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1. Introduction  
 

In a bioprocess it is desired to produce high amounts of biomass or metabolites such as 
vitamins, antibiotics, and ethanol, among others. The measurement of biological parameters 
as the cell, by-product concentrations and the specific growth rate are essential to the 
successful monitoring and control of bioprocesses (Horiuchi & Kishimoto, 1998). Adequate 
control of the fermentation process reduces production costs and increases the yield while at 
the same time achieve the quality of the desired product (Yamuna & Ramachandra, 1999). 
Nevertheless, the lack of cheap and reliable sensors providing online measurements of the 
biological state variables has hampered the application of automatic control to bioprocesses 
(Bastin & Dochain, 1990). This situation encourages the searching of new software sensors in 
bioprocesses. 
A state observer is used to reconstruct, at least partially the state variables of the process. 
Two classes of state observers or software sensors for (bio)chemical processes can be found 
in the literature (Dochain, 2003). A first class of observers called asymptotic observers, is 
based on the idea that the uncertainty in bioprocess models is located in the process kinetics 
models. A second class is based on the perfect knowledge of the model structure 
(Luenberger, Kalman observers and nonlinear observers). Different applications of state 
observers in bioprocess are reported in the literature (Cazzador & Lubenova, 1995; Farza et 
al., 2000; Guay & Zhang, 2002; Lubenova et al., 2003; Oliveira et al., 2002; Soh & Cao, 1999; 
Veloso et al., 2007). 
Fuzzy logic has become popular in the recent years, due to the fact that it is possible to add 
human expertise to the process. Nevertheless, in the case where the nonlinear model and all 
the parameters of a process are known, a fuzzy system may be used. A first approach can be 
done using the Takagi-Sugeno fuzzy model (Takagi & Sugeno, 1985), where the consequent 
part of the fuzzy rule is replaced by linear systems. This can be attained, for example, by 
linearizing the model around operational points, getting local linear representation of the 
nonlinear system.  
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Another way to obtain a model can be achieved using the method of sector nonlinearities, 
which allows the construction of an exact fuzzy model from the original nonlinear system 
by means of linear subsystems (Tanaka & Wang, 2001). From this exact model, fuzzy state 
observers and fuzzy controllers may be designed based on the linear subsystems. Different 
fuzzy logic applications to bioprocesses can be found in the scientific literature (Genovesi et 
al., 1999, Ascencio et al., 2004; Karakazu et al., 2006). In this chapter a Takagi-Sugeno fuzzy 
observer based on sector nonlinearities is proposed and applied to a continuous nonlinear 
baker’s yeast fermentation process. The observer gains are calculated using linear matrix 
inequalities. An interesting feature of this model is that it can be divided in two models: a 
respiro-fermentative (RF) model with ethanol production and a respirative (R) model with 
ethanol consumption. The model can switch to the RF –R- RF model depending on whether 
the yeasts are producing or consuming ethanol.  

 
2. Fuzzy Systems Preliminaries 
 

A nonlinear system may be represented by linear subsystems called Takagi-Sugeno, (figure 
1). The Takagi-Sugeno fuzzy models are used to represent nonlinear dynamics by means of 
a set of IF-THEN rules. The consequent parts of the rules are local linear systems obtained 
from specific information about the original nonlinear plant.  
 

 
Fig. 1 Takagi-Sugeno representation for a nonlinear system 

 
The ith rule of a continuous fuzzy model has the following form: 
Model Rule i: 
If z1(t) is φi1 and … and zp(t) is φip. 
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where φij is a fuzzy set and r is the number of rules in the fuzzy model; x(t)∈ℜn is the state 
vector, u(t)∈ℜm is the input vector, y(t)∈ℜq is the output vector, Ai∈ℜnxm, Bi∈ℜnxm, and 
Ci∈ℜqxn are suitable matrices, and z(t)=[z1(t),…,zp(t)] is a known vector of premise variables 
which may coincide or  partially depend on the state x(t). 
Given a pair of (x(t), u(t)) and using a  singleton fuzzifier, product inference and center of 
gravity defuzzifier, the aggregated Takagi-Sugeno fuzzy model can be inferred as:  
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for all t. The term φij(zj(t)) is the membership value of zj(t) in φij. Since      
   

( )( ) ( )( )ϕ ϕ
= ==

∑Π ≥ Π > =
1 11

  0    0,     1,..., ,
p pr

i j j i j j
j ji

z t and z t i r  

=
∑≥ = =

1
 ( ( )) 0     ( ( )) 1,      1,... ,

r

ii i
i

h z t and h z t  r  

(4) 

 
for all t.  
 

2.1 Sector Nonlinearity 

A nonlinear system may also be represented by sectors (Tanaka & Wang, 2001). Consider a 
nonlinear system given by ( ) ( ( ))x t f x t=&  where f(0) = 0. A global sector is found when 

( )x t& =f(x(t))∈[s1 s2]x(t), where s1x(t) and s2x(t) are lines as shown in figure 2. A global sector 

guarantees an exact fuzzy representation for the nonlinear model. Some times it is difficult 
to find global sectors, in that case it is possible to find a local sector bounded by the region            
-a< x(t) < a, as shown in figure 3. 

www.intechopen.com



New Developments in Robotics, Automation and Control 

 

158 

                            
      Fig. 2 Global sector                    Fig. 3 Local sector 

 
2.2 Fuzzy Observer 

The state of a system is not always fully available, so it is necessary to use an observer to 
reconstruct, at least partially the states variables of the process. This requires to satisfy the 
condition 
 

( )ˆlim ( ) ( ) 0
0

x t x t  
t

− =
→

 (5) 

 
where ˆ( )x t  denotes the state vector estimated by the fuzzy observer. There are two cases for 

fuzzy observers design depending on whether or not z(t) depends on the state variables 
estimated by a fuzzy observer (Tanaka & Wang, 2001). Given the Takagi-Sugeno fuzzy 
model (1), the ith rule of a continuous fuzzy observer can be constructed as: 
Observer Rule i 
   If z1(t) is φi1 and … and zp(t) is φip. 
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where Ki is the observer gain and ( )ŷ t  is the fuzzy observer output for the ith subsystem. If 

z(t) depends on the estimated state variables, the observer consequent part takes the 
following form: 
 

{ }
1

ˆ ˆ ˆ ˆ( ( )) ( ) ( ) ( ( ) ( )) ,
   

ˆ ˆ ˆ( ) ( ( )) ( ).                                           

r

i i i i

i

i i

x h z t A x t B u t K y t y t
THEN

y t h z t C x t
=

⎧
⎪ = + + −∑
⎨
⎪ =⎩

&
 (7) 

 
It is possible to calculate the observer gains from the solution X, Ni of the following 
inequalities (Tanaka & Wang, 2001). 
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where Ai  is the state matrix and Ci is the output matrix. The decay rate (α) is related with the 
observer speed response. The inequalities (8) can be converted to linear matrix inequalities 
by means of Shur’s complement (Braatz & VanAntwerp, 2000). The condition i < j  s.t. hi ∩ hj 

≠ Ø means that inequalities (8) holds for all i < j excepting hiz(t)⋅hjz(t)=0 for all z(t). The 
observer gain Ki and the common positive definite matrix P can be obtained by means of 
 

P = X-1,    Ki = X-1Ni. (9) 

 
The fermentative mathematical model will now be described. 

 
3. Fermentation Mathematical Model 
 

The Saccharomyces cerevisiae yeast may grow on glucose following three metabolic pathways 
(Sonnleitner & Käpelli, 1986).  
1.- Oxidative growth on glucose, in presence of oxygen (O2) the glucose (S) is consumed to 
produce biomass (X) and carbon dioxide (CO2). 
 

                                       
2 2

o
sS O X CO

μ
+ +⎯⎯→  (10) 

 
2.- Fermentative growth on glucose, in absence of oxygen the substrate is used to produce 
biomass, carbon dioxide and mainly ethanol (E). 

 

                                       
2

r
sS X CO E

μ
+ +⎯⎯→  (11) 

 
3.- Oxidative growth on Ethanol, the ethanol produced by the fermentative pathway may 
be consumed in presence of oxygen producing biomass and carbon dioxide. 
 

                                       
μ

+ +⎯⎯→2 2

o
eE O X CO  (12) 

 
3.1 The Respiro-Fermentative and Respirative Fermentation Models 

A continuous baker’s yeast culture can be represented by the following set of differential 
equations 
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 (13) 

 
where the variables of model (13) are shown in table 1.  
 

Variables Units 
x1 = Biomass concentration g/l 
x2 = Glucose concentration g/l 
x3 = Ethanol concentration g/l 

x4 = Dissolved oxygen concentration mgl 
D = Dilution rate 1/h 

Sin = Substrate concentration feed g/l 
OTR=KLa(Csat - x4) = Oxygen transfer rate mg/lh 

μ o

s
 = Specific growth rate (oxidative growth on glucose) 1/h 

μ r

s
 = Specific growth rate (fermentative growth on glucose) 1/h 

μ o

e
 = Specific growth rate (oxidative growth on ethanol) 1/h 

k1, k2, k3, k4, k5, k6 = yield coefficients  
Table 1. Variables used in the baker’s yeast model (13) 

 
The oxygen transfer rate is given by OTR =KLa(Csat - x4) which may be split in two terms, one 
that is constant and another one that depend on the dissolved oxygen. 
 

-KLax4 (14) 

 KLaCsat, (15) 

 
Pormeleau (1990) suggested a reformulation of model (13) using two partial models: a 
respiro-fermentative partial model (RF) with ethanol production and a respirative partial 
model (R) with ethanol consumption. With this reformulation a split process model is 
obtained, switching from the RF partial model to the R partial model and vice versa 
depending on whether the system is consuming or producing ethanol. To precise these 
ideas, consider a nonlinear system described by model (16-17), which can be written as 
 

                                       ( ) ( ( )) ( ) ,          1, 2ix t f x t Bu t d i= + + =&  (16) 

                                       ( ) ( ( ))y t h x t= , (17) 
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where fi(x(t)) describe both the RF and R partial models, namely 
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and for the R model  
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The input vector and the manipulated variable are given by   
 

B = [0, D, 0, 0]T, (20) 

 
                                                          u(t)=Sin (21) 

 
where T is the input vector transpose. As already said, OTR rate was divided in two terms, 
the first one -KLax4 (14) was included in fRF (18) and fR matrices (19); the second term KLaCsat 

(15), is taken as a known and constant perturbation (d) given by 
 

d = [0, 0, 0, KLaCsat]T           (22) 

 
In the RF partial model, the metabolic pathways oxidative growth on glucose (10) and 
fermentative growth on glucose (11) are present, therefore ethanol is produced. The specific 
growth rates for the RF partial model are given by: 
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K x
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Y q q
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 (23) 

 
In the R partial model, the pathway oxidative growth on glucose (10) is also present; 
however, the specific growth rate is now given by: 
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The oxidative growth on ethanol (12) for the R partial model depends on, 
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 (27) 

 
The RF and R models cannot be enabled at the same time. A condition for the transition 
between the RF–R-RF partial models is given by (Ferreira, 1995) 
 

RF → R  if μ ≤ 0
r

s
 

R → RF  if μ ≤ 0
o

e
 

(28) 

 
The parameters values and the initial conditions for the RF and R partial models are given in 
table 2; a complete description of all parameters can be found in (Ferreira, 1995). The 
manipulated variable u(t)=Sin was set as a square signal as can be seen in figure 4. 
 

Parameter Value Parameter Value 

max
sq          3.5  gS/gX·h k1-1         0.49   gX / gS 

max
eq          0.236  gE / gX·h k2-1         0.05  gX / gS 

max
oq          0.256  gO2/ g X·h k3-1         0.1     gX / gE 

Ki         0.1  g/l k4-1         0.72   gX / gE 
Ko         0.0001  g/l k5-1         1.2   gX / gO2 
Csat         7.0  mg/l k6-1         0.64   gX / gO2 
Sin         10  g/l x1(0)          0.1  g/l 
Ke         0.1  g/l x2(0)          0.02  g/l 
Ks         0.2  g/l x3(0)          0.15  g/l 
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Parameter Value Parameter Value 

KLa         100  1/h x4(0)          0.0066  mg/l 
D         0.2  1/h   

Table 2. Parameters values used in model (13) 

 

 
Fig. 4 Input square signal for the baker’s yeast model 

 
4. The Takagi-Sugeno Fuzzy Exact Model 
 

When the nonlinear dynamic model for the baker’s yeast is known, as well as all their 
parameters, a fuzzy exact model can be derived from the given nonlinear model. This 
requires a sector nonlinearity approach (Tanaka & Wang, 2001).  
 

4.1 The Respiro-Fermentative Fuzzy Exact Model 

To construct the RF exact fuzzy model we need to express the RF partial model as a 
nonlinear system (16-17). 
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3 4( ) ( ( )) ( ( ))y t h x t h x t= +  (30) 

 
Substituting the specific rates (23) in the fRF(x(t)) matrix from model (29), we obtain the 
matrix given by (31), for convenience called scheme fRF_I  

www.intechopen.com



New Developments in Robotics, Automation and Control 

 

164 

scheme fRF_I 

max max max2

2

max max max2
1 2 2

4

4

2

_

max max2
3 3

max
5

2

2

24

4

4

4

4

4
2

2

2

2

0 0 0

0 0

0 0

0 0

s

s

s

O
r rO c c s

o

O
r rO c c s

o
RF I

O
r rc s

o

oo

O

o

o
c L

Y
Y q Y q Y q D

Y

Y
k Y q k Y q k

x

K x

x

K x

x

K x

Y q D
Y

f
Y

k Y q k

x

K x

x

K

Y q D
Y

k Y q D K

x

x

K x

x

K x
a

− + −

− + − −

+

+

+

+

=

+

+

+
− + −

− − −

⎡ ⎛ ⎞
⎢ ⎜ ⎟
⎝ ⎠⎢

⎛ ⎞⎢
⎜ ⎟⎢
⎝ ⎠⎢
⎢
⎢
⎢
⎢
⎣

1

2

3

4

x

x

x

x

⎤
⎥
⎥
⎥ ⎡ ⎤
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎣ ⎦⎥
⎥
⎥

⎢ ⎥⎦

 
(31) 

 
However; the matrix fRF(x(t)) may also be written as: 
 
Scheme fRF_II 
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or as 
 
Scheme fRF_III 
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(33) 

 
Although there are another possible combinations to write the fRF(x(t)) matrix, with these 
approaches we obtain enough information to precise our point. From scheme fRF_I (31) two 
nonlinearities can be detected  
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from scheme fRF_II (32) also two different nonlinearities can be observed 
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 and from scheme fRF_III (33) three nonlinearities are present  
 

4

4
1

o

x

K
NL

x+
= ;           1

2
3

s

x

K
NL

x+
= ;            1

4
4

x

K
NL

o x+
=  (36) 

 
Although with each matrix given by (31-33) the exact fuzzy model can be built, it will take 
four linear subsystems (22) for the scheme fRF_I and scheme fRF_II and eight linear subsystems 
(23) for scheme fRF_III. For convenience the nonlinearities (35) and the scheme fRF_II (32) are 
chosen to build the RF exact fuzzy model, the reason will be evident in the next section 

where the fuzzy observer is constructed. The premise variable 
1

( )
RF

z t  is defined as 

 

1 4

4

4

;        ( )    1   
o

o

RF
NL z t for

x

K
x K

x
= = ≠ −

+
 (37) 

 
From equation (37) the maximum and minimum values of 

1
( )

RF
z t  can be obtained. In figure 5 

the plot of (37) can be observed.  
 

 
Fig. 5 Plot for the premise variable

1
( )

RF
z t  
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The maximum and minimum values of 
1

( )
RF

z t  in the range x4(t) ∈ [0, 0.007] are given by 

  

( )1
4

1max  0.9859
( )

z t a
x t

= =           ( )
21

4

min  0
( )

az t
x t

= =  (38) 

 
we define the premise variable 

2
( )

RF
z t  as: 

 

= ≠
+

= 1

2 2
2

;         ( )    -3
R

s

F
NL z t for x

x

K x
Ks  (39) 

 
From equation (39) the maximum and minimum values of 

2
( )

RF
z t  can be obtained, as shown 

in figure 6,  
 

 
Fig. 6 Plot for the premise variable 

2
( )

RF
z t  

 
The maximum and minimum values of 

2
( )

RF
z t  in the range  x1(t) ∈ [0, 10] and x2(t) ∈ [0, 1]  

are given by  
 

( )2
1 2

1max 50
( ) ( )

z t
x t x t

b= =         ( )2
1 2

2min 0
( ) ( )

bz t
x t x t

= =  (40) 

 
The membership functions are built from these equations 
 

( ) ( )( )ϕ
=
∑=
2

1 1 1
1

RF RF

i
i

iz t z t a ;                       

( )( )ϕ
=
∑=
2

2 2 2
1

( )
RF RF

j
j

j
z t z bt  

(41) 

 
where the following properties must hold 
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( )( ) ( )( )ϕ ϕ+ =11 1 12 1 1
RF RF

z t z t  

( )( ) ( )( )ϕ ϕ+ =21 2 22 2 1
RF RF

z t z t  
(42) 

 
Solving equations (41 and 42) the following membership functions are obtained 
 

( )( ) ( )
ϕ

−
=

−1

1
2

2

1
11

z t a

a
t

a
z   ( )( ) ( )

ϕ
− +

=
−

1 1
1

2

1

1

2

a
t

a

t
z

a

z
 

( )( ) ( )
ϕ

−
=

−1

2
2

2

2
21

z t b

b
t

b
z   ( )( ) ( )

ϕ
− +

=
−

2 1
2

2

2

1

2

b
t

b

t
z

b

z
 

(43) 

 
Substituting the maximum and minimum values a1, a2, b1 and b2 in (32) we obtain 4 possible 
combinations to express the linear subsystems. 
 

max max max2

2

1
max max max2

1 2 2 22

3

max max2 4
3 3

max
5 2

0 0

0 0

0

0 0

, 1, 2

O
r j

j

j

rO c c s

o

O
r rRF O c c s

ij

i

o

O
r rc s

o

iO

i

Lc

i

Y
Y q Y q D Y q

Y
xY

k Y q k Y q k Y q D x
A Y

x
Y x

k Y q k Y q D

b

b

a

Y

k Y q D K a

i

a

j

a b

a

− −

− + − −
=

− −

− − −

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎡ ⎤⎛ ⎞⎢ ⎥
⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥
⎣ ⎦

 (44) 

 
The fuzzy rules for the RF partial model are stated as: 
 
 If z1(t) is “φ11(z1(t))” and z2(t) is “φ21(z2(t))”   
    THEN 

11 11( ) ( ) ( )    = + +&RF RFx t A x t Bu t d  

 
 If z1(t) is “φ11(z1(t))” and z2(t) is “φ22(z2(t))”   
    THEN 

12 12( ) ( ) ( )    = + +&RF RFx t A x t Bu t d  

 
 If z1(t) is “ φ12(z1(t))” and z2(t) is “φ 21(z2(t))”   
    THEN 

21 21( ) ( ) ( )    = + +&RF RFx t A x t Bu t d  

 
 If z1(t) is “φ12(z1(t))” and z2(t) is “φ22(z2(t))”   
    THEN 

22 22( ) ( ) ( )    = + +&RF RFx t A x t Bu t d  
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The aggregated model for the RF partial model is given by 
 

( ) ( )( ) ( )( ) ( ) ( ){ }
( )( ) ( )( )

ϕ ϕ

ϕ ϕ

= =

= =

∑ ∑= + +

∑ ∑= =

&
2 2

1 1 2 2
1 1

2 2

1 1 2 2
1 1

( ) ( ),                  , 1, 2.

RF RF

i j ij
i j

RF

i j
i J

x t z t z t A x t Bu t d

y t z t z t Cx t i j

 (45) 

 
4.2 The Respirative Fuzzy Exact Model 

The R partial exact model can also be built following the procedure described in section 4.1. 
We must be aware that the R model must be split in two models called Rqe1 and Rqe2. As in 
schemes (31-33) several possibilities may be formulated to build the R model, therefore a 
possibility to express the fR(x(t)) matrix (fRqe1 and  fRqe2) can be written as: 
 
Scheme fRqe1_I 

 

3

3 2

3

3 2

max max

max
1

1

2
1

max 3
4

4

max

1

2

1

3

3 2

max
6 5

2

1

2

( )( )
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0 0 0
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(

ie e o s

o s

Rqe

ie e

e i

e i

e

i Lo

s

si
e e s

s
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K x K x
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Y q K D Y q
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k Y q D

x
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x
k Y q K D

x

k Y q K k Y q D K a

K x K x

x

K x

x

K x K

x

xx

K

x

K

−

− −

− −

+

− − −

+ +

+ +

+ + +
−

+

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

 
(46) 

 
Scheme fRqe2_I 

 

max max max

2 2

2

max
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c

Y
Y q D Y q Y q

Y

k Y q D

f
Y

k Y q k Y q D
Y

Y
k Y

x

q k Y

K x

x

q k Y q D

x

K x

x

K x
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x

K x

x
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K x

− −

− −
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− −

− − +

+

+

+

+

+
−

+

+

−

⎡ ⎛ ⎞
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⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎣

1

2

3

4

x

x

x

x

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

 

(47) 

 
To construct the exact model for the R partial model we must use the nonlinearities from 
models (46-47). For model 46 we have that the first nonlinearity is given by   
 

3
3 2

31

3
2

;        ( )  
( )( )

  -     -5  
Rqe

e

e

i

i

NL z t for x K and x K
x

K x K x+ +
= = ≠ ≠  (48) 
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where the maximum and minimum values are given by 
 

( )
2 3

13max 9.8039
( ) ( )

z ct
x t x t

= =         ( )
2 3

23min 0.1
( ) ( )

z t
x t x t

c= =  (49) 

 
The remaining nonlinearities from models (46) and (47) were the same already described by 
(37) and (39). The linear subsystems for the Rqe1 model can be obtained from 
 

max max

max
1

max1
4

max max
6 5

0 0

0 0 0

0 0

0

            j 1, 2

ie e o s

o s

qe
ie e

ie e o s

k

j

j

j

k

k

Y q K D Y q
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AR k Y q K D
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ck Y q K D
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k Y q

b

k

b

−

− −
=

− −

− − −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (50) 

 
and 
 

max max max

2 2

2

max max2
4 42 2

2

max max max
6 5 62 2

2
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YAR k Y q k Y q D
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a

a

b

b

b

b
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a

− −

− −

=
− −

− − + −

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 
(51) 

 
A general model to obtain the rules for the Rqe1 and Rqe2 partial models is expressed as 
 
for Rqe1 
 If z1(t) is “φ1i(z1(t))”  and  z3(t)  is “φ3k(z3(t))”  ))”   

   THEN 
1 1
( ) ( ) ( ) ;     1, 2

Rqe Rqe

jkx t A x t Bu t d jk= + + =&  

and for Rqe2 
 If  z1(t) is “φ1i(z1(t))”  and  z2(t) is “φ2j(z2(t))”   

   THEN 
2 2
( ) ( ) ( ) ;      1, 2

Rqe Rqe

ijx t A x t Bu t d ij= + + =&  

 
Finally the aggregated model for the Rqe1 and Rqe2 partial models is expressed as: 
for Rqe1 
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( ) ( )( ) ( )( ) ( ) ( ){ }
( )( ) ( )( )

ϕ ϕ

ϕ ϕ

= =

= =

∑ ∑= + +

∑ ∑= =

&
2 21 1

1 1 3 3
1 1

2 21
1 1 3 3

1 1
( ) ( ),                     j , 1 , 2.

Rqe Rqe

j k jk
j k

Rqe

j k
j k

x t z t z t A x t Bu t d

y t z t z t Cx t k

 (52) 

 
and for Rqe2 

 

( ) ( )( ) ( )( ) ( ) ( ){ }
( )( ) ( )( )

ϕ ϕ

ϕ ϕ

= =

= =

∑ ∑= + +

∑ ∑= =

&
2 22 2

1 1 2 2
1 1

2 22
1 1 2 2

1 1
( ) ( ),                  , 1, 2.

Rqe Rqe

i j ij
i j

Rqe

i j
i j

x t z t z t A x t Bu t d

y t z t z t Cx t i j

 (53) 

 
Although the premise variables for the partial models RF and Rqe2 were the same (37) and 
(39), they have different behaviors as they are multiplied by different yield coefficients. The 
aggregated models (45) and (52-53) represents exactly the nonlinear system (13) in the 
region 

x1(t) ∈ [0, 10],  x2(t) ∈ [0, 1], x3(t) ∈ [0, 5] and  x4(t) ∈ [0, 0.007] 
 

A condition for the transition between the RF–R-RF partial models is given by (28).  

 
5. Fuzzy Observer 
 

Now that an exact fuzzy model for the nonlinear baker’s yeast partial model has been 
obtained, a fuzzy observer can now be designed. First of all we have to test the observability 
matrix for the obtained linear subsystems. A linear system is said to be observable if for any 
unknown initial state x(0) there exist a finite t1>0 such as the knowledge of the input u and 
the output y over [0, t1] suffices to determine uniquely the initial state x(0). Otherwise the 
equation is unobservable (Chen, 1999). The pair (A,C) is observable if and only if the 
observability matrix 
 

О = [ C  CA  CA2, …,CAn-1 ]T = n, (54) 

 
has full rank (ρ(O) = n) i.e. is nonsingular. 
In section 4.1 we remark that the fuzzy exact model for the RF model may be built from 
three schemes (among many others) namely fRF_I  (31), fRF_II  (32) and fRF_III (33).  If we build 
the fuzzy exact model for each scheme (31-33) and we test the observability matrix for these 
linear subsystems; for example (44), we should find that (table 3) 
 

Schemes observability rank for C=[0 0 1 1] 
 fRF_I     3     3     3     3 
 fRF_II    4     4     4     3 
 fRF_III     4  4  4  4  4  3  4  3 

Table 3. Observability matrix for schemes (31-33) 
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From table 3 we may notice that no full rank is achieved for fRF_I, therefore a full observer 
cannot be built for this scheme. For schemes fRF_II and fRF_III almost full rank is achieved in 
every linear subsystem; however, for scheme fRF_III it will take eight linear subsystems to 
build the fuzzy exact model, while for scheme fRF_II only four linear subsystems will be 
needed. To avoid build complicated linear systems, scheme fRF_II was chosen to construct the 
Exact fuzzy observer. Therefore before constructing a fuzzy exact model for an observer or a 
controller, it will be advisable to analyze the way the premise variables are chosen to avoid 
lack of observability or controllability. 
  
The following assumptions were made to build the fuzzy observer: 

H1. The nominal values of the yield coefficients k1, - k6 are constant and known. 
H2. The ethanol, the dissolved oxygen concentration and the OTR are known. 

The procedure to build the exact fuzzy observer is the same that was followed for the fuzzy 
exact model, although some considerations must be taken into account. An important 
consideration is related with the scheme (32) where the premise variable (39) will depend on 
the estimated state x1 and x2, therefore the premise variable must be modified to: 
 

2
2 2

1
ˆ

;         ˆ ˆ( )   
ˆ

 -
RF

s

z t for x
x

K
K

x
s=

+
≠  (55) 

 
The same situation applies to the premise variable of model (46) 
 

1

2
3 2

3

3
3

;     ˆ( )   
ˆ( )( )

 -     -    
Rqe

e

e i

i

z t fo
x

K x
r x K and K

K x
x= ≠

+
≠

+
 (56) 

 
The premise variable (37) remains unchanged. To guarantee full observability rank (table 4) 
the minimum values of the premise variables are modified to 
 

( ) ( ) ( )1 2 3
4 1 2 2

2
3

2 2m in  m in m in 0.1
( ) ( ) ( ) ( ) ( )

z t z t z t
x t x t x t x t

b ca
x t

= = = = = =  (57) 

 

Schemes Linear subsystems observability rank 

fRF_II 4     4     4     4 

fRqe1_I 4     4     4     4 

fRqe2_I 4     4     4     4 

Table 4 Observability matrix for the linear subsystems (44, 50-51) 

 
The membership functions are built as before; nevertheless, for (54-55) we have 
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The linear subsystems given by (44), (50-51) are used to built the fuzzy observer. A general 
rule to obtain all the fuzzy rules for the RF, Rqe1 and Rqe2 partial models are given by:  
 
for RF 

 If 1
ˆ ( )z t  is “φ1i(z1(t))” and z2(t)  is “φ2j(z2(t))”   

                      THEN ( ) ( ) ( ) ( )( )= + + − + =& ;     ˆ ˆ ˆ( ) 1, 2
L

RF RF RF sat

ij ijx t A x t Bu t K y t y t K aC j  

 
for Rqe1 

 If 1
ˆ ( )z t  is “φ1j(z1(t))” and 3

ˆ ( )z t  is “φ3k(z3(t))”   

                      THEN ( ) ( ) ( ) ( )( )= + + − + =&
1 1 1

;  ˆ ˆ ˆ( )   1, 2  
L

Rqe Rqe Rqe sat

jk jkx t A x t Bu t K y t y t K aC jk  

for Rqe2 

               If 1
ˆ ( )z t  is “φ1i(z1(t))” and z2(t)  is “φ2j(z2(t))”   

                      THEN  ( ) ( ) ( ) ( )( )= + + − + =&
2 2 2

;   ˆ ˆ ˆ( )  1, 2 
L

Rqe Rqe Rqe sat

ij ijx t A x t Bu t K y t y t K aC ij  

 
The aggregated fuzzy observers for the RF, Rqe1 and Rqe2 partial models are given by 
 
for RF 
 

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( ){ }
( )( ) ( )( )

ϕ ϕ

ϕ ϕ

= =

= =

∑ ∑= + + − +
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i j ij ij L
i j
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i j
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y t z t z t Cx t i j

  (59) 

 
for Rqe1 
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for Rqe2 
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(58) 

www.intechopen.com



Takagi-Sugeno Fuzzy Observer for a Switching Bioprocess: Sector Nonlinearity Approach 

 

173 

( )( ) ( )( ) ( ) ( ) ( ) ( )( ){ }
( )( ) ( )( )
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i j

Rqe

i j
i j

x t z t z t A x t Bu t K y t y t K aC
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  (61) 

 
5.1 Fuzzy Observer Simulation 

The application of the proposed observer scheme was simulated using MATLABTM. The 
fuzzy observers were tested using the continuous RF and the R baker’s yeast partial models 
given above. The inlet substrate concentration was varied between 3 g/l and 10 g/l in order 
to force the switching between the partial models. The partial models parameters were 
given in table 2. The decay rate (α) was set to zero. The estimated variables were the 
biomass and the substrate, each observed variable was tested with three different initial 
conditions 1, 3 and 4 g/l for biomass, and 0.01, 0.03 and 0.06 g/l for substrate. The behavior 
of the fuzzy observer for biomass estimation is shown in figure 7. The observer converges 
around the 20 hours of fermentation elapsed time, almost in the Rqe2 partial model. It can be 
noticed the dynamics of the baker’s yeast switching through the RF, Rqe1 and Rqe2 partial 
models. The observer substrate converges around the 15 hours of fermentation elapsed time 
(figure 8), therefore the substrate dynamics is faster than the biomass. The observer gains 
are displayed in table 5 and were calculated from the inequalities (8) through Linear Matrix 
Inequalities. 
 

 

Fig. 7 Biomass observer performance with α = 0 and 1ˆ (0)x = 1, 3 and 4 g/l. 

 

 

Fig. 8 Substrate observer performance with α = 0 and 
2

ˆ (0)x = 0.01, 0.03 and 0.06 g/l. 
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Table 5. Observer gains, with α = 0. 

 
Common positive definite matrices that guarantees global asymptotic stability (Tanaka & 
Wang, 2001), were found for each partial model, namely 

-4 -4 -4 -4

-4 -4 -4 -4

-4 -4 -4 -4

-4 -4 -4 -4

2.4375 10 -1.7425 10 -1.7842 10 1.7363 10

-1.7425 10 9.6041 10 -3.3103 10 3.2221 10

-1.7842 10 -3.3103 10 3.9367 10 -3.8324 10

1.7363 10 3.2221 10 -3.8324 10 3.9792 10

RFP

× × × ×

× × × ×
=

× × × ×

× × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,     

 

-5 -4 -6 -6

-4 -4 -6 -6

-6 -6 -6 -61

-6 -6 -6 -6

5.7188 10 -1.1189 10 -2.0528 10 1.9285 10

-1.1189 10 2.313 10 -1.0663 10 1.192 10
,

-2.0528 10 -1.0663 10 3.8217 10 -3.7426 10

1.9285 10 1.192 10 -3.7426 10 7.6266 10

RqeP

× × × ×

× × × ×
=

× × × ×

× × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

-4 -4 -6 -6

-4 -4 -4 -4

-6 -4 -4 -42

-6 -4 -4 -4

1.0333 -2.0491 -1.5395 1.4853

-2.0491 7.8655 -2.4702 2.4119

-1.5395 -2.4702 1.7446 -1.7037

1.4853 2.4119 -1.7037 1.8174

RqeP

×10 ×10 ×10 ×10

×10 ×10 ×10 ×10
=

×10 ×10 ×10 ×10

×10 ×10 ×10 ×10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢⎣ ⎦

⎥
⎥

 

 
To improve the observer performance the decay rate ratio (α) was set to 0.3. The behavior of 
the fuzzy observer for biomass estimation is shown in figure 9. The observer converges in 
about 6 hours of fermentation elapsed time, now within the RF state. The observer substrate 
converges around the 5 hours of fermentation elapsed time (figure 10). The observer gains 
for α = 0.3 are displayed in table 6 and were calculated using the inequalities given by (8). 

Gain x1 x2 x3 x4 

K1_RF -1309.8 2019.2 409.79 -498.19 
K2_ RF -707.7 -1299.2 1553.5 -1611.5 
K3_ RF -1304.4 2015.3 405.83 -494.33 
K4_ RF -702.28 -1303.1 1549.6 -1607.6 
K1_Rqe1 1937.1 -4136.6 113.86 -213.31 
K2_ Rqe1 1945.6 -4153.3 113.56 -213.03 
K3_ Rqe1 -58.432 -11.52 94.846 -192.06 
K4_ Rqe1 -49.883 -28.246 94.539 -191.77 
K1_Rqe2 -845.59 1626.8 109 -205.81 
K2_ Rqe2 -12.963 -1569.3 1112.7 -1185.8 
K3_ Rqe2 -842.39 1620.4 108.95 -205.76 
K4_ Rqe2 -9.761 -1575.6 1112.7 -1185.8 
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Fig. 9 Biomass observer performance with α = 0.3 and 1ˆ (0)x = 1, 3 and 4 g/l. 

 

 
Fig. 10 Substrate observer performance with α = 0 and 

2
ˆ (0)x = 0.01, 0.03 and 0.06 g/l. 

 
Gain x1 x2 x3 x4 

K1_RF -45325 10803 1898.6 -1944.6 
K2_ RF -15713 -270.57 2674.9 -2707.9 
K3_ RF -43990 10667 1784.5 -1833.4 
K4_ RF -14378 -406.29 2560.8 -2596.7 
K1_Rqe1 -84248 -5319.8 1619.2 -1647.6 
K2_ Rqe1 -66998 -5161.4 1320.5 -1362.6 
K3_ Rqe1 -65489 -714.01 1220 -1262.5 
K4_ Rqe1 -48239 -555.65 921.3 -977.46 
K1_Rqe2 -41344 5226.6 3786.8 -3783.1 
K2_ Rqe2 -24341 1700.4 2765.6 -2790.6 
K3_ Rqe2 -40157 5110.9 3684.8 -3683.8 
K4_ Rqe2 -23155 1584.6 2663.5 -2691.3 

Table 6. Observer gains, with α = 0.3. 
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Common positive definite matrices that guarantees global asymptotic stability (Tanaka & 
Wang, 2001), were found for each partial model, namely 
 

         
-4 -5 -5 -5

-5 -5 -6 -6

-5 -6 -5 -5RF

-5 -6 -5 -5

1.6199×10 -3.8358×10 -3.5281×10 3.44×10

-3.8358×10 1.936×10 4.2418×10 -4.1297 ×10
P = ;

-3.5281×10 4.2418×10 1.094×10 -1.067 ×10

3.44×10 -4.1297 ×10 -1.067 ×10 1.0781×10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

-3 -5 -5 -5

-5 -5 -6 -6

-5 -6 -6 -61

-5 -6 -6 -6

1.0525 10 1.6867 10 -4.4263 10 4.2217 10

1.6867 10 2.4884 10 -1.3321 10 1.3043 10

-4.4263 10 -1.3321 10 2.0592 10 -1.9649 10

4.2217 10 1.3043 10 -1.9649 10 2.3272 10

RqeP

× × × ×

× × × ×
=

× × × ×

× × × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

;    

-3 -4 -4 -4

-4 -4 -5 -5

-4 -5 -5 -52

-4 -5 -5 -5

1.7858 10 -3.6232 10 -3.4184 10 3.3329 10

-3.6232 10 0.00019792 10 2.6424 10 -2.5682 10

-3.4184 10 2.6424 10 9.4507 10 -9.218 10

3.3329 10 -2.5682 10 -9.218 10 9.4605 10

RqeP

× × × ×

× × × ×
=

× × × ×

× × × ×

⎡ ⎤
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥

 

 
From (58, 59 and 60) an exact fuzzy observer for a nonlinear baker’s yeast model was 
designed. The fuzzy estimator had a satisfactory behavior. A different approach to construct 
a fuzzy observer using the whole term OTR=KLa(Csat-x4) as a known and constant 
perturbation was reported in (Herrera, 2007a). In this case a partial observer was 
constructed due that full rank in the observability matrix could not be achieved.  

 
6. The Fuzzy Exact Model, (u(t)=D). 
 

The construction of the fuzzy exact model for a continuous baker’s yeast fermentation can 
become quite complex when the output of the system is given by u(t)=D, for example for the 
RF partial model 
 

μ μ

μ μ

μ

μ

⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦− −⎢ ⎥⎣ ⎦

&

&

&

&

_ _1 1 1

2 2 21 _ 2 _

3 3 3
3 _

4 4 4

5 _

0 0 0 0

0 0 0 0

00 0 0
1

0 0

o r
s RF s RF

o r
sats RF s RF

Lr
s RF

o
Ls RF

x x x

k kx x x Sin
D K aC

x x xk
x x x

k K a

 (62) 

 
In this case the input matrix is not constant anymore, depending now on the variables x1, x2, 
x3, x4. So we define the new premise variable as 
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1 21 2 3 3 4 4( ) ,       ( ) ,   ( ) ,       ( ) ,  x x x xz t x z t x z t x z t x= = = =    (63) 

 
The new premise variables may be written as 
 

( )( ) ( )
ϕ

−
=

−

1 2
41 1

1 2

x

x
d

z t d
z t

d
  ( )( ) ( )

ϕ
− +

=
−

1 1
42 1

1 2

x

x
d

z t d
z t

d
 

( )( ) ( )
ϕ

−
=

−

2 2
51 2

1 2

x

x

z t e
z t

e e
  ( )( ) ( )

ϕ
− +

=
−

2 1
52 2

1 2

x

x

z t e
z t

e e
 

( )( ) ( )
ϕ

−
=

−

3 2
61 3

1 2

x

x

z t f
z t

f f
  ( )( ) ( )

ϕ
− +

=
−

3 1
62 3

1 2

x

x

z t f
z t

f f
 

( )( ) ( )
ϕ

−
=

−

4 2
71 4

1 2

x

x

z t g
z t

g g
  ( )( ) ( )

ϕ
− +

=
−

4 1
72 4

1 2

x

x

z t b
z t

b b
 

(64) 

 
where the maximum and minimum values of (63) are displayed in table 7. 
 

Premise variable maximum minimum 
zx1(t) d1 = 10 d2 = 0 
zx2(t) e1 = 1 e2 = 0 
zx3(t) f1 = 5 f2 = 0 
zx4(t) g1 = 0.007 g2 = 0 

Table 7. Maximum and minimum values for zx1(t), zx2(t), zx3(t) and zx4(t) 

 
The input matrix can now be written as 
 

[ ],  ,  ,  
T

lmno l m in n o
B d e S f g= − − + − −    (65) 

 
The other premise variables are still given by (37) and (39). A general rule to construct all the 
fuzzy rules can be stated as 
 
If z1(t) is “φ1i(z1(t))” and z2(t) is “φ2j(z2(t))” and zx1(t) is “φ4l(z2(t))” and zx2(t) is “φ5m(z2(t))” and 
zx3(t) is “φ6n(z2(t))” and zx4(t) is “φ7o(z2(t))”    
 

   THEN ( ) ( ) ( ) ;     1, 2= + + =&RF RF

ijlmno ijlmnox t A x t B u t d ijlmno  

 
It must be remarked that 64 subsystems would be needed to construct the RF partial model. 
Finally the aggregated fuzzy system for the RF partial model is given by 
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{ }64

_
1

64

_
1

( ) ( ( )) ( ) ( )

( ) ( ( )) ( ),                             1, 2.

RF RF RF

RF ijlmno ijlmno

RF

RF

x t h z t A x t B u t d

y t h z t Cx t ijlmno

ψ

ψ

∑= + +

∑= =

&

 (66) 

 
where 
 

ψ ψ

ψ

ϕ ϕ ϕ

ϕ ϕ ϕ

= + − + − + − + − + −

= = ⋅

_

_ _ 1 1 2 2 4 1

5 6 72 3 4

2( 1) 4( 1) 8( 1) 16( 1) 32( 1),

( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

                        ( ( )) ( ( )) ( ( ))

RF

RF RF i j l

m n x o x

o n m l j i

h z t h z t z t z t z tx

z t z t z tx

 (67) 

 
The Rqe1 and Rqe2 fuzzy exact model were constructed following the same rules and also 64 
subsystems were obtained for each partial model. As stated before now the exact fuzzy 
model gets quite complex because it will be necessary 192 subsystems to represent the RF, 
Rqe1 and Rqe2 partial models. From the fuzzy exact model built for the case explained a fuzzy 
observer can also be built, more details are reported in (Herrera, 2007b).  A multiple Takagi-
Sugeno multiple controller was designed to force the switching between the RF and the R 
baking yeast partial models (Herrera, 2007c; Herrera, 2007d). The substrate fuzzy controller 
tracked a square reference signal varied between 0.01 g/l and 0.07 g/l. Sin was set to 5 g/l .It 
is worth noting that the controller was capable to force the switching along the partial 
models.  

 
7. Conclusion 
 

Based on the idea of splitting the baker’s yeast model, a novel TS fuzzy model was proposed 
using the sector nonlinearities method, giving an exact representation of the original 
nonlinear plant. Moreover, an observer for each partial model was constructed. It is worth 
noting that the observer was capable of switching along the partial models, without 
performance degradation. Therefore, the approach presented here may be considered a 
valid method to design an observer. Future work will include the experimental validation of 
the fuzzy observer and optimal controllers for fed-batch fermentation cultures. 
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