
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 9

Advanced Supporting Materials for Polymer Electrolyte

Membrane Fuel Cells

Narayanamoorthy Bhuvanendran

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71314

Abstract

Among the various kinds of fuel cell, polymer electrolyte membrane fuel cell (PEMFC) is
the most prominent energy conversion device for portable applications. The catalyst-
supporting materials provi.de active triple phase boundary for electrochemical reactions
where the reactant molecules can easily interact with the catalyst surface. Catalysts play
a vital role for improving the overall efficiency of the fuel cells through the advancement
in the catalyst and their supporting materials for cathodic oxygen reduction reaction
(ORR) in PEMFCs. The supporting materials mainly contribute to increase the electro-
catalytic activity of the catalysts by providing more active surface area and extended
life-time. The major roles of supporting materials are (i) they act as electron source with
improved conductivity; (ii) they hold the metal nanoparticles; (iii) they possess higher
surface area and (iv) they should have better stability under operating conditions. In this
chapter, the various supporting materials were reviewed carefully based on their nature
and performance toward the electrochemical reduction of oxygen for PEMFCs. They are
classified into three major categories as (i) carbon supports; (ii) carbon-free supports,
and (iii) polymer nanocomposites. In summary, the overall view on support materials
and their role on electrocatalysis for fuel cell reactions is provided.

Keywords: oxygen reduction reaction, carbon supports, graphene, clay minerals,
metal oxides, support-free catalysts

1. Introduction

In order to move toward a sustainable existence in our extreme energy-dependent society,

there is a convincing need to adopt environmentally sustainable methods for energy produc-

tion, storage, and conversion [1]. A significant task is being placed to produce power without

damaging our ecological system. The fossil fuels such as coal and petroleum products are

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



nonrenewable, and burning of these fuels increases the level of pollution and leads to global

warming. Nowadays, many eco-friendly alternatives are explored as possible renewable

energy sources such as solar, wind, tidal, and hydrothermal power but can be availed only at

a particular climatic season. Till date, the internal combustion engines (ICEs) are used as major

energy source to meet the global energy demand in wide range of applications [2]. ICEs are

involved in the conversion of heat energy to mechanical energy and further used to generate

the electrical energy, and this combustion process emits harmful greenhouse gases such as

carbon dioxide (CO2), carbon monoxide (CO), etc. The limited availability of fossil fuels and

emission of pollutant gases propel the search of alternative and sustainable clean energy

sources [1–3].

Among the various alternative energy sources, fuel cell is the most reliable choice with efficient

energy conversion technology which converts chemical energy into an electrical energy

through electrochemical reactions namely anodic oxidation and cathodic reduction reactions.

Fuel cells are clean energy conversion device, where the oxidant and reductant are continu-

ously supplied to produce electricity, unlike primary batteries that contain pre-packed chemi-

cal components. Fuel cells can provide long-term solutions as sustainable and efficient energy

conversion devices with minimum or zero emission of greenhouse gases [4]. Significant envi-

ronmental benefits are expected on fuel cells, particularly for automobile sector and power

generation for stationary and portable applications.

Basically, fuel cell is an electrochemical cell, which continuously converts the chemical energy

of a fuel and an oxidant to electrical energy in an electrode-electrolyte system, designed for

continuous feeding of reactants at a high temperature in the presence of an electrocatalyst to

catalyze the oxidation and reduction reactions [5].

(i) Hydrogen at the anode undergoes oxidation to form protons as shown below.

H2 ! 2Hþ
þ 2e� Eo

¼ 0:000 V vs:RHE (1)

(ii) Oxygen at the cathode undergoes reduction to from water as given below [6].

O2 þ 4Hþ
þ 4e� ! 2H2O Eo

¼ 1:299 V vs:RHE (2)

Generally, pure hydrogen, methanol, ethanol, etc., can be taken as a fuel that can be oxidized at

the anode, while the oxygen or air is taken as the oxidant and get reduced at the cathode. Here,

the oxygen reduction reaction (ORR) has sluggish reaction kinetics due to a complex multistep

reaction mechanism, which can be catalyzed by electrocatalysts. Electrocatalysts are mostly the

metal nanoparticles embedded or decorated over the supporting materials, which provide

uniform dispersion to the metal nanoparticles, stability by physical intact, higher surface area,

and good electron/proton conductivity that helps to construct three phase boundary. This

chapter deals about the role and importance of advanced supporting materials such as various

kind of carbon materials, noncarbonaceous supports like inorganic materials, and conductive

polymeric supports for cathodic oxygen reduction in polymer electrolyte membrane fuel cells

(PEMFCs).
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2. Types of fuel cells

Fuel cells are classified in many ways as direct and indirect fuel cells based on operating

temperature, the state of matter of the elements of the fuel cell, and the type of electrolyte used.

As shown in Figure 1, the fuel cells are classified based on their operating temperature such as

low-temperature fuel cells and high-temperature fuel cells. Proton exchange membrane fuel cell

(PEMFC), direct methanol fuel cell (DMFC), and alkaline fuel cell (AFC) are placed under the

category of low-temperature fuel cells.

Solid oxide fuel cell (SOFC), molten carbonate fuel cell (MCFC), and phosphoric acid fuel cell

(PAFC) are placed under the category of high-temperature fuel cells. Among this classification,

PEMFCs are more attractive and reliable than other fuel cells due to the wide range of application,

Figure 1. Schematic representation of various types of fuel cells with anodic and cathodic feeds and the corresponding

electrolyte charge carriers and byproducts.
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high efficiency, and near zero emission of pollutants, and it could be a basic system for DMFC and

AFC. The alkaline or acidic solutions are used as electrolytes in fuel cells called mobile electrolyte

system. If the electrolyte is soaked up in a porous material such as asbestos, it is called as an

immobile electrolyte system or matrix system [5–8].

3. Proton exchange membrane fuel cell (PEMFC)

The proton exchange membrane fuel cell also known as the polymer electrolyte membrane fuel

cell works at typically less than 100�C with special polymer electrolyte membranes. This lower

temperature fuel cell is the preferred choice for transportation vehicles, portable applications

like hand held devices because of its quick start-up, low operating temperature, and excellent

energy efficiency. The electrolyte in this fuel cell is an ion exchange membrane—perfluorinated

sulfonic acid polymer—commercially sold as Nafion, a good proton-conducting ionomer

[5, 9]. The only byproduct in this fuel cell is water, and the water management in the PEMFC

is critical for efficient performance. The fuel cell must operate under conditions where the

byproduct water does not evaporate faster than it is produced, because the membrane should

be kept under hydrated conditions.

Figure 2 shows the schematic representation of cross sectional view of PEMFC. The low

operation temperature of PEMFC requires active electrocatalysts such as Pt. The hydrogen

oxidation reaction (HOR) is relatively facile and requires low Pt loading of ca. 0.05 mg/cm2

[10]. However, the oxygen reduction is sluggish, and the rate of ORR is most critical at the

Figure 2. Cross-sectional view of polymer electrolyte membrane fuel cell.
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cathode and requires more active element like platinum (Pt). Typically, the carbon-supported

Pt nanoparticles (Pt/C) having ~2–3 nm size and high Pt surface area (~100 m2/g) is ideal to

enhance the reaction rate. Although the use of Pt/C is preferred compared to other catalysts

due to the acid resistant property of Pt, corrosion of carbon support and the loss of expensive

electrocatalyst push the research community to find the other alternative solutions in terms of

advanced supporting materials to increase the activity by higher surface area and life time of

Pt, Pt-M alloy, and non-n Pt catalysts without compromising the fuel cell efficiency [11].

Among the fuel cells, PEMFCs have got huge attention due to

a. high energy conversion efficiency,

b. low operating temperature (around 100�C),

c. quick startup,

d. almost zero emission of pollutants with water as the only byproduct, and

e. can be used for automobile applications because of its portability and easy to operation.

Although PEMFC has many advantages as stated above, the wide spread usage and commer-

cialization are not realized due to the kinetically sluggish cathodic reduction of oxygen. The two

major electrochemical reactions occur in PEMFC, whereas hydrogen oxidation at anode is intrin-

sically faster than cathodic oxygen reduction on catalyst surface, because the OdO bond disso-

ciation energy (494 kJ/mol) in O2 molecule is higher than HdH (433 kJ/mol) [12, 13]. The ORR is

a complex multistep reaction involving many electron transfer process with the formation of

different intermediates depending on the pH of the electrolyte. In PEMFC, the ORR mechanism

can proceed by two different reaction pathways. They are: (i) direct four electron transfer leading

to water formation as the only byproduct and (ii) two electron transfer mechanism leading to the

formation of H2O2 intermediate which again undergoes reduction in a series of electron transfer

steps to form water. The reduction of the molecular oxygen in aqueous acid electrolyte solutions

in PEMFC (particularly in sulfuric or perchloric acid medium) is assumed to proceed through

either of the two major pathways as shown below [11, 14].

(i) The direct 4-electron transfer reduction reaction to H2O.

O2 þ 4Hþ
þ 4e� ! 2H2O E

�

¼ 1:299 V vs:RHE (3)

(ii) The parallel 2-electron transfer reduction reaction to form H2O2.

O2 þ 2Hþ
þ 2e� ! H2O2 E

�

¼ 0:700 V vs:RHE (4)

H2O2 þ 2Hþ
þ 2e� ! 2H2O E

�

¼ 1:760 V vs:RHE (5)

where E� is the thermodynamic standard electrode potential at 298.25 K and 1 atm. In 2-electron

transfer pathway, two possible products are formed either the reaction stops with the production

of H2O2 as an intermediate or it is further reduced by another 2-electron transfer to produce
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H2O as the final product. The extent of reduction reaction appears to depend on the chosen

catalyst material; thus, it confirms the role of the electrocatalyst on overall efficiency of fuel cell,

which includes the choice of catalyst and its supportingmaterial. The 4-electron route is the most

favored reaction pathway, since it produces a high voltage for a H2-O2 PEM fuel cell. For better

performance and efficiency, fuel cell requires the sufficient three phase boundary (fuel cell reactions

occurs in electrode-electrolyte interface) in membrane electrode assembly, which consists of

reactant gas molecule, electron conduction over solid catalyst surface (either metal or nonmetal

nanomaterials with supports), and proton conduction through polymer electrolyte (conducting

polymeric materials) [15, 16]. It seems that the catalyst, catalyst supports, and the conducting

polymers are playing a key role in acceleration of kinetics of fuel cell reaction, peculiarly for

cathodic dioxygen reduction.

4. Catalyst supports

Catalysts are supported on high surface area materials which are playing a major role to

increase electrochemically active surface area of electrocatalysts by providing uniform disper-

sion and accessibility of active sites for fuel cell reactions. The electrocatalyst with active

surface area must be intact directly with electronic and ionic conducting materials, and hence,

it is named as three phase boundary [16]. The major role of supporting materials is (i) to act as

electron source with improved conductivity; (ii) to hold the metal nanoparticles (physical

interaction); (iii) to possess higher surface area; (iv) to provide better stability; (v) to provide

porosity; and (vi) to have higher corrosion resistance under fuel cell operating conditions

[17, 18]. Many forms of carbonaceous materials are available, which vary based on its struc-

ture, conductivity, thermal stability, surface area, etc., which include the preparation procedure

with different physiochemical approaches [19]. Even though, some certain number of carbon

materials have got huge attention for various applications in wide range of fields such as

sensor, medicine, and especially for energy materials.

5. Carbon supports

Carbon materials are widely employed catalyst support for energy applications, and its

multidimensional structure provides high electrical conductivity and surface area with greater

chemical and electrochemical stability. Carbon supports are the major choice of catalyst sup-

port for fuel cell reactions in both anode and cathode electrocatalysts to conduct electrons

and heat in [20, 21]. A common choice of carbon support material is Vulcan Carbon XC-72

(VC, BET specific surface area 254 m2/g), due to low cost, high-specific surface area, adhesion

properties with catalyst particles and distribution, better interaction with the polymer, and

high conductivity [21–23]. It has noticeable disadvantages such as carbon corrosion owing to

its surface oxidation to produce CO2 during fuel cell operation and results in dissolution of Pt

nanoparticles from the carbon support leading to low Pt utilization and less performance [24].
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Carbon corrosion is one of the key factors inducing cathode electrocatalyst (Pt/C) degradation

in PEM fuel cells. It is electrochemical oxidation and thus needs to be investigated in situ with

potential imposed because the ORR occurs at potentials closer to those where oxidation of

carbon can also happen [25]. Carbon is not thermodynamically stable at higher potentials in

the fuel cell environment, which is problematic for long-time durability of the electrocatalysts.

Carbon corrosion depends on the operating temperature, high potentials (above 0.5 V vs.

RHE), low pH, and high humidity. During oxidation, the major product formed is CO2 with

trace amounts of CO [24–26].

Typically, the electrochemical oxidation reaction of carbon takes place as follows [23–25],

Cþ 2H2O ! CO2 þ 4Hþ
þ 4e� E

�

¼ 0:207 V vs:RHE (6)

CþH2O ! COþ 2Hþ
þ 2e� E

�

¼ 0:518 V vs:RHE (7)

Carbon monoxide (CO) is thermodynamically unstable and therefore slowly converted to CO2.

COþH2O ! CO2 þ 2Hþ
þ 2e� E

�

¼ �0:103 V vs:RHE (8)

Pt is also found to catalyze the carbon oxidation [23]. Under fuel cell operating conditions,

the corrosion rate is significant, leading to large voltage degradation, and further, the CO

formed deactivates the Pt catalysts. Several reports reveal that the corrosion of carbon

support reduces the integrity of the catalyst layer and enhances Pt dissolution [25–28].

Figure 3 shows the TEM images (Figure 3a and b) of Pt/C captured before and after the

durability test, and Figure 3c depicts the same as a schematic representation [29]. Wang

et al. have reported the effect of carbon support corrosion on the stability of Pt/C using two

different carbon support materials such as Vulcan carbon XC-72 (VC) and Black Pearls 2000

(BP-2000). They have concluded that the decrease in ECSA of Pt embedded carbon support

materials reveals the loss of Pt nanoparticles during the accelerated durability test due to

surface oxidation of carbon supports.

Among these conventional carbon supports, carbon nanotubes and graphene derivatives

have got huge attention and employed as major catalyst supports for fuel cell applications

due to its excellent physiochemical properties. Carbon nanotubes (CNTs) are the family of

carbon allotropes consist of sp2 hybridized carbons bonded in a hexagonal lattice arrange-

ment [30]. They are described as cylindrical hollow natured materials formed by the rolling

of single or multi layers of graphene sheets called single-walled carbon nanotubes (SWCNTs)

and multi-walled carbon nanotubes (MWCNTs), respectively. SWCNTs and MWCNTs are

typically 0.8–2 nm and 5–20 nm of diameters, respectively, while MWCNT can exceed 100 nm

of diameters. The lengths of CNTs range from less than 100 nm to several centimeters and are

considered to be one dimensional (1D) structure [31, 32]. CNTs are possessing good elec-

tronic conductivity, thermal conductivity, and mechanical stability than conventional carbon

supports. In recent days, surface functionalized CNTs [32–35], N, S, B, and halogens-doped

CNTs [36, 37] and hybrid CNTs [37, 38] were prepared and employed as catalyst support for

ORR in PEMFC.
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An exceptionally outstanding performance was derived from the new carbon supporting

material for ORR namely graphene, an iconic carbon form in the history of material sciences.

It is a single-layer sp2 bonded carbon with 2-dimensional (2D) honeycomb structure. It exhibits

high crystalline nature, and electronic conductivity explores a new looks to the carbon chem-

istry especially for energy applications [37–39]. Generally, the physiochemical properties of the

graphene materials are related to its synthesis approach and surface treatment. It is a building

block of all graphitic materials when it wrapped into 0-dimensional fullerene, 1-dimensional

carbon nanotubes, and 3-dimensional graphite. The physical properties of graphene can be

defined through preparation method. Especially, the porosity of graphene may be either

mesoporous or microporous, and hence, it is one of the critical properties which contribute to

accelerate the kinetics of electrochemical reactions in PEMFC. Usually, the carbon supports are

the prime choice as catalyst support for cathodic ORR in PEMFC providing high surface area

and conductivity, whereas the surface oxidation of carbon supports suppresses the perfor-

mance of catalyst through surface masking, leading to poor ORR kinetics. The physical prop-

erties such as porosity, specific surface area, and conductivity of various carbon supports are

summarized in Table 1.

Figure 3. Carbon support corrosion during potential cycling on Pt/C lead catalyst dissolution and agglomeration

observed from same location TEM images (a and b) [34]; (c) schematic representation.
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6. Carbon-free catalyst supports

In general, carbon-free supports are mostly inorganic metal oxides, and other mineral oxides

possess better corrosion resistance, improved interaction with metal nanoparticles, and stable

morphology. However, these materials are poor in electrical conductivity, and low porosity

leads to less specific surface area than highly porous supporting materials. The major inorganic

additives are metal oxides (SiO2, TiO2, CeO2, etc., [40, 41]), some of the carbides (WC, VC, etc.,

[42, 43]), and layered silicate materials such as clay minerals [44, 45], which are increasingly

used as catalyst supports for PEM fuel cells. Clay minerals belong to a subtype of

phyllosilicates with characteristic layered structures. Two basic layered structural units are

important in the formation of the clay-structured materials: the tetrahedral structure formed

by silicon and oxygen atoms and the octahedral structure formed by aluminum/magnesium

and oxygen atoms. The tetrahedral units are linked through their corners, forming a tetrahe-

dral sheet, whereas the octahedral units are edge-linked, resulting in an octahedral sheet. The

structural framework of the clay platelets is basically composed of these two kinds of sheets

joined together to form layers.

Layered silicates are clay minerals built of two structural units. The simplest form of clay

minerals is the 1:1 structure (e.g. kaolinite) where a silica tetrahedral sheet is fused to an

aluminum octahedron, sharing the oxygen atoms. However, commonly employed layered

silicates for the preparation of polymer nanocomposites, such as montmorillonite (MMT),

belong to the family of 2:1 phyllosilicates, more specifically smectites [46]. Their crystal struc-

ture consists of stacked layers made of two silica tetrahedrons fused to an edge-shared octahe-

dral sheet of alumina. The layer thickness is approximately 1 nm, and the adjacent layers are

separated by a regular van der Waals gap called the interlayer or gallery. Clay layers carry

negative charges due to the replacement of some Si4+ ions in the tetrahedral sheets or some

Al3+ or Mg2+ ions in the octahedral sheets. To compensate the negative charges created, cations

(Na+ or Ca2+) are usually present in the interlayer domain. When clays are dispersed in

aqueous solution, these charge-compensating cations can be exchanged and replaced by others

present in the bulk solution. Although smectite types of clays have substantial importance in

Name of the material Nature of porosity Specific surface

area (m2/g)

Electrical conductivity

(S/cm)

Ref. no.

Vulcan carbon Micro porous 254 4.0 [20]

Carbon black Micro porous 475 1.4 [20]

Carbon nanotube

Single-walled carbon nanotube Micro porous 400–900 102–106 [34]

Multi-walled carbon nanotube Mesoporous 200–400 103–105 [34]

Graphite Meso-/microporous 10–20 2–3 � 104 [35]

Graphene 1500 ~2000 [35]

Table 1. Various carbon materials and their physical properties.
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multidisciplinary applications, they require surface modification by covalent functionalization

to improve the dispersing ability in aqueous or organic media [46–48].

Like naturally occurring clay minerals, synthetic clay also employed as catalyst support for

cathodic oxygen reduction in PEM fuel cells. Amino propyl functionalized Mg-phyllosilicate clay

employed as catalyst support for ORR in PEMFC [49, 50]. The amino groups of synthetic clay hold

metal nanoparticles by physical interaction and increase the stability of the catalyst than conven-

tional carbon supports. In Figure 4, the layered structure of aminoclay is schematically presented.

The structure of aminoclay contains 2:1 Mg-phyllosilicate layer with surface functionalized

arm-like amino propyl groups. Hence, the amino groups can hold the metal nanoparticles and

provides uniform distribution for the preparation of polymer nanocomposite membranes.

7. Polymer nanocomposites

The proton conducting membranes are inserted between the anodic and cathodic compart-

ments to prevent mixing of reactants and to conduct protons formed due to the oxidation of

hydrogen at the anodic compartment to cathodic side. The polymer electrolyte membrane

should possess high proton conductivity, low fuel permeability, good thermal stability, and

better film forming ability, and more importantly, it should be of low cost and should have

high durability. Under fuel cell-operating conditions, it should have sufficient water uptake

and moderate swelling, excellent electrochemical stability in an aggressive environment like

Figure 4. Schematic representation of amino propyl functionalized Mg-phyllosilicate clay.
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low or high pH solutions, and good mechanical strength, i.e., significant stability in structure

and morphology [15]. Nafion is a perfluorinated ionomer containing hydrophobic polytetra-

fluoroethylene (PTFE) backbone with pendant-like side chains of perfluorinated vinyl ethers

terminated by perfluorosulfonic acid groups as shown in Figure 5.

Nafion has many key properties such as thermal, mechanical, and chemical stability and, most

importantly, high water-saturated proton conductivities during long-term fuel cell operation.

Teflon-like PTFE backbone provides the long-term durability during the oxidative and reductive

fuel-cell operating conditions [9]. But the drawbacks of Nafion membrane include low conductiv-

ity under low humidification, poor performance at elevated temperatures (above 90�C), and high

cost. Therefore, in order to improve the properties of Nafion under fuel cell working conditions,

some nanoscale additives are usually added to obtain Nafion nanocomposites [17, 51, 52]. There-

fore, an extensive research has been attempted by many researchers to synthesize novel polymer

nanocomposite materials by blending with suitable polymers and organic/inorganic additives

with improved physicochemical properties. Many conducting polymers were used such as poly

(aniline), poly(ethylene oxide), poly(styrene), poly(vinyl alcohol), poly(propylene), poly(vinylpyr-

rolidone), and poly(3,4-ethylenedioxythiophene), etc., along with Nafion to form polymer blends.

In polymer nanocomposites, inorganic additives such as quaternary ammonium salts, SiO2, TiO2,

WO2, etc. [40, 41, 52, 53] and layered silicate minerals such as clay minerals [50] are used as fillers

Figure 5. Chemical structure and pictorial representation of Nafion ionomer with hydrophilic clusters and hydrophobic

backbone units.
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and used as catalyst supports for energy applications. Aminoclay/Nafion nanocomposite mem-

branes were prepared through sol–gel approach with embedded Pt nanoparticles by simple

chemical reduction method. The electrocatalytic performance and durability of Pt nanoparticles–

embedded Aminoclay/Nafion toward ORR were studied for PEMFC [49, 50].

In electrochemical processes, the electron transfer between solid-liquid interfaces is the ele-

mentary step, and the interfacial properties such as conductivity, surface area, etc. have signif-

icant influence on electron transfer [54]. In contact with electrolytic solution, electrodes

(catalyst materials) can act as a source or a sink for electrons to change the electroactive species

according to classical voltammetry. The nature of the electrode surface can alter the efficiency

of the electron-transfer process and mass-transport regime. Therefore, it is extremely impor-

tant to obtain the desired electrochemical properties at the interface between the electrode and

the electrolytic solution by modifying the electrode surface. In conventional electrochemical

cells, bulk Pt was employed as electrocatalyst to catalyze the fuel cell reactions and thus have

disadvantage of low surface area and poor utilization [54–56]. Later on, the nanosized electro-

catalysts got more attention especially in energy applications due to their unique physical and

chemical properties. Nanomaterials show size, shape, and composition-dependent properties,

and a single material can show a wide range of properties and applications depending on the

size [57–59]. As the dimensions of a particle decrease, the surface-area/volume ratio drastically

increases. When this ratio is large, the low-coordinate atoms on the particle surface predomi-

nate and dominate the particle properties called as surface effects. Surface effects make the

properties of nanoparticles different from those of the corresponding bulk materials [56, 60–

62]. Thus, the surface activity can be further enhanced by the proper choice of supporting

materials, which meet the requirements to provide three phase boundary for electrochemical

reactions in fuel cells.

8. Conclusion

In conclusion, catalyst-supporting materials are playing a crucial role for improving the overall

efficiency by enhancing the activity and stability for PEMFCs. The major requirements of prom-

ising supporting materials for fuel cell catalysis are high surface area, good electrical conductiv-

ity, porosity, and better stability under fuel cell operating conditions. Carbon supports are widely

used supporting materials for ORR in PEMFC. Due to the surface oxidation, conventional

carbon supports diminish the activity of catalysts under fuel cell operating conditions. In order

to overcome these issues without compromising the performance of catalysts, novel carbon

materials such as CNT, graphene and its derivatives, noncarbon supports, and conducting poly-

mers are used as catalyst supports for ORR. Hence, the overall efficiency and performance of the

fuel cell are laid on nature of the catalysts and their supporting materials, which can provide

sufficient triple phase boundary, where the reactant gas molecule undergoes electrochemical reac-

tion over the catalyst surface. The result of this study describes the development of novel

nanostructured catalysts with hybrid supporting materials is still en route to attain better fuel

cell performance and efficiency, which make the technology as commercially viable.

Proton Exchange Membrane Fuel Cell196



Author details

Narayanamoorthy Bhuvanendran

Address all correspondence to: sainaren86@yahoo.in

Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa

Mahavidyalaya (SCSVMV University), Kanchipuram, Tamil Nadu, India

References

[1] Serrano E, Rus G, Martinez JG. Nanotechnology for sustainable energy. Renewable and

Sustainable Energy Reviews. 2009;13:2373-2384. DOI: 10.1016/j.rser.2009.06.003

[2] Wagner FT, Lakshmanan B, Mathias MF. Electrochemistry and the future of the automo-

bile. Journal of Physical Chemistry Letters. 2010;1:2204-2219. DOI: 10.1021/jz100553m

[3] Dresselhaus MS, Thomas IL. Alternative energy technologies. Nature. 2001;414:332-337.

DOI: 10.1038/35104599

[4] Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature.

2012;486:43-51. DOI: 10.1038/nature11115

[5] Carrette L, Friedrich KA, Stimming U. Fuel cells-fundamentals and applications. Fuel

Cells. 2001;1:5-39. DOI: 10.1002/1615-6854(200105)1

[6] Steel BCH, Heinzel A. Materials for fuel-cell technologies. Nature. 2001;414:345-352. DOI:

10.1038/35104620

[7] Haile SM. Fuel cell materials and components. Acta Materialia. 2003;51:5981-6000. DOI:

10.1016/S1369-7021(03)00331-6

[8] Kordesch K, Simader G. Fuel Cells and their Applications. New York: VCH Publishers;

1996. DOI: 10.1002/352760653X

[9] Mauritz KA, Moore RB. State of understanding of Nafion. Chemical Reviews. 2004;104:

4535-4585. DOI: 10.1021/cr0207123

[10] Urgeghe C. Oxygen Evolution and Oxygen Reduction in Electrochemical Energy Con-

version, [Thesis]. France: Universita degli Studi di Ferrara;

[11] Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN. Oxygen reduction reaction on Pt

and Pt bimetallic surfaces: A selective review. Fuel Cells. 2001;1:105-116. DOI: 10.1002/

1615-6854(200107)1

[12] Wee JH. Applications of proton exchange membrane fuel cell systems. Renewable and

Sustainable Energy Reviews. 2007;1(11):1720-1738. DOI: 10.1016/j.rser.2006.01.005

Advanced Supporting Materials for Polymer Electrolyte Membrane Fuel Cells
http://dx.doi.org/10.5772/intechopen.71314

197



[13] Gottesfeld S. Electrocatalysis of oxygen reduction in polymer electrolyte fuel cells: A brief

history and a critical examination of present theory and diagnostics, fuel cell catalysis. In:

Koper MTM, editor. USA: John Wiley & Sons, Inc.; 2009. DOI: 10.1002/9780470463772.ch1

[14] Song C, Zhang J. Electrocatalytic oxygen reduction reaction, in PEM fuel cell electrocatalysts

and catalyst layers. In: Zhang J, editor. Springer; 2008. DOI: 10.1007/978-1-84800-936-3_2

[15] Zaidi SMJ. Research trends in polymer electrolyte membranes for PEMFC. In: Zaidi SMJ,

Matsuura T, editors. Springer, LLC; 2009. DOI: 10.1007/978-0-387-73532-0

[16] Antolini E, Gonzalez ER. Polymer supports for low-temperature fuel cell catalysts.

Applied Catalysis A. 2009;365:1-19. DOI: 10.1016/j.apcata.2009.05.045

[17] Smitha B, Sridhar S, Khan AA. Solid polymer electrolyte membranes for fuel cell appli-

cations—A review. Journal of Membrane Science. 2005;259:10-26. DOI: 10.1016/j.memsci.

2005.01.035

[18] Ozdemir SS, Buonomenna MG, Drioli E. Catalytic polymeric membranes: Preparation and

application. Applied Catalysis A. 2006;307:167-183. DOI: 10.1016/j.apcata.2006.03.058

[19] Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte

membrane fuel cells: Technology, applications, and needs on fundamental research.

Applied Energy. 2011;88:981-1007. DOI: 10.1016/j.apenergy.2010.09.030

[20] Antolini E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis. B,

Environmental. 2004;88:1-24. DOI: 10.1016/j.apcatb.2008.09.030

[21] Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G.

Nanostructured carbon for energy storage and conversion. Nano Energy. 2012;1:195-220.

DOI: 10.1016/j.nanoen.2011.11.006

[22] Ferreira PJ, la O’GJ, Horn YS, Morgan D,Makharia R, Kocha S, Gasteiger HA. Instability of

Pt/C electrocatalysts in proton exchange membrane fuel cells—Amechanistic investigation.

Journal of the Electrochemical Society. 2005;152:A2256-AA227. DOI: 10.1149/1.2050347

[23] Wang J, Yin G, Shao Y, Zhang S, Wang Z, Gao Y. Effect of carbon black support corrosion

on the durability of Pt/C catalyst. Journal of Power Sources. 2007;171:331-339. DOI:

10.1016/j.jpowsour.2007.06.084

[24] Xu F, Wang M, Liu Q, Sun H, Simonson S, Ogbeifun N, Stach EA, Xie J. Investigation of

the carbon corrosion process for polymer electrolyte fuel cells using a rotating disk

electrode technique. Journal of the Electrochemical Society. 2010;157:B1138-B1145. DOI:

10.1149/1.3484621

[25] Young A, Colbow V, Harvey D, Rogers E, Wessel S. A semi-empirical two step carbon

corrosion reaction model in PEM fuel cells. Journal of the Electrochemical Society.

2013;160:F381-F388. DOI: 10.1149/2.061304jes

[26] Meier JC, Galeano C, Katsounaros I, Topalov AA, Kostka A, Schuth F, Mayrhofer KJJ.

Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions.

ACS Catalysis. 2012;2:832-843. DOI: 10.1021/cs300024h

Proton Exchange Membrane Fuel Cell198



[27] Shao Y, Yin G, Gao Y. Understanding and approaches for the durability issues of Pt-

based catalysts for PEM fuel cell. Journal of Power Sources. 2007;171:558-566. DOI:

10.1016/j.jpowsour.2007.07.004

[28] Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA. PEM fuel cell electrocatalyst

durability measurements. Journal of Power Sources. 2006;163:76-81. DOI: 10.1016/j.

jpowsour. 2006.03.009

[29] Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer. 2008;49:

3187-3204. DOI: 10.1016/j.polymer.2008.04.017

[30] Dresselhaus MS, Dresselhaus G, Jorio A. Unusual properties and structure of carbon

nanotubes. Annual Review of Materials Research. 2004;34:247-278. DOI: 10.1146/annurev.

matsci.34.040203.114607

[31] Miners SA, Rance GA, Khlobystov AN. Chemical reactions confined within carbon

nanotubes. Chemical Society Reviews. 2016;45:4727-4746. DOI: 10.1039/C6CS00090H

[32] Nie H, Cui M, Russell TP. A route to rapid carbon nanotube growth. Chemical Commu-

nications. 2013;49:5159-5161. DOI: 10.1039/C3CC41746H

[33] Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M,

Hanifehpour Y, Joo SW. Carbon nanotubes: Properties, synthesis, purification, and medical

applications. Nanoscale Research Letters. 2014;9:393-402. DOI: 10.1186/1556-276X-9-393

[34] Mallakpour S, Soltanian S. Surface functionalization of carbon nanotubes: Fabrication

and applications. RSC Advances. 2016;6:109916-109935. DOI: 10.1039/C6RA24522F

[35] Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical

energy storage. Nature Materials. 2015;14:271-279. DOI: 10.1038/nmat4170

[36] Ayalaa P, Rubiod A, Rummeli M, Rubio A, Pichler T. The doping of carbon nanotubes

with nitrogen and their potential applications. Carbon. 2010;48:575-586. DOI: 10.1016/j.

carbon.2009.10.009

[37] Panchakarla LS, Govindaraj A, Rao CNR. Boron-and nitrogen-doped carbon nanotubes

and graphene. Inorganica Chimica Acta. 2010;363:4163-4174. DOI: 10.1016/j.ica.2010.07.057

[38] Liu Y, Kumar S. Polymer/carbon nanotube nano composite fibers–A review. ACS

Applied Materials & Interfaces. 2014;6:6069-6087. DOI: 10.1021/am405136s

[39] Liu YL. Effective approaches for the preparation of organo-modified multi-walled carbon

nanotubes and the corresponding MWCNT/polymer nanocomposites. Polymer Journal.

2016;48:351-358. DOI: 10.1038/pj.2015.132

[40] Tripathi BP, Shahi VK. Organic-inorganic nanocomposite polymer electrolyte mem-

branes for fuel cell applications. Progress in Polymer Science. 2011;36:945-979. DOI:

10.1016/j.progpolymsci.2010.12.005

[41] Jalani NH, Dunn K, Datta R. Synthesis and characterization of Nafion-MO2 (M= Zr, Si, Ti)

nanocomposite membranes for higher temperature PEM fuel cells. Electrochimica Acta.

2005;51:553-560. DOI: 10.1016/j.electacta.2005.05.016

Advanced Supporting Materials for Polymer Electrolyte Membrane Fuel Cells
http://dx.doi.org/10.5772/intechopen.71314

199



[42] Liu Y, Kelly TG, Chen JG, Mustain WE. Metal carbides as alternative electrocatalyst

supports. ACS Catalysis. 2013;3:1184-1194. DOI: 10.1021/cs4001249

[43] Calvillo L, Valero-Vidal C, Agnoli S, Sezen H, Rudiger C, Kunze-Liebhauser J, Granozzi G.

Combined photoemission spectroscopy and electrochemical study of a mixture of (oxy)

carbides as potential innovative supports and electrocatalysts. ACS Applied Materials &

Interfaces. 2016;8:19418-19427. DOI: 10.1021/acsami.6b04414

[44] Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer. 2008;49:

3187-3204

[45] Bitinis N, Hernandez M, Verdejo R, Kenny JM, Manchado MAL. Recent advances in clay/

polymer nanocomposites. Advanced Materials. 2011;23:5229-5236. DOI: 10.1002/adma.

201101948

[46] Datta KKR. Investigations on clay hybrids and carbon based nanostructures [Ph.D. the-

sis]. India: Jawaharlal Nehru Centre for Advanced Scientific Research; 2011

[47] Kickelbick G. Hybrid Materials: Synthesis, Characterization and Applications. Wiley-

VCH; 2006 978-3-527-31299-3

[48] Lebeau B, Brendle J, Marichal C, Patil AJ, Muthusamy E, Mann S. One-step synthesis and

solvent-induced exfoliation of hybrid organic-inorganic phyllosilicate-like materials.

Journal of Nanoscience and Nanotechnology. 2006;6:352-359. DOI: 10.1166/jnn.2006.910

[49] Narayanamoorthy B, Datta KKR, Eswaramoorthy M, Balaji S. Improved oxygen reduc-

tion reaction catalyzed by Pt/clay/Nafion nanocomposite for PEM fuel cells. ACS Applied

Materials & Interfaces. 2012;4:3620-3626. DOI: 10.1021/am300697q

[50] Narayanamoorthy B, Datta KKR, Balaji S. Kinetics and mechanism of electrochemical

oxygen reduction using Pt/clay/Nafion catalyst layer for polymer electrolyte membrane

fuel cells. Journal of Colloid and Interface Science. 2012;387:213-220. DOI: 10.1016/j.

jcis.2012.08.002

[51] Moilanen DE, Piletic IR, Fayer MD. Tracking water’s response to structural changes

in nafion membranes. The Journal of Physical Chemistry. A. 2006;110:9084-9088. DOI:

10.1021/jp0623084

[52] Ozdemir SS, Buonomenna MG, Drioli E. Catalytic polymeric membranes: Preparation and

application. Applied Catalysis A. 2006;307:167-183. DOI: 10.1016/j.apcata.2006.03.058

[53] Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE. Alternative polymer systems

for proton exchange membranes (PEMs). Chemical Reviews. 2004;104:4587-4612. DOI:

10.1021/cr020711a

[54] Raimondi F, Scherer GG, Kotz R, Wokaun A. Nanoparticles in energy technology: Exam-

ples from electrochemistry and catalysis. Angewandte Chemie, International Edition.

2005;44:2190-2209. DOI: 10.1002/anie.200460466

Proton Exchange Membrane Fuel Cell200



[55] Chen A, Holt-Hindle P. Platinum-based nanostructured materials: Synthesis, properties,

and applications. Chemical Reviews. 2010;110:3767-3804. DOI: 10.1021/cr9003902

[56] Whitesides GM. Nanoscience, nanotechnology and chemistry. Small. 2005;1:172-179.

DOI: 10.1002/smll.200400130

[57] Chen J, Lim B, Lee EP, Xia Y. Shape-controlled synthesis of platinum nanocrystals for

catalytic and electrocatalytic applications. Nano Today. 2009;4:81-95. DOI: 10.1016/j.

nantod.2008.09.002

[58] Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small.

2008;4:310-325. DOI: 10.1002/smll.200701295

[59] Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction.

Angewandte Chemie, International Edition. 2013;52:8526-8544. DOI: 10.1002/anie.201207186

[60] Gilliam RJ, Kirk DW, Thorpe SJ. Influence of structural, microstructural and electrical

properties on electrocatalytic performance at the nanoscale. Electrocatalysis. 2011;2:1-19.

DOI: 10.1007/s12678-011-0038-1

[61] Zhou X, Gan Y, Du J, Tian D, Zhang R, Yang C, Dai Z. A review of hollow Pt-based

nanocatalysts applied in proton exchange membrane fuel cells. Journal of Power Sources.

2013;232:310-322. DOI: 10.1016/j.jpowsour.2013.01.062

[62] Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG. Nanomaterials of high surface energy with

exceptional properties in catalysis and energy storage. Chemical Society Reviews.

2011;40:4167-4185. DOI: 10.1039/C0CS00176G

Advanced Supporting Materials for Polymer Electrolyte Membrane Fuel Cells
http://dx.doi.org/10.5772/intechopen.71314

201




