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Abstract

This chapter deals with the localization of wide-band underwater acoustic sources. A
combination of high resolution methods with scattering acoustic model are proposed.
The bearing and the range sources at each sensor are expressed as a function to those at
the first sensor. We present the noneigendecomposition methods fixed-point algorithm,
projection approximation subspace tracking (PAST) algorithm, PAST with deflation
(PASTD) algorithm and orthogonal PAST (OPAST) algorithm to track the signal sub-
space to compute leading eigenvectors. The proposed algorithms are faster than singu-
lar value decomposition (SVD) for MUSIC. The spatial smoothing operator is used to
decorrelate the received signals and to estimate the coherent signal subspace. The
performance of the different methods are evaluated by both computer simulations and
experimental and data recorded during underwater acoustic experiments.

Keywords: array processing, source localization, wide-band, fast algorithm

1. Introduction

Non-invasive detection and localization of sources is an important application area in many

application domains, such as radar, sonar, seismology and communications. Thus there has

been a growing interest in developing techniques for the estimation wavefronts of the

direction-of-arrival (DOA) in order to detect and localize the emitting sources [1]. Support

vector machine (SVM) based on electromagnetic approach [2–4] and conventional neural

networks (NN) based on inverse scattering technique [5] are proposed for buried object

detection. Ground penetrating radar (GPR) is used to improve the detection of weak-scattering

plastic mines [6]. But electromagnetic filed inversion require more computational effort. The

inversion of measured scattered acoustical waves is used to image buried objects, but it needs

high frequencies and the application in a real environment is difficult [7]. Therefore, the

acoustic imagery technique is not suitable because the high frequencies are strongly attenuated

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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inside the sediment. Using a low frequency, synthetic aperture sonar (SAS) has been recently

applied on partially and shallowly buried cylinders in a sandy seabed [8]. The bearing and the

range estimation using correlated signals scattered from nearfield and farfield objects, in a

noise environment, still a challenging problem. The MUSIC algorithm is one of the most

thoroughly studied and best understood subspace based high resolution methods. It divides

the observation space into two signal-subspaces: the signal subspace and the noise subspace

[9]. MUSIC uses the orthogonality property between the two areas to locate sources. Different

approaches exist to detect and localize buried objects but acoustic techniques will be consid-

ered in our study. Match field processing (MFP) [10] has been successfully used for localization

sources in ocean acoustic. We discuss the proposed approach based on MUSIC associated with

acoustic scattering model referred to MFP [10]. We take into account the water-sediment

interface [11]. This means that we attempt to combine both the reflection and refraction of

wave in the model [12]. From the exact solution of the acoustic scattered field [13], we have

derived a new source steering vector including both the ranges and the bearings of the objects.

This source steering vector is employed in objective function instead of the classical plane

wave model [14, 15] which have extended the 1-D MUSIC to 2-D MUSIC. The acoustic scatter

field model has been addressed in many published researches with different configurations.

For example, the configurations can be single [16] or multiple objects [17], buried or partially

buried objects [18] with cylindrical [16] or spherical shape [19]. All those scattering models can

be used with the proposed source steering vector. In this chapter a spatial smoothing operator

is proposed to estimate the coherent signal subspace [20]. Inverse power method, which allows

to find an approximate eigenvector when an approximation to corresponding eigenvalue is

already known, is proposed to estimate the required noise variance. In high resolution method,

we use singular value decomposition (SVD) in music for obtaining the eigenvectors noise

subspace. However, the main drawback is the inherent complexity and computational time

load [21]. So a large number of approaches have been introduced for fast subspace tracking in

order to overcome this difficulty. We propose to replace SVD by Fixed Point for computing

leading eigenvectors from the spectral matrix [22, 23]. We propose another methods to accel-

erate MUSIC, such as projection approximation subspace tracking (PAST) [24, 25], which

makes the expectation of square difference between the input vector and the projected vector

minimum. With proper projection approximation, the PAST derives a recursive least squares

(RLS) algorithm for tracking the signal subspace. The PAST algorithm computes an asymptot-

ically orthogonal basis of the signal subspace. PAST with deflation (PASTD) is derived from

PAST by applying the deflation technique in order to get the signal eigenvectors and eigen-

values [24, 26]. It has been shown that these subspace trackers are closely linked to the classical

power iterations method, but does not guarantee the orthonormality at each iteration [27, 28].

Orthogonal PAST (OPAST) algorithm is another fast implementation of the power method

which outperforms both PAST and PASTD to reduce computation time [29, 30]. The perfor-

mance of the proposed algorithms are evaluated by several numerical simulations and the data

has been recorded using an experimental water tank.

The remainder of the chapter is as follows: Section 2 introduces the problem formulation.

Section 3 presents the scattering acoustic model of generating the received signals. Then

proposed algorithm for fast localization of underwater acoustic in presence of correlated noise
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is presented in Section 4. Section 5 proposes the new versions of “MUSIC”without eigendecom-

position. Some numerical results and Experimental tests are shown in Sections 6 and 7, respec-

tively. Finally, Section 8 summarizes the main conclusions of this chapter.

Throughout the chapter, we use to denote: transpose operation “T,” complex conjugate trans-

pose “+, ” complex conjugate “∗,” expectation operator E[.], cumulant Cum(.), Kronecker

product ⊗, determinant ∣�∣ and Frobenius norm ∥�∥F.

2. Problem formulation

Consider a transmitter that generates a plane wave with an angle θinc. The incident plane wave

will propagate and be reflected by P objects. For example, when it is located in the bottom of a

tank filled with sand and water. We name the objects, which reflect the signals, is the sources.

An array composed ofN sensors receives K signals emitted by the sources (P <N). The received

signals are grouped into a vector r( f ), which is the Fourier transform of the array output vector

at frequency f, is written as [31, 32]:

r fð Þ ¼ A fð Þs fð Þ þ b fð Þ (1)

where A( f ) = [a( f,θ1), a( f,θ2),…, a( f,θK)], matrix of dimensions (N�P) is the transfer matrix of

the source-sensor array systems with respect to some chosen reference point, s(f) = [s1( f ), s2( f ),

…, sK( f )]
T is the vector of signals, b( f ) = [b1( f ), b2( f ),…, bK( f )]

T is the vector of Gaussian white

noise. We define the matrix interspersals by:

Γ fð Þ ¼ E r fð Þrþ fð Þ½ � (2)

This matrix is estimated by bΓ fð Þ ¼ 1
Lr

PLr
l¼1 rl fð Þrþl fð Þ where Lr represents the number of reali-

zations. Thus the spectral matrix Γ fð Þ is formed:

Γ fð Þ ¼ A fð ÞΓs fð ÞAþ fð Þ þ Γb fð Þ, (3)

where Γb( f ) =E[b( f )b
+( f )] is the spectral matrix of noise vector, the spectral matrix of signal

vector is given as:

Γs fð Þ ¼ E s fð Þsþ fð Þ½ � ¼ V fð ÞΛ fð ÞVþ fð Þ þ Γb fð Þ (4)

where Λ( f ) = diag {λ1( f ),…,λP( f )} and V( f ) = [v1( f ),…, vP( f )]. Assuming that the columns of

A( f ) are linearly independent, in other words, A( f ) is full rank, it follows that for nonsingular

Γs( f ), the rank of A( f )Γs(f)A
+( f ) is P. This rank property implies that:

• the (N�P) multiplicity of its smallest eigenvalues: λP + 1( f ) =… =λN( f )ffi σ
2( f ).

• the eigenvectors corresponding to the minimal eigenvalues are orthogonal to the columns

of A( f ), namely, Vb( f ) is equal to by the definition of {VP + 1( f )…VN( f )} orthogonal to {a

( f,θ1)…a( f,θP)}.
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The eigenstructure-based techniques are based on the exploitation of these properties. When

the objects are far away from the array, the wavefront is assumed to be plane. Then DOA of the

sources are obtained, at the frequency f, by the peak positions in a so-called spectrum (MUSIC)

defined as:

Z f ;θð Þ ¼
1

aþ f ;θð ÞVb fð ÞVþ
b fð Þa f ;θð Þ

(5)

where a f ;θð Þ ¼ 1; e�2jπf
d sin θð Þ

c
;…; ; e�2jπf N�1ð Þ

d sin θð Þ
c

h i

is the steering vector of plane wave model,

Vb is the eigenvectors of the noise subspace, c is the sound speed, d is the interspacing of the

sensors and j is the complex operator. In the presence of P objects, the 1-D MUSIC(f,θ)

algorithm cannot solve all the P angles because the signals are correlated. In the following

sections, we use simultaneously all the information contained in the signals to estimate the

coherent signal subspace which extends the conventional 1-D MUSIC(f,θ) algorithm to 2-D

MUSIC(f,θ,ρ) for joint range ρ and DOA θ estimation when the objects are buried in the sand

with small depth.

3. Scattering acoustic model: to generate the received signals

In this section, we will present how to fill the vector of the scattering model. We consider a

sedimentary covered with water and the interface is treated as a plane. An object of cylindrical

or spherical shell is buried in the sediment. An incident plane wave propagating in the water

reaches the interface with an angle of incidence θinc as show in Figure 1. The incident plane

wave generates a wave reflecting plane in the water and refracted plane wave propagating in

the sediment. So the array located in the water receives three components [18]:

• the incident plane wave,

• the reflecting plane wave,

• the transmitter plane wave diffused by the object.

The array-interface height h and the nature of the sediment are known or can be determined.

Also, the speed of wave propagation in the sediment c2 is assumed to be known. Because the

object is buried, the pressure in the water and sediment will not be expressed directly in

terms of θ1 and ρ1, but in terms of five unknown parameters θ11, ρ11, θ12, ρ12 and yc (the

depth of buried object). So we will express θ11, ρ11, θ12, ρ12 and yc based on θ1 and ρ1 (see

Figure 2). We use the law of Snell-Descartes and generalize the Pythagorean theorem to

obtain the expressions:

yc ¼ ρ1 cos θ1ð Þ � h (6)

θ12 ¼ arcsin
c2
c1

sin θincð Þ

� �

(7)

Advances in Underwater Acoustics4



ρ12 ¼
ρ1 cos θ1ð Þ � h

cos arcsin c2
c1
sin θincð Þ

� �h i (8)

θ11 ¼ arctan
ρ1 cos θ1ð Þ � ρ12 cos θ12ð Þ

ρ1 sin θ1ð Þ � ρ12 sin θ12ð Þ

� �

(9)

ρ11 ¼
h

cos arctan
ρ1 cos θ1ð Þ�ρ12 cos θ12ð Þ
ρ1 sin θ1ð Þ�ρ12 sin θ12ð Þ

� �h i (10)

3.1. Cylindrical shell

Assume a cylindrical shell long enough which is buried in the sediment with axis parallel to

the interface plane. Thus the acoustic pressure wave received by the first sensor of the array

Pcyl(f,θk1,ρk1) contains three acoustic pressure components:

Figure 1. Geometry configuration of buried object.

Figure 2. Configuration of the buried object-1st sensor.
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Pcyl f ;θk1;ρk1

� �

¼ Pinwater�cyl þ Prefwater�cyl þ Pdiff�cyl (11)

where Pinwater� cyl = e
jk1(�(ρk1 sin(θk1)) sin(θinc) +hcos(θinc)) is the pressure incident in the water, Prefwater� cyl

=R(θinc)e
jk1((ρk1 sin(θk1)) sin(θinc)� hcos(θinc)) is the pressure reflected by the sediment-water interface,

where R(θinc) is the reflection coefficient of the interface, Pdiff�cyl ¼
Pþ∞

m¼�∞ ξTc I�Dcð Þ�1Ψ t
cyl is

the diffused acoustic pressure wave transmitted in the water, where I is the identity matrix,Dc is a

linear operator, Tc is the transition diagonal matrix, Ψ t
cyl is the vector of transmitted wave and ξ=

[ξ1,ξ2,…,ξm] is defined by ξm =Twater� sed(θinc)e
jk2yc cos(θk11)jme�jm(π�θk11), where Twater� sed(θinc) is the

transmission coefficient.

3.2. Spherical shell

In this section Psph(f,θk1,ρk1) is the acoustic pressure wave received by the first sensor and is

expressed as follows [12, 18]:

Psph f ;θk1;ρk1

� �

¼ Pinwater�sph þ Prefwater�sph þ Pdiff�sph (12)

where Pinwater�sph ¼
Pþ∞

m¼�∞ jm Pm cos θincð Þð Þe2j cos θincð Þyc
� 	

is the incident wave generates in the

water, Prefwater�sph ¼
Pþ∞

m¼�∞ R θincð ÞPm � cos θincð Þð Þe2j cos θincð Þyc is the reflected wave, where R

(θinc) is the reflection coefficient of the interface. We define the acoustic wave of the diffused

by spherical shell by Psphsediment ¼ T�1
s � Cm

� ��1
Pinwater�sph, where Ts is the transition matrix and

C is the matrix containing the conversion coefficients. The diffused acoustic pressure

wave transmitted in the water is given by: Pdiff�sph ¼
P

∞

m¼0 εmY cos m θk1 � θ12ð Þð Þ, where Y =

[PsphsedimentPm(cos(θk1))hm(k2ρk1) +Xm], εm = 2 for m > 0, ε0 = 1.

The vector a(f,θK,ρK) is filled with cylindrical or spherical scattering model considering the

sources shape. For example, when the sources are cylindrical shells, the vector is given by:

a f ;θK;ρK

� �

¼ Pcyl f ;θk1;ρk1
� �

;…;Pcyl f ;θkN;ρkN

� �� 	

(13)

Eq. (11) or (12) give the first component of the vector. The other Pcyl(f,θki,ρki) for i = 1, 2,…,N

associated with the ith sensors can be formed by a geometric recursive relationship. The

relationship allows to express (θki,ρki) according to (θki� 1,ρki� 1) (see Figure 1). This recursive

calculate is done as follows:

ρki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2
ki�1 þ d2 � 2ρki�1d cos

π

2
þ θki�1

� �

r

(14)

θki ¼ �
π

2
þ cos �1 d2 þ ρ2

ki � ρ2
ki�1

2ρki�1d

 !

, i ¼ 2,…, N (15)

These equations are employed in Eq. (5) to estimate simultaneously range and bearing of the

objects.

Advances in Underwater Acoustics6



In the following section, we summarize the proposed algorithm for fast localization of under-

water acoustic sources using a wide-band transmitter to receive the signals at different fre-

quencies, then the coherent signal subspace can be applied to decorrelate the source signals.

4. Proposed algorithm for fast localization of underwater acoustic sources

We use spatial smoothing to deal with narrow band correlated signal, we divide the array into

Ls overlapping subarrays. The spatially smoothed covariance matrix is the average of the

subarray covariances [33]. The step-by-step proposed algorithm for fast localization of under-

water acoustic sources is given as following:

Algorithm 1 Proposed Algorithm for Bearing and Range Estimation of Buried Objects

1. use the beamformer method to find an initial estimate of cθ0k , where k = 1,…,P0, with P0 ≤ P.

2. compute the initial values of ρk ¼
X

cos θkð Þ for k = 1,…,P0, where X = h + yc represents the

distance between the receiver and the bottom of the tank (seabed),

3. fill the transfer matrix, bA fð Þ ¼ a f ;θ1; ρ1

� �
; a f ;θ2;ρ2

� �
;…; a f ;θK;ρK

� �� 	
, where each source

steering vector is filled using Eq. (11),

4. estimate the spectral matrix Γ fð Þ ¼ E r fð Þrþ fð Þ½ � ¼ 1
Lr

PLr
l¼1 rl fð Þrþl fð Þ, where Ll is the realiza-

tion number,

5. estimate noise covariance matrix Γb(f) =E[b(f)b
+(f)]. When the noise is white noise, that is,

estimate noise variance σ2 fð Þ ¼ 1
N�P0

PN
i¼P0þ1 λi, where λi is the i

th eigenvalue of Γ(f). Then

we calculate Γb(f) = σ
2I, where I is the identify matrix,

6. calculate the spectral matrix of the signals reflected on the objects by Γs fð Þ ¼ bA
þ
fð ÞbA fð Þ

� ��1

bA
þ
fð Þ � Γ fð Þ � Γn fð Þð ÞbA fð Þ bA

þ
fð ÞbA fð Þ

� ��1

,

7. compute the average of the spectral matrices Γs fð Þ ¼ 1
Ls

PLS
S¼1

Γs fð Þ, where Ls represents the

number of subarrays, then calculate Vs fð Þ by SVD,

8. calculate the spatial spectrum of theMUSICmethod for bearing and range object estimation:

MUSIC ¼
1

∣∣a f 0;θk; ρk

� �þ
Vb f 0

� �
V

þ

b f 0
� �

a f 0;θk;ρk

� �
∣∣
, (16)

where Vb is the eigenvector matrix of noise subspace associated with the (N�P) smallest

eigenvalues.
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Inverse Power method can be used to estimate the noise power λN(f) = σ
2(f). This variance can

be used at step 5 in Alg. 1 for estimating the noise variance in case of white noise. The principle

of this method is recalled in the following, using the maximum norm.

1. Let qo a complex vector of N elements, ∥qo∥∞ = 1;

2. For l = 1, 2, 3,…;

3. Calculate xl :Γxl =ql� 1

μl = ∥ xl∥∞

ql ¼
xl
μl;

It is shown that: liml!∞μ
l ¼ 1

λN
, where λN is the smallest eigenvalue of Γ.

In the high resolution noise subspace based methods, the DOA’s are given by the local maxi-

mum points of a cost function, for example Eq. (16) of MUSIC. Vb(f) is the orthogonal projector

onto the noise subspace given by the eigenvectors associated with the smallest eigenvalues of

the covariance matrix of the received data. This requires an enormous computational load

which limits its use for tracking by SVD [34]. In many applications, only a few eigenvectors

are required. Since the number of sensor N is often larger than the number of sources P. It

means that the vector dimension of noise subspace is larger than signal subspace. It is more

efficient to work with the lower dimensional signal subspace than with the noise subspace.

That is to say, it is not necessary to obtain Vb(f) exactly. We can calculate signal subspace Vs(f) =

[v1(f),v2(f),…,vP(f)] whose columns are the P orthonormal basis vectors. The projector onto the

noise subspace spanned by the (N�P) eigenvectors associated with the (N�P) smallest eigen-

values is Vb fð ÞVþ
b fð Þ, given by:

Vb fð ÞVþ
b fð Þ ¼ I�Vs fð ÞVþ

s fð Þ (17)

On the other hand, the additive noise is assumed to be white. But in practice, the noise is not

always spatially white noise. In generally, the noise is correlated or unknown.

So in the next two sections, we will introduce the algorithms to replace SVD in MUSIC for

reduce computation times and propose a new algorithm for estimating the spectral matrix of

an unknown limited length spatially correlated noise.

5. MUSIC without eigendecomposition

In this section, we propose the noneigenvector versions of “MUSIC” to replace SVD to accel-

erate computation times.

5.1. Fixed point algorithm

One way to compute the P orthonormal basis vectors is to use Gram-Schmidt method. The

eigenvector with dominant eigenvalue will be measured first. Similarly, all the remaining P� 1

basis vectors will be measured one by one in a reducing order of dominance. The previously

Advances in Underwater Acoustics8



measured (p� 1)th basis vectors will be utilized to find the pth basis vector. The algorithm for

pth basis vector will converge when the new value vþp and old value vp are such that vþp vp ¼ 1.

It is usually economical to use a finite tolerance error to satisfy the convergence criterion

vþp vp � 1
���

���
���

��� < ηwhere η is a prior fixed threshold. The proposed algorithm is given as follows:

Algorithm 2 Fixed Point Algorithm

1. Choose P, the number of principal axes or eigenvectors required to estimate. Consider

covariance matrix Γ and set p 1.

2. Initialize eigenvector vp of size d� 1, e.g. randomly;

3. while vHp vp � 1
���

���
���

��� < η

a. Update vp as vp  Γvp;

b. Do the Gram-Schmidt orthogonalization process vp  vp �
Pj¼p�1

j¼1 vTpvj

� �
vj;

c. Normalize vp by dividing it by its norm: vp  
vp

vpj jj j
.

4. Increment counter p p + 1 and go to step 2 until p equals K.

5.2. Projection approximation subspace tracking (PAST) algorithm

Suppose that we have an estimation of the signal subspace W(t) where each column is an

eigenvector. The Linear Principal Analysis Criterion gives the definition of the scalar cost

function J(W(t)).

J W tð Þð Þ ¼ E r tð Þ �W tð ÞWþ tð Þr tð Þk k
2

n o
(18)

where W(t)W+(t)r(t) is the projection of r(t) into the subspace W(t). The error surface of the

function has several local minimal and one global minimum. When W(t) is equal to a basis for

the signal subspace, J(W(t)) has a global minimum which can estimate the signal subspace by

Eq. (18). Note thatW(t) is not equal to the signal subspace itself, but merely provides a possible

basis. If W(t) is a signal column vector, it does indeed become equal to the Principal Compo-

nent (dominant eigenvector) under minimization.

The cost function J(W(t)) can be minimized by the application of a gradient-descent technique

or recursive least squares variant. We can replace the expectation operator in Eq. (18) by an

exponentially weighted sum over n samples. The estimation is given as follows:

bJ J W tð Þð Þð Þ ¼
Xn

t¼1

βn�t r tð Þ �W tð ÞW tð Þþr tð Þ
�� ��2 (19)

where β is the forgetting factor (0 < β < 1). The forgetting factor allows the subspace estimation

to track geostationary signal over time.
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We get another cost function by approximating W(t)+r(t) with W(t� 1)+r(t), using the previous

value of W(t)+ in the iteration, giving:

bJ
0

W tð Þð Þ ¼
Xn

t¼1

βn�t r tð Þ �W tð ÞW t� 1ð Þþr tð Þ
�� ��2 (20)

This function resembles the cost function used to define a recursive least squares (RLS) filter:

C W tð Þð Þ ¼
Xn

t¼1

βn�t e tð Þj j2 (21)

where e(t) is the error signal. The error signal is the difference between the “desired” signal r(t)

and its projection into the subspace W(t)W(t� 1)+r(t). Consequently, the PAST algorithm may

be summarized by the following equations:

Algorithm 3 PASTAlgorithm

1. Initialization:

W(0) and P(0)

2. for t = 1,2…

y(t) =W+(t� 1)r(t)

h(t) =P(t� 1)∗y(t)

g tð Þ ¼ h tð Þ

βþy tð Þð Þh tð Þ

P tð Þ ¼ 1
β
Tri{P(t� 1)� g(t)r+(t)}

e(t) = r(t)�W(t� 1)y(t)

W(t) =W(t� 1) + e(t)g+(t)

end

The operator Tri indicates that only the upper (or lower) triangular part of the matrix is

calculated and its Hermitian transposed version is copied to the another lower (or upper)

triangular part.

5.3. Projection approximation subspace tracking with deflation (PASTD) algorithm

The PAST algorithm provides a method to estimate only a basis for the dominant subspace. The

exact eigenvectors (singular vector) are not calculated unless W(t) is a column vector in which

case only the dominant eigenvector (principal component) is estimated. We present a second

subspace tracking algorithm - PAST with deflation (PASTD) which is derived from the PAST

approach. The PASTD algorithm is based on the deflation technique which is the sequential

estimation of the principal components. According to the Karhunen-Loève expansion

Advances in Underwater Acoustics10



r tð Þ ¼
XN

i¼1

Wþ
i
tð Þr tð ÞWi tð Þ (22)

tells that any r(t) may be expressed as a linear combination of the eigenvector of the correlation

matrix.

The first step of PASTD is to update the most dominant eigenvector by applying PAST with

i = 1, then the contribution of the dominant eigenvector in Eq. (22) is removed by subtraction.

So the second dominant eigenvector becomes the most dominant and can be extracted in the

same way. Then we repeat the procedure until all desired eigencomponents are estimated. This

iterative process is called deflation. So the algorithm may be summarized as follows:

Algorithm 4 PASTD Algorithm

1. Initialization:

Wi(0) and di(0)

2. for n = 1,2…

r1(t) = r(t)

for i = 1,2,…,P y
i
tð Þ ¼ Wþ

i
t� 1ð Þri tð Þ

di(t) = βdi(t� 1) + |yi(t)|
2

ei(t) = ri(t)�Wi(t� 1)yi(t)

Wi tð Þ ¼ Wi t� 1ð Þ þ ei tð Þy
∗

i
tð Þ=di tð Þ

ri + 1(t) = ri(t)�Wi(t)yi(t)

end

end

where estimates are made of P eigenvectors with the largest eigenvalues. In practice since

P < <N, this indicates an important optimization compared to the eigendecomposition or

SVD. The eigenvector projection estimates Wi are initialized to the columns of some nonzero

orthogonal matrix. di(t) is initialized to arbitrary nonzero constants. When PASTD has con-

verged, the Wi(t) will contain estimates of the eigenvector of the correlation matrix of the data

in r(t). The corresponding eigenvalues may be calculated by multiplying the di(t) by
1�β

β
.

5.4. Orthogonal projection approximation subspace tracking (OPAST) algorithm

The OPAST algorithm is the modification of PAST. The weight matrix W(t) is forced to be

orthonormal to each iteration. So we can get:

W tð Þ ¼ W tð Þ Wþ
tð ÞW tð Þð Þ

�1=2
(23)
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where (W+(t)W(t))�1/2 denotes an inverse square root of (W+(t)W(t)). (W+(t)W(t))�1/2 can be

calculated by using the updating equation of W(t). Note that W(t� 1) is now an orthonormal

matrix, we have

Wþ tð ÞW tð Þ ¼ Iþ ∥p tð Þ∥2q tð Þqþ tð Þ (24)

where I is the identity matrix, W+(t� 1)p(t) = 0 and r¼def∥p tð Þ∥q tð Þ. Thus

Wþ tð ÞW tð Þð Þ�1=2 ¼ Iþ 1

∥r∥2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∥r∥2
p � 1

 !

xxH

¼ Iþ τ tð Þq tð Þqþ tð Þ
(25)

where

τ tð Þ
def

¼ 1

∥q tð Þ∥2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∥p tð Þ∥2∥q tð Þ∥2
q � 1

0

B

@

1

C

A
(26)

Using Eqs. (23) and (26), and the updating equation of W(t), we obtain

W tð Þ ¼ W t� 1ð Þ þ p tð Þqþ tð Þð Þ Iþ τ tð Þq tð Þqþ tð Þð Þ
¼ W t� 1ð Þ þ p0 tð Þqþ tð Þ

(27)

where p'(t) = τ(t)W(t� 1)q(t) + (1 + τ(t) ∥q(t)∥2)p(t). Thus, the OPAST algorithm can be written

as the PAST (see Algorithm 3):

Algorithm 5 OPASTAlgorithm

W(t) =W(t� 1) +p'(t)q+(t)

τ tð Þ ¼ 1
∥q tð Þ∥2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ∥p tð Þ∥2∥q tð Þ∥2
p � 1

� �

W(t) = τ(t)W(t� 1)q(t) + (1 + τ(t) ∥q(t)∥2)p(t)

6. Simulations results

6.1. Complexity

The traditional MUSIC method estimate the noise subspace eigenvectors by SVD. From the

computational point of view, the well-known SVD method is the cyclic Jacobi’s method which

requires around N3 computations. The computational complexity of fixed-point algorithm,

PAST, PASTD and OPAST is (NP2 +N2P), 3NP +O(P2), 4NP +O(P) and 4NP +O(P2) respectively.

If the number of sensors N is larger compared to the number of objects P, the computational

complexity can be estimated to be around N2P for fixed-point algorithm, 3NP for PAST, 3NP

Advances in Underwater Acoustics12
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Figure 3. Computational times, SVD (red), Fixed–point (green), PAST (Black), OPAST(blue) and PASTD (pink).

10 15 20 25 30

Time SVD (second) 0.95 1.3 2.4 4.4 7.1

Time fixed point (second) 0.5 0.6 1.1 1.8 2.8

Time PAST (second) 0.4 0.5 0.8 1.4 2.2

Time PASTD (second) 0.3 0.4 0.7 1.3 2.0

Time OPAST (second) 0.5 0.7 1.3 2.1 2.9

Ratio SVD/fixed point 1.9 2.2 2.2 2.4 2.5

Ratio SVD/PAST 2.4 2.6 3.0 3.1 3.2

Ratio SVD/PASTD 3.2 3.3 3.4 3.4 3.6

Ratio SVD/OPAST 1.9 1.9 1.8 2.1 2.4

Table 1. Computational time needed to run MUSIC for various numbers of sensors.
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for PASTD and 4NP for OPAST. Several experiments are carried out with various numbers of

sensors, to study the computational load of the proposed algorithm with SNR= 0 dB and P = 8

sources. DOA values are: 5∘, 10∘, 20∘, 25∘, 35∘, 40∘, 50∘ and 55∘.

The number of realizations is 1000, and the number of observations is 1000. Choosing a

number of snapshots equal to 100, such as in [14, 21, 22, 29, 30], does not change the results.

The mean computational load is then up to 2.5 times less with fixed point algorithm than with

SVD (see Figure 3 and Table 1, N = 10 up to 30). Both versions of MUSIC provide the same

results (see Figure 4, take fixed-point algorithm for example).

7. Experimental setup

The studied signals are recorded during an underwater acoustic experiment in order to esti-

mate the developed method performance. The experiment is carried out in an acoustic tank

under the conditions similar to those in a marine environment. The bottom of the tank is filled

with sand. The experimental device is presented in Figure 5. The tank is topped by two mobile

carriages. The first carriage supports a transducer issuer and the second supports a transducer

receiver pilot by the computer.

Four couples of spherical and cylindrical shells (see Figure 6) are buried between 0 and 0.05 m

under the sand. The considered objects have the following characteristics, where δ represents

the distance between the two objects of the same couple and ∅a the outer radius (the inner

radius ∅b =∅a� 0.001 m):

1. the 1st couple (O1,O2): spherical shells, ∅a = 0.3 m, δ = 0.33 m, full of air,

2. the 2nd couple (O3,O4): cylindrical shells, ∅a = 0.01 m, δ = 0.13 m, full of air,

3. the 3rd couple (O5,O6): cylindrical shells, ∅a = 0.018 m, δ = 0.16 m, full of water,

4. the 4th couple (O7,O8): cylindrical shells, ∅a = 0.02 m, δ = 0.06 m, full of air,

The considered objects are made of dural aluminumwith densityD2 = 1800 kg/m
3, the speed of

the wave in the water c1 is 1500 m/s and in the sediment c2 is 1700 m/s, the longitudinal and
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10
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Azimut (¡ã)
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0 10 20 30 40 50 60 70 80 90
0
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2

3

4

5
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7
x 10

27 Music SVD

Azimut (¡ã)

(b)

Figure 4. (a) Pseudospectrum of MUSIC obtained using fixed point, (b) pseudospectrum of MUSIC obtained using SVD.
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transverse-elastic wave velocities inside the shell medium are cl = 6300 m/s and ct = 3200 m/s,

respectively. The speed of the wave in the water c1 is 1500 m/s and in the sediment c2 is 1700 m/s,

The external fluid is water with densityD1 = 1000 kg/m
3 and the internal fluid is water or air with

density D3air = 1.2�10
�6 kg/m3 or D3water= 1000 kg/m3.

In addition to estimate the performance of the propose method, the signal source a spatially

correlated noise is emitted with K = 10. The objective is to estimate the directions of arrival of

the signals during the experiment. The signals are received on one uniform linear array. The

observed signals come from various reflections on the objects being in the tank. Generally the

aims of acousticians is the detection, localization and identification of these objects. In this

experiment we have recorded the reflected signals by a single receiver. This receiver is moved

along a straight line between position Xmin = 50mm and position Xmax = 150mm with a step of

α = 1mm in order to create a uniform linear array. The experimental setup is shown in Figure 7.

We have measured eight times Ei(Oii,Oii + 1) with i = 1,…, 8 and ii = 1, 3, 5, 7. At first, the receiver

horizontal axis XX
' is fixed at 0.2 m, we performed the experiments E1(O1,O2),…,E4(O7,O8)

(a) (b)

Figure 5. Experimental setup: (a) Data acquisition system, (b) Experimental tank.

Figure 6. Experimental objects.
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associated to the 1st, 2nd, 3rd and the 4th couple, respectively. Then we performed the other

four experiments E5(O1,O2),…,E8(O7,O8) with XX' fixed at 0.4 m. RR' is the vertical axis which

goes through the center of the first object of each couple. For each experiment, the transmitted

signal had the following properties: pulse duration is 15 μs, the frequency band is, the fre-

quency of the band is [fmin = 150, fmax = 250] kHz and the center frequency f0 is f0 = 200 kHz. The

sampling rate is 2 MHz. The duration of the received signal was 700 μs. The variance of

Gaussian white noise σ2 is 100 and the angle of incidence θinc is 60
∘.

At each sensor, time-domain data corresponding only to target echoes are collected with signal

to noise ratio equal to 20 dB. The typical sensor output signals recorded during one experiment

is shown in Figure 8.

The proposed algorithms were applied on each experimental data set. Forming the directional

vector by the model of acoustic diffusion appropriate to locate the objects and the spectral

matrix of the simulated data. We use the focusing operator on the signals by dividing the

Figure 7. Experimental setup.

Figure 8. Example of observed signals during experiment Exp. 1.
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frequency band [150, 250] kHz in 11 frequencies and Alg. 2, Alg. 3, Alg. 4 and 5 to calculate the

noise subspace, respectively. Finally we apply Eq. (16) to estimate DOA of objects and object-

1st sensor distance.

Figure 9. Example of object localization with different methods: (a)-(b) SVD, (c)-(d) Fixed-point, (e)-(f) PAST, (g)-(h)

PASTD and (i)-(j) OPAST.
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As is shown in Figure 9, X axis is the object-1st sensor distance ρ, Y axis is the DOA of object-

1st sensor θ. The white points and the peak positions, which present the maximum values,

correspond to the coordinate of 2 objects (29∘, 0.31m) and (33∘, 0.34m). The bearings and the

ranges of buried objects are (28.1∘, 0.298m) and (33.9∘, 0.361m) if we use conventional SVD (see

Figure 9(a) and (b)). The results of the proposed algorithms are (29.5∘, 0.301m) and (33.3∘,

0.351m) for fixed-point algorithm (see Figure 9(c) and (d)), (29.2∘, 0.312m) and (32.8∘, 0.343m)

for PAST algorithm (see Figure 9(e) and (f)), (29.8∘, 0.313m) and (33.3∘, 0.355m) for PASTD

algorithm (see Figure 9(g) and (h)) and (29.3∘, 0.306m) and (32.5∘, 0.334m) for OPAST algo-

rithm (see Figure 9(i) and (j)).

We have done statistical study in order to a posteriori verify the quality of estimation of the

proposed method. Standard Deviation (Std) is defined as follows:

std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

Xiexp � Xiest

� �2

v

u

u

t (28)

where Xiexp (respectively Xiest) represents the ith expected (respectively the ith estimated) value

of θ or ρ. Standard deviation of the bearing and the range estimation at different signal-to-

noise ratio (SNRs) (from �10 to 20 dB) are given in Figure 10.

−10 0−5 5 10 15 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

s
td

 o
f 
b

e
a

ri
n

g
 (

d
e

g
)

Performance of bearing estimation for source 1

0  

SVD

Fixed−point

PAST

PASTD

OPAST

−10 0−5 5 10 15 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

s
td

 o
f 
b

e
a

ri
n

g
 (

d
e

g
)

Performance of bearing estimation for source 2

0  

SVD

Fixed−point

PAST

PASTD

OPAST

−10 −5 0 5 10 15 20

0.01

0.02

0.03

0.04

0.05

SNR (dB)

s
td

 o
f 
ra

n
g
e
 (

m
)

SNR (dB)

Performance of range estimation for source 1

0  

SVD

Fixed−point

PAST

PASTD

OPAST

−10 −5 0 5 10 15 20

0.01

0.02

0.03

0.04

0.05

SNR (dB)

s
td

 o
f 
ra

n
g
e
 (

m
)

SNR (dB)

Performance of range estimation for source 2

0  

SVD

Fixed−point

PAST

PASTD

OPAST

Figure 10. Standard deviation versus SNR of the bearing and the range estimation.
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8. Conclusion

The main target of array processing is the estimation of the parameters: DOA of objects and the

objects-sensors distance. In this chapter, we have proposed a new fast localization algorithm to

estimate both the ranges and the bearings of buried sources underwater acoustic in presence of

correlated noise. This algorithm takes into account both the reflection and refraction of water-

sediment interface. We develop fixed point algorithm in MUSIC instead of SVD to keep the

small computational time load. A new focusing operator is proposed to estimate the coherent

signal subspace. Some simulations have been done to test our method. We compare the

computation time of MUSIC with SVD and fixed point, it shows that fixed point is faster than

SVD. The proposed method performance was investigated through scaled tank tests associ-

ated with some cylindrical and spherical shells buried in an homogenous fine sand. The

obtained results are promising and the RE calculated between the expected and the estimated

bearings and ranges errors is weep.
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