where the mathematical models (the partial differential

equations) are valid; and defines the region where the phenomena will be studied. Figure 4

depicts the geometrical representations of the models and the implemented mesh.

The size of the mesh in these representations is determined by the detail of the required

information. It is clear that a 3D representation will require greater computational resources,

and it may not provide further information than the 2D representation, depending on the

required information from the model.

3.2. Mathematical models: partial differential equations and kinetics expressions

The phenomena described in the foregoing section are simulated by coupling and simulta-

neously solving the models described in Table 3 [36]. Momentum balance, heat transfer and

mass with combustion reaction are solved, using the hydrodynamics solution in the energy

and mass balances, as well as the solution of the energy balance in the two other constitutive

equations. It is important to note that the energy balance considers the generation due to the

reaction, thus the energy balance is coupled with mass balance. It is important to consider that

corrections to the mass and energy balance equations due to the turbulence should be added.

Figure 3. Typical jet fire.
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However, this prior would add further non-linearities and would require greater computa-

tional resources.

The solution of these models require the proper evaluation of the thermophysics variables and

parameters. Also, a fundamental task is determining the combustion reaction, which is

included in the mass balances. Due to the nature of the studied fires, the inclusion of all

chemical species involved is practically impossible, not only due to the great computational

Figure 4. Geometry, domain and mesh considered for the simulations, (a) 2D domain of 300 m2, (b) 3D domain with 15 m

per side.

Momentum
ρ
∂u

∂t
þ ρ u � ∇ð Þ ¼ ∇ � �pIþ μþ μT

� �

∇uþ ∇uð ÞT �
2

3
μþ μT

� �

∇uð ÞI

� �� �

þ F

ρ
∂u

∂t
þ ∇ � ρu

� �

¼ 0

Turbulence
ρ
∂κ

∂t
þ ρ u � ∇ð Þκ ¼ ∇ � μþ

μT

σκ

� �

∇κ

� �

þ Pκ � ρε

ρ
∂ε

∂t
þ ρ u � ∇ð Þε ¼ ∇ � μþ

μT

σε

� �

∇ε

� �

þ Cε1
ε

κ
Pκ � Cε2ρ

ε2

κ
; ε ¼ ep

μT ¼ ρCμ
κ2

ε
; Pκ ¼ μT ∇u: ∇uþ ∇uð ÞT

� 	

�
2

3
∇ � uð Þ2

� �

�
2

3
ρκ ∇ � u

Energy
ρCP

∂T

∂t
þ ρCPu � ∇T þ ∇q ¼ Qgen

q ¼ �k ∇T; Qgen ¼ �ΔHrxnRi

Mass ∂ci
∂t

þ ∇ � �Di ∇cið Þ þ u � ∇ci ¼ Ri

Ni ¼ �Di ∇ci þ uci

Table 3. Models solved in CFD software.
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resources that the kinetics models would consume, but the determination of all chemical

species reaction rates expressions, which are often unknown, mostly for the emerging alterna-

tive fuels that are still being developed. Despite the implementation of new methodologies to

characterize and design new fuels, where molecular structures of the mixtures are studied in

order to obtain a deeper and better understanding of the kinetic, physical and chemical

properties that conduct the combustion in the energy conversion processes [37], it is still

necessary to approach the combustion processes by simplified steps and considering only a

representative mixture or selection of components (more common when fuel surrogates are

involved). Regarding this last point, when studying the gasoline surrogates, several authors

have proposed different representative mixtures, for example, Battin-Leclerc [38] considers a

ternary mixture of iso-octane, 1-hexane and toluene; while Zhang [39] considers a mixture of

22 components.

The simplest combustion reaction for a hydrocarbon is:

Fuelþ n1O2 ! n2CO2 þ n3H2O (1)

where the stoichiometric coefficients ni are determined by the selected fuel. And the global

reaction rate must be represented by a suitable average of all reaction rates for the involved

components. The simplest expression for the reaction rate can be expressed as

Ri ¼ AiT
ne

�Eai
RT

� �

fuel½ �a O2½ �b (2)

The general reaction rate constant depends on the temperature and is given by a modified form

of the Arrhenius equation: Ki ¼ AiT
ne

�Eai
RT

� �

, whereA is a collision pre-exponential factor and Ea is

the activation energy. Also, the exponents a and b are experimentally determined empirical

constants. Most of the cases, it is assumed that the global reaction is of first order for the fuel

and the oxidant, and thus a = b = 1. However, it has been seen that this assumption may lead to

great errors. Table 4 shows some examples of common fuels with their kinetic parameters for the

combustion kinetics expressions, which have been published in specialized literature.

3.3. Boundary conditions

In recent years, the boundary conditions have been widely investigated, as these are essential

to find a valid solution, and often a misled selection of these conduces to significant errors in

Fuel a b A Ea (kcal)

Metano �0.3 1.3 1.3 � 109 48.4

Propano 0.1 1.65 8.6 � 1011 30

n-Heptane 0.25 1.5 4.3 � 1011 30

n-Undecae 1 0.8 5 � 1015 45

Kerosene 1 0.8 2.8 � 1015 45

Table 4. Kinetic parameters for common fuels.

Computational Fluid Dynamics - Basic Instruments and Applications in Science148



the results [40]. In the study of fires, as well as for other engineering fields, involving closed

domains, three kinds of boundary conditions can be usually found:

1. The dependent variable derivate is specified (Neumann condition): n �∇ϕ = f(r) in the

surface.

2. The value for the dependent variable is specified (Dirichlet condition): ϕ = f(r) in the surface.

3. A function of the normal component of the gradient and the dependent function is

specified. Hence, a combination of the other two boundary conditions (Cauchy condition):

αn �∇ϕ + βϕ = f(r) in the surface.

Also, the values for the boundary values can fluctuate according to a determined behavior, as

the ones shown in Figure 5. For example, the fuel inflow may vary following a Gaussian

distribution due to the increase in the vaporization of the fuel that feeds the combustion

zone. Another fluctuation commonly seen are the differences in the air inflow velocities,

which have important consequences not only in the turbulences and the geometry of the

flame, as seen in Figure 2, but also in the inflow of oxygen, which determines the reaction

rate. The fluctuation of air should be taken into account properly as it will vary depending

on the height that it is observed and also depending on the time. Furthermore, this air

inflow is usually not symmetrical, and depending on the studied region, the surroundings

conditions and the atmospheric conditions, at different times the air may be going as an inlet

to the control volume through a boundary, and sometimes it may go as an outlet from the

same boundary.

The proper understanding of the phenomena is of great importance in order to stablish

adequate boundary conditions that may even reduce computational times and save computa-

tional resources, as symmetry conditions in the applicable cases. However, these same simpli-

fications must be supported by scientific background. Sometimes, the lack of a scientific

background for these lead to oversimplified models that do not properly describe the phenom-

ena. Table 5 shows the boundary conditions used in both of the models.

Figure 5. Variables distributions examples (a) Gaussian, (b) smooth rectangle step and (c) random.
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4. Results

4.1. Computation

The described models were implemented in COMSOL Multiphysics 5.2a models. The simula-

tions were carried out in the described 2D models, due to the computational resources that the

3D models required, as well as the great computing times. Then, two different domains were

stablished, a 300 m2 domain for the pool fires and a 15 m2 for the jet fires. These were selected

Pool fire Jet fire

Momentum Value Boundary (m) Value Boundary (m)

u ¼ �ufueln

Fuel inletð Þ

ufuel ¼ 0:316 m s=½ � 125 ≤ x ≤ 175

y ¼ 0

� �

ufuel ¼ 50 m s=½ � 4:98 ≤ x ≤ 5:01

y ¼ 0

� �

u ¼ �uairn

Air inletð Þ

uair ¼ 7:2 m s=½ � x ¼ 0; 300f g

1:5 ≤ y ≤ 300

� �

uair ¼ 7:2 m s=½ � x ¼ 0; 10f g

1:5 ≤ y ≤ 10

� �

u ¼ �uairn

Air inletð Þ

uair ¼ 2:88 m s=½ � x ¼ 0; 300f g

0 ≤ y ≤ 1:5

� �

uair ¼ 2:88 m s=½ � x ¼ 0; 10f g

0 ≤ y ≤ 1:5

� �

�pIþ a½ �n ¼ �p0n

a ¼ μþ μT

� �

∇uþ ∇uT
� �

Outlet pressureð Þ

p0 = 1[atm] 0 ≤ x ≤ 300

y ¼ 300

� �

p0 = 1[atm] 0 ≤ x ≤ 10

y ¼ 10

� �

u � n ¼ 0

Wallð Þ

125 ≥ x ≥ 175

y ¼ 0

� �

4:98 ≥ x ≥ 5:01

y ¼ 0

� �

Mass transport Value Boundary (m) Value Boundary (m)

ci ¼ c0j

Specie inflowð Þ

c0C7H16
¼ 12 mol

m3= �



125 ≤ x ≤ 175

y ¼ 0

� �

c0C7H16
¼ 12 mol

m3= �



4:98 ≤ x ≤ 5:01

y ¼ 0

� �

ci ¼ c0j

Specie inflowð Þ

c0O2
¼ 8:6 mol

m3= �



x ¼ 0; 300f g

0 ≤ y ≤ 300

� �

c0O2
¼ 8:6 mol

m3= �



x ¼ 0; 10f g

0 ≤ y ≤ 10

� �

�n �Di ∇ci ¼ 0 if n � u ≥ 0

ci ¼ c0j if n � u < 0

Open boundaryð Þ

c0O2
¼ 8:6 mol

m3= �



0 ≤ x ≤ 300

y ¼ 300

� �

c0O2
¼ 8:6 mol

m3= �



0 ≤ x ≤ 10

y ¼ 10

� �

�n �Ni ¼ 0

Wallð Þ

125 ≥ x ≥ 175

y ¼ 0

� �

4:98 ≥ x ≥ 5:01

y ¼ 0

� �

Energy transport Value Boundary (m) Value Boundary (m)

T ¼ T0

Ignition temperatureð Þ

T0 = 488.15[K] 125 ≤ x ≤ 175

y ¼ 0

� �

T0 = 488.15[K] 4:98 ≤ x ≤ 5:01

y ¼ 0

� �

T ¼ T0

Air temperatureð Þ

T0 = 300[K] x ¼ 0; 300f g

0 ≤ y ≤ 300

� �

T0 = 300[K] x ¼ 0; 10f g

0 ≤ y ≤ 10

� �

T ¼ T0 if n � u < 0

�n � q ¼ 0 if n � u ≥ 0

Open boundaryð Þ

T0 = 300[K] 0 ≤ x ≤ 300

y ¼ 300

� �

T0 = 300[K] 0 ≤ x ≤ 10

y ¼ 10

� �

Table 5. Boundary conditions set to the CFD models.
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according to the common lengths of these kinds of fires. The mesh for the pool fire model

consisted of 71,665 triangular elements; while the mesh for the jet fire model consisted of

63,821 triangular elements.

The pool fire simulation was a time dependent simulation. 20 s in steps of 0.02 s were simulated

(a total of 1001 frames). It consumed 3.72 GB of RAM and 3.96 GB of virtual memory, and

required a computing time of 6.72 hours.

The jet fire simulation was also a time dependent simulation. 10 s in steps of 0.02 s were

simulated (a total of 501 frames). It consumed 3.4 GB of RAM and 3.95 GB of virtual memory,

and required a computing time of 9.73 hours.

The simulations were carried out in a HP z600 Workstation with an Intel® Xeon® E5620 CPU

(quad-core, 2.4 GHz, 12 Mb of Cache), with 24 GB of RAM.

4.2. Pool and jet fire CFD model results

Figure 6 shows a sequence of the results from the pool fire CFD model previously described at

different times. This pool fire model considers the combustion of heptane (C7H16) as the main

Figure 6. Results sequence from the pool fire CFD model temperature field (a) t = 5 s, (b) t = 7.5 s, (c) t = 10s, (d) t = 15 s.
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combustion, a pool diameter of 50 m, a total time of 20 s, and a 300 m2 domain. It is important

to note that in these images, highly turbulent flames can be seen which tend to develop in

large-size eddies, and that from the beginning moments of the pool fire, very high tempera-

tures and flame heights can be reached.

Figure 7 shows a similar sequence of results for the jet fireCFDmodel. In thismodel, the fuel inflow

was modified in order to follow a smooth rectangle distribution over the time, and thus it can be

appreciated in the figures that in the beginning times the flame develops, then it reaches an almost

steady behavior and afterwards it starts to diminish until it is consumed. Again, in this simulation,

the main considered reaction was the combustion of heptane (C7H16). The shown images also

consider a hole of 3 cm fromwhere the jet fire arises, a total time of 10 s and a 15 m2 domain.

The results of these models allow the analysis and evaluation of important variables in the

process safety, such as the maximum and average temperatures and flame lengths. Table 6

shows the resume of the average flame lengths in pool fires, taking as criteria the reaction

rate; as well as the maximum temperature, which is evaluated in the whole domain, and

thus this value might not necessary be found in a flame zone, it can be a hot zone where no

Figure 7. Results sequence from the jet fire CFD model temperature field (a) t = 1.5 s, (b) t = 3 s, (c) t = 5 s, (d) t = 8 s.
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combustion reaction is taking place. Note that there is no proportional correlation between

the flame height and the flame diameter, nor between the flame diameter and the tempera-

ture. Furthermore, it was observed that the highest reaction rate values did not always

correspond to the highest temperatures. It can also be seen that the fire exhibits lower

temperature values when starting, and these values tend to increase with time, presenting

great fluctuations not only in the temperature but other parameters as the flame geometry.

These observations are an expected behavior for turbulent flames. Also, several pool diame-

ters were tested, from 3 to 60 m.

Table 7 show a similar analysis to the one in Table 6, but for the jet fire CFD model. Different

diameters for the hole of the jet fire were tested, from 3 to 19 cm. It is noteworthy that, despite

that the jet fires arise from a breach of a few centimeters, these fires can reach great magnitudes,

Diameter (m) Time (s) Height (m) Taverage (K) Tmax (K)

3 0.2 0.5 480 362

3.0 11.6 697 1572

9.5 11.6 620 1371

15 0.2 1.1 540 613

3.0 8.2 1185 1411

9.5 40.3 538 1363

30 0.2 2.3 541 614

3.0 4.5 1470 1973

9.5 96.4 669 1959

60 0.2 4.6 541 616

3.0 21 1276 >2000

9.5 31.1 1006 >2000

Table 6. Observed flame height and temperatures average values for different pool fires diameters models.

Diameter (cm) Time (s) Height (m) Taverage (K) Tmax (K)

3 0.2 0.7 569 755

3.0 7.1 754 938

4.5 15.0 657 944

9 0.2 1.6 612 770

3.0 11.5 722 1029

4.5 15.0 831 996.49

19 0.2 1.42 657 863.9

3.0 15.0 1054 1352

4.5 >15.0 1039 1309

Table 7. Observed flame height and temperatures average values for different hole diameters for jet fire models.
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with average temperatures around 550 and 1100 K, and punctual maximum values that can

reach over 1300 K.

For both kinds of fires models, the results were compared against experimental data, and

similar behaviors were found [29, 41].

Even though the detailed study of fires is not the objective of this chapter, it is important to

point out that when the CFD heat, momentum and mass transport models are solved, the

information of a great number of variables are obtained as an output. A way to use this

information is through the dimensionless numbers analyses [42], as the evaluation of these

will allow the comparison of different phenomena presented, neglecting the length-scales. For

example, by evaluating the Reynolds numbers, it can be seen when will a flame be highly

distorted; and the Froude number will show small values in the region near to surface area

(Fr ≤ 1) and increases with the flame height, where the forces of momentum are dominant.

As a resume, the results of the CFD fires simulations presented here show that for pool fires

can reach over 90 m in height, average temperatures fluctuating between 500 and 1400 K, and

punctual temperatures between 1500 and 1900 K; while the jet fire CFD simulation results

predicted flame heights of over 15 m, with average temperatures fluctuating 550 and 1050 K.

These results are in good agreement with the observations in experimental studies. Due to the

aforementioned, it is important to point out that, even though that as aforementioned the pool

fires and jet fires are usually present in other MA, they are by their own considered as MA.

Other applications of CFD models of MA, which are recently developed and widely applied,

are the prediction of consequences in a combination of possible scenarios [43]. This is done by

combining the CFD models’ predictions with vulnerability values, proposing intervention

zones, safe distances, equipment distribution in a plant, etc. For example, in the scenario

depicted in Figure 6, it can be seen that only a few seconds after the pool fire started,

temperatures of up to 1500 K can be found, with average temperatures of around 1000 K, and

heights over 200 m. With this information, as shown in Figure 8, it can then be proceeded to

Figure 8. Possible scenario of MA considering the effect in the surroundings.
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evaluate the thermal radiation that an industrial facility 150 m away from the fire and persons

50 and 75 m away would receive, considering the view factors. This can be done by applying

the Stefan-Boltzmann equation:

qrad ¼ εσF1�2 T4
1 � T4

2

� �

(3)

where σ is the Stefan-Boltzmann constant, ε is the emissivity and F1-2 is the view factor, defined as

Fij ¼
1

Ai

X

n

i¼1

X

m

j¼1

cosθi � cosθj

π � r2
dAidAj (4)

Also, the determination of the thermal radiation can be coupled with the analytical equations

developed for several geometries [44]. The maximum thermal radiation fluxes defined by the

vulnerability factors have been widely studied, and are reported in the specialized literature.

For example, Jagger [45] studied the consequences of the exposition of personal to different

levels of thermal radiation, and proposes recommendations for the gas and petrol offshore

industries, suggesting a review of the structural damage that may represent obstacles in

emergency exit routes criteria. Raj [46] makes a review of the criteria of diverse normative

regarding the exposition of people to fires. Further studies in specific cases can be found in the

works of Casal [47].

When vulnerability factors are evaluated, it is important to take into account the maximum

observed values, as these will represent the worst-case scenario, with the highest risks for the

people and the structures. In this sense, as observed by the simulation results, taking as an

example the 50 m pool fire results, the maximum temperature produces a thermal radiation of

over 200 kW/m2, which if far above the safe criteria. Taking in consideration the consequences

in the reported vulnerability criteria for people and objects found in literature, it can be

concluded that no one would survive that amount of thermal radiation flux; and that the steel

structures would lose all their mechanical integrity. This scenario would definitely cause

domino effects with greater consequences.

If the 3 m pool fire is considered, the consequences would be lower. However, due to the

produced thermal radiation, the safe zone for a person would be no closer than 25 m, as a person

can receive a maximum amount of thermal radiation between 4.7 and 5 kW/m2 [46]; and for the

metal structures, the safe zone would be found in a distance of 7.5 m, in order to avoid the

collapse of the structure, that can receive a maximum thermal radiation of 37.5 kW/m2.

Although, exposition to this value of 37.5 kW/m2 would lead to the death of a person, even in a

short exposition period of time [46].

5. Conclusions

Process safety is of major importance due to the consequences in matter of lives, economy and

wide regions affections. Thus, the prediction of the behavior of major accidents is of key

importance in the better development of process safety engineering. In this context, CFD tool

Applications of CFD for Process Safety
http://dx.doi.org/10.5772/intechopen.70563

155



represent an opportunity to provide more accurate solutions in the prediction of the complex

multiscale and multiphysic phenomena that MA involve (some problems that have been

experimentally impossible to solve). These tools are of special necessity in the quantitative

analysis of results, as the previously developed methods still have great restrictions and

failures in predictions, for example, of highly turbulent flows, rapid compressions or expan-

sions, low Reynolds number effects and chemical reactions.

Despite the development of diverse strategies for the CFD simulations that allow taking into

account the turbulence present in MA (LES, DNS, RANS), the RANS equations have been

widely used, as the results predicted by those have shown a good agreement compared with

experimental methodologies. Also, applying other methodologies require greater computa-

tional resources, and are in many cases unpractical. On the other hand, the CFD simulations

provide a great advantage to study large-scale MA, as these would be practically impossible to

control and study in experimental studies (due to the high costs and the scientific and technical

challenges).

Finally, it is noteworthy that the results of the CFD simulations of MA have several practical

applications in diverse Process Safety fields and issues. For example, the study of safe dis-

tances, emergency exit routes and facilities design. Even though, the aforementioned manifests

that there is still a strong need of developing research in these underexplored fields, which

have special application in the process safety engineering.

Nomenclatures

Abbreviations

MA Major accidents

NFPA National Fire Protection Association

CFD Computational fluid dynamics

RANS Reynolds-Average Navier-Stokes

LES Large eddy simulations

DNS Direct numerical simulations

Symbols

h Convective coefficient

u (m/s) Velocity vector

N (mol/m2s) Total mass flux

Di Specie i diffusivity

CP (J/mol K) Heat capacity
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ΔHrxn (J/mol) Heat of reaction

Ri (mol/m3s) Reaction rate

Ai Pre-exponential collision factor

Ea Activation energy

a Kinetics empirical constant 1

B Kinetics empirical constant 2

ni Stoichiometric coefficient for specie i

Ki Reaction rate constant

n Unitary vector

p (Pa) Pressure

ci (mol/m3) Specie i concentration

k (W/mK) Thermal conductivity

F1-2 View factor

Sub-superscripts

0 At reference conditions

Greek letters

μ (Pa s) Dynamic viscosity

ε Emissivity factor

σ (W/m2K4) Stefan-Boltzmann constant
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