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Abstract

Until recently, ovarian cancer research has mainly focused on the tumor cell themselves 
ignoring for the most part the surrounding tumor environment. However, one of the 
major conceptual advances in oncology over the last few years has been the appreciation 
that major aspects of cancer biology are influenced by the tumor environment. Malignant 
ascites accumulates in the peritoneal cavity during ovarian cancer progression and con-
stitutes a unique pro-inflammatory tumor environment providing a framework that 
orchestrates cellular and molecular changes contributing to aggressiveness and disease 
progression. The composition of ascites, which includes cellular and acellular compo-
nents, constantly adapts during the course of the disease in response to various cellular 
cues originating from both tumor and stromal cells. Increasing evidence now supports 
an active role of ascites in the progression of ovarian cancer. Although much work is still 
needed to fully understand the contribution of ascites to ovarian cancer aggressiveness, 
this tumor environment potentially provides a wealth of opportunities for translational 
research including biomarker discovery and novel therapeutic target identification. In 
this review, we discuss recent advances in our understanding of ascites pathophysiology, 
the characterization of its cellular and acellular contents, the intercellular crosstalks, and 
how these data can be used to improve the outcome of ovarian cancer.
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1. Introduction

Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer-related death among women 
in the Western world [1]. Early stage diseases are difficult to detect because of the location and 
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size of ovaries and fallopian tubes, the lack of specific symptoms and the absence of reliable 
screening methods. Consequently, most women with EOC display advanced diseases (stage 

III/IV) with metastases throughout the pelvic and peritoneal cavities, as well as large amount 

of ascites, when they seek medical care [2, 3]. The presence of large volume of ascites correlates 

with poor prognosis and pelvic and peritoneal metastases [4, 5]. EOC encompasses five histo-

pathological subtypes with unique characteristics: high-grade serous carcinoma (HGSC), low-

grade serous carcinoma (LGSC), endometrioid carcinoma (EC), mucinous carcinoma (MC), and 
clear cell carcinoma [6, 7]. High-grade serous ovarian carcinoma (HGSOC) is by far the most 

common subtype and development of malignant ascites during the course of the disease is par-

ticularly common with this subtype [3]. Due to the accumulation of large volume, ascites can 

be debilitating for patients causing pain, early satiety and respiratory distress [8]. The standard 

of care for women with high-grade serous ovarian carcinoma (HGSOC) consists of debulk-

ing surgery together with platinum-based combination chemotherapy resulting in a median 

progression-free survival (PFS) of 16–22 months and a 5-year survival rate of 10–30% [1, 9]. 

This high mortality rate results from the biologic complexity of EOC, from the difficulty of 
resecting multiple peritoneal tumor implants and from the frequent occurrence of drug resis-

tance, whether intrinsic (primary) or acquired (secondary), the latest being the most frequently 

observed. Treatment options for women with resistant diseases remain very limited and relaps-

ing diseases are almost always incurable. In contrast, women with localized disease (tumor 

limited to the primary site) have a 95% 5-year survival [3]. Therefore, it is essential to gain a 

better understanding of the mechanisms involved in EOC dissemination and how the tumor 
environment participates to this process in order to develop novel therapeutic approaches that 

target crucial steps involved in cancer dissemination that could improve long-term survival.

In most human cancers, the tumor microenvironment is heavily altered compared to its normal 

counterpart [10, 11]. The importance of the tumor microenvironment in cancer progression is 

now well appreciated. Indeed, bidirectional communications between tumor cells and their sur-

rounding environment influence disease initiation and progression and patient prognosis [12]. 

In response to evolving environmental conditions and signals from tumor and stromal cells, the 

surrounding tumor environment is continually changing over the course of cancer progression, 

underscoring the need to understand how the environment drives the metastatic process. As 

opposed to the surrounding microenvironment in solid tumors, malignant ascites constitutes a 

unique form of environment. Recent evidence suggest that ascites plays a major role in tumor 

progression, emphasizing the necessity to understand its pathophysiology and its impact on the 

biology of tumor cells, including its role in drug resistance, spheroid formation, tumor dissemi-

nation and progression. Here, we discuss the recent advances in our understanding of the role of 

ascites in ovarian cancer progression. In particular, we address its effects on spheroid formation, 
dissemination, chemoresistance and metastasis. Pinpointing key molecules in ascites that pro-

mote EOC dissemination and progression will provide new strategies to improve EOC survival.

2. What is the tumor environment of ascites

As previously mentioned, EOC progression is characterized by the progressive accumulation 

of peritoneal fluids, which presumably provides a supportive local environment. Because of its 
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large volume (up to 10 L), its high cell density and lack of anchorage support for cells, the accu-

mulation of peritoneal effusions occurring during EOC progression can be seen as a particu-

lar environment. The pathophysiology of ascites accumulation involves decreased clearance of 

peritoneal fluids, blockade of lymphatic channels drainage, increased permeability of capillaries 
due in large part to vascular endothelial growth factor (VEGF) [13, 14], decreased protein lev-

els in blood, and decreased hepatic clearance. Ascites is characterized by cellular and acellular 

fractions. The cellular fraction is populated by a heterogeneous mixture of tumor and stromal 

cells, which includes mesothelial-derived cells, adipocytes, endothelial and immune cells. These 

stromal cells account for >99% of the cellular composition of ascites which contrast with the 

stromal content of tumor tissue which has a median relative proportion of 50% [15]. In solid 

tumors, stromal cells significantly contribute to malignant progression. In particular, cancer-
associated fibroblasts (CAFs) promote cell survival, growth and progression by expressing a 
pro-inflammatory gene signature leading to secretion of a number of growth factors, including 
transforming growth factor-β1 (TGF β1), IL-6, CSCL1, and CXCL2 among others [16]. By anal-
ogy, stromal cells found in malignant ascites could play a similar role in ovarian cancer progres-

sion. Indeed, recent studies suggest that stromal cells in ascites facilitate tumor growth, survival 

and invasion [17–19].

The acellular fraction of ascites constitutes a dynamic reservoir of cytokines, growth factors, 
bioactive lipids and extracellular matrix (ECM) components that may have either pro- or anti-
tumorigenic effects [20–25]. A number of factors in ascites, including CCL18, HGF, LPA and 

VEGF, have been shown to promote cell migration, invasion and tumorigenesis [20, 26–29].

3. Cellular contents: contribution to EOC metastasis

The origin and phenotype of the stromal cells in ascites is still not well understood. However, 

ascites is characteristically populated by mesothelial cells [30]. Mesothelial cells exfoliate from 
the peritoneal lining and accumulate in ascites [31]. Upon sustained inflammation, mesothe-

lial cells lose their epithelial-like characteristics, including dissolution of cell-cell junctions 
and their apical-basolateral polarity, and acquired a mesenchymal phenotype (mesothelial-

to-mesenchymal transition (MMT) giving rise to myofibroblastic-like cells, which are char-

acterized by increased migration and invasion capacities [32]. Lineage-tracing experiments 

suggest that a sizeable subpopulation of cancer-associated fibroblasts (CAFs) found in asci-
tes probably originates from mesothelial cells through MMT [33]. Mesothelial-derived CAFs 
share characteristics with myofibroblasts, such as the expression of alpha-smooth muscle 
actin (αSMA), fibroblast activation protein-α (FAPα) and fibroblast-specific protein 1 (FSP1) 
[33]. TGF-β has been implicated in mesothelial cell activation leading to MMT [34]. In EOC 

ascites, myofibroblastic-like cells are present in aberrantly high numbers and are different 
from normal mesothelial cells. Once these cells accumulate in ascites they can be “educated” 

by growth factors and cytokines in the surrounding environment to support tumor growth 
[19]. Upon stimulation by ascites, myofibroblastic-like cells have been shown to produce 
dipeptidyl peptidase IV [35], which is a multifunctional protein that have been associate with 

tumor growth in some context [36]. Exposure of myofibroblastic-like cells to ascites increased 
the secretion of VEGF and other pro-survival soluble factors [19, 37]. Furthermore, data from 
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Figure 1. Model for myofibroblast cell interactions with tumor cells and spheroid formation. In response to extracellular 
cues in the local environment, particularly TGF-β1, mesothelial cells lining the peritoneum undergo a mesothelial-to-
mesenchymal transition (MMT) characterized by dissolution of cell-cell junctions, actin reorganization and stress fiber 
formation. This mesenchymal phenotype is characterized by increased migration and invasion. MMT enables cells 
to exfoliate from the peritoneum into the existing peritoneal fluid. Unpublished results from our laboratory suggest 
that, upon exposure to malignant ascites, myofibroblastic-like cells aggregate to form very compact spheroids. These 
myofibroblastic-like cell aggregates interact with exfoliated tumor cells to form heterotypic multicellular spheroids. 
Mesothelial cells located in the center of spheroids may provide initial matrix support for EOC cells to avoid anoikis. 
Extracellular cues from the surrounding environment can induce the secretion of prosurvival factors in mesothelial cells.

our laboratory suggest that ascites stimulates the expression and release of MUC16 from the 
mesothelial cell membranes [38]. MUC16 is an oncogenic high molecular weight mucin that 
promotes EOC progression [39–42] and regulates the formation of multicellular spheroids 

[43]. Therefore, through ascites exposure, myofibroblastic-like cells become a major source of 
secreted factors, which in turn, further contribute to the evolution of the tumor environment. 

This dynamic interaction between the surrounding environment and stromal cells provides 

favorable conditions for tumor progression.

In addition to the complex nature of stromal cells present in ascites, this environment also 

appears to contain distinct populations of tumor cells displaying different phenotypic char-

acteristics. A population of non-adherent tumor cells in 2D cultures expressing E-cadherin, 

EpCAM, CA125, Oct4 and STAT3 were particularly associated with diseases recurrence [44]. 

Tumor cells are shed from the primary tumor and aggregate in ascites. Exfoliated tumor cells 

will form free-floating multicellular spheroids in ascites, which range from 50 to 750 μM 
in size [45]. These multicellular spheroids probably represent the invasive and metastasis-

forming intermediate [46]. In addition, aggregation of tumor cells is essential for anchorage-

independent growth and survival. Indeed, once suspended in the peritoneal fluid, cancer 
cells must resist anoikis, a specialized form of apoptosis triggered by a lack of attachment to 
other cells or to the extracellular matrix (EMC). Recently, we have characterized multicellular 
spheroids from HGSOC ascites. Interestingly, we found that these spheroids contained one 
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or more cores of myofibroblastic-like cells encased in a shell of tumor cells suggesting that 
free-floating tumor and stromal cells in peritoneal effusions can interact with each other to 
form heterotypic spheroids (Figure 1). The analysis of multicellular spheroid cell components 

isolated from EOC ascites revealed that myofibroblastic-like cells were present in all spher-

oids studied [47]. Based on data derived from a 3D in vitro model, the interaction between 

myofibroblastic-like cells and tumor cells is mediated, at least in part, by β1-integrin [45, 47]. 

In addition, β-catenin-regulated ALDH1A1, a known cancer stem cell marker, has also been 
implicated in the formation of multicellular spheroids [48]. Recent studies suggest that tumor 

cells possess varying capacity for spheroid formation [45, 47, 49]. A positive correlation has 

been reported between compact spheroid formation and a mesenchymal phenotype of tumor 

cells [47, 49]. Therefore, aggressive cancer cell populations (mesenchymal phenotype) could 

gain a survival advantage through their propensity to form more compact spheroids. Recent 

data suggest that the presence of myofibroblasts in multicellular spheroids promotes the inva-

sion of tumor cells [50]. These data suggest that spheroid-associated myofibroblasts may play 
an important role in EOC progression. In addition, these stromal cells may play a role in 

the early steps of spheroid formation before peritoneal implantation. Myofibroblasts located 
within the center of spheroids may provide initial matrix support for tumor cells to avoid 

anoikis. Spheroid-associated myofibroblasts may also secrete factors within the microenvi-
ronment of the spheroids that induce signaling events in tumor cells to further inhibit anoikis. 
Recent data suggest that tumor-associated macrophages (TAMs) may promote spheroid for-

mation and tumor growth in a mouse model [51]. This group found that nearly 80% of mac-

rophages infiltrated in the peritoneal cavity were detected in spheroids. Spheroid-associated 
TAMs were shown to secrete large amounts of epidermal growth factor (EGF), which leads to 
upregulation of integrin and ICAM-1 expression in tumor cells to form a positive autocrine 
feedback loop [51].

4. Cell-free ascites: biomarkers and EOC progression

As mentioned above, the presence of ascites is correlated with poor prognosis. In a study 

limited to patients with stage III/IV EOC, women without ascites had a 5-year survival rate 

of 45% compared to 5% for those with ascites [52]. The composition of cell-free ascites is 

also a major predictor of clinical prognosis. For example, EOC patients with ascites contain-

ing high IL-6 levels (>2662 pg/ml) at diagnostic had a worse outcome [53]. In that study, 

IL-6 was found to be an independent factor for progression-free survival. Patients with EOC 

and higher IFN-γ expression levels in ascites have shorter disease-free progression and over-

all survival [54]. Measuring cytokines in ascites may also provide a novel approach to dis-

criminate patients with intrinsic resistance to first-line therapy [55]. The authors found that 

the combination of serum CA125 and ascites leptin levels was a strong predictor of clinical 

resistance to first-line therapy. The biochemical composition of ascites, particularly the levels 
of chemokines, chemokines receptors and growth factors, including CCL2, CXCL1, CXCL5, 
CXCL8, CXCL12, HGF, TGF-β1 and VEGF, in undifferentiated tumors could explain, to some 
extent, the aggressive behavior of this histotype [56]. Ascites is therefore an attractive bio-

fluid for biomarker discovery as it is easy and minimally invasive to obtain. There is indeed 
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 growing evidence showing that proximal fluids such as ascites are valuable sources for bio-

marker discovery as they reflect events in ovarian tumorigenesis earlier than in peripheral 
blood circulation [57, 58]. The concentration of soluble factors is usually much higher in asci-

tes compared to serum, which increases the likelihood of detecting low abundance proteins 
[24, 57]. In that context, proteomic/peptidomic profiling of ascites has been employed for bio-

marker discovery [59–61]. Different experimental approaches were used leading to the iden-

tification of various sets of biomarkers all of which requiring further validation to determine 
their true potential. Nonetheless, ascites profiling represents a potentially new approach for 
much needed new biomarkers in the context of EOC.

Beyond the contribution of specific cell types in ascites, extracellular cues from cell-free 
ascites have the potential capacity to drive disease progression. Cytokine profiling of EOC 
ascites has demonstrated elevated levels of various pro-tumorigenic cytokines including 
adiponectin, CXCL1, CXCL10, CCL2, CCL4, ICAM-1, IL-6, IL-8, IL-10, IL-15, PDGF-BB, 
RANTES and VEGF [24, 25]. Theses cytokines contribute to create an inflammatory environ-

ment that sustains chronic inflammation. Chronic inflammation, in turns, promotes tumor 
growth and peritoneal spread [62]. IL-6 is probably the best studied cytokine in that context. 
IL-6 signaling is known to be associated with specific immune and metabolic alterations that 
lead to cancer cachexia, which is often seen with advanced diseases. IL-6 plays an impor-

tant role in the development of ascites as well as the spread of EOC through, at least in 

part, its induction of tumor angiogenesis [63]. In support for the role of IL-6, we found that 

IL-6 and sIL-6R are significantly higher in ascites obtained from women with advanced dis-

eases compared to women with stage I/II EOC (Table 1). VEGF is a well-established factor 

that increases vascular permeability. VEGF binding to its receptor activates focal adhesion 

kinase (FAK) which localizes to the cytoplasmic tail of VE-cadherin at endothelial cell-cell 
junctions. FAK phosphorylates β-catenin, which destabilizes the cell-cell junctions, resulting 
in increased vascular permeability [64]. Metabolome profiling of ascites has revealed sig-

nificant differences in fatty acids, cholesterol, ceramide, glycerol-3-phosphate, glucose and 
glucose-3-phosphate compared to non-cancerous peritoneal effusions [65]. Whether these 

changes directly contribute to oncogenic signaling or they merely reflect upregulation of 
pathways of the fatty acid synthesis associated with increased metabolic activity in tumor 
cells remains to be determined.

There is extensive cellular crosstalks and signaling events between the surrounding envi-
ronment and tumor cells during EOC dissemination and progression. As a result, asci-

tes is constantly adapting in response to the different cues. In order to characterize the 

changes in ascites during EOC progression, we have performed cytokine profiling of 
stage I/II and III/IV serous ascites. As shown in Table 1, 29 cytokines/chemokines/growth 
factors out of 120 tested were present at significantly higher levels in stage III/IV ascites 

supporting the idea that ascites evolve during EOC progression. Consistent with the criti-

cal role of IL-6 in EOC progression, we found several components of the IL-6 trans-signal-

ing system, including IL-6, IL-6 receptor (IL-6R), and soluble glycoprotein 130 (sgp130), 

elevated in ascites of women with advanced diseases. Factors such as CCL2 have been 

implicated in CAFs activation [12]. As mentioned above, once stimulated myofibroblas-

tic-like cells in ascites provide a source of secreted factors that support tumorigenesis. 
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Cytokines Serous Stage I–II RFUa 

(SEM) (n = 2)

Serous Stage III–IV RFU 

(SEM) (n = 5)

Fold change p

IL-6 1352 (302) 14183 (10619) 10.5 <0.0001

Angiopoietin-2 6293 (4081) 14683 (11235) 9.8 0.0076

IL-10 457 (45) 4220 (3752) 9.2 0.0003

Leptin 561 (102) 4991 (5849) 8.9 0.0031

sTNF RI 828 (260) 5238 (2768) 6.3 <0.0001

uPAR 1092 (488) 6417 (3387) 5.9 <0.0001

CXCL1 2569 (1386) 14926 (12569) 5.8 0.0003

HGF 1017 (212) 5504 (4708) 5.4 0.0004

OPG 978 (394) 3493 (1606) 3.6 <0.0001

CCL2 1918 (480) 8032 (5439) 4.2 0.0001

Fit-3 ligand 739 (129) 3092 (2119) 4.2 0.0001

CCL16 593 (146) 2313 (1713) 3.9 0.0003

CCL7 630 (119) 2366 (2184) 3.8 0.0021

IL-1 R4/ST2 709 (188) 2194 (2078) 3.1 0.0049

CCL22 776 (131) 2301 (1246) 3.0 <0.0001

ICAM-1 4107 (861) 11832 (4961) 2.9 <0.0001

EGFR 871 (239) 2514 (1937) 2.9 0.0013

IGFBP-6 1274 (594) 3668 (1537) 2.9 <0.0001

IL-16 654 (106) 1814 (1738) 2.8 0.0077

CXCL13 679 (98) 1851 (1477) 2.7 0.0022

Axl 1039 (412) 2578 (856) 2.5 <0.0001

CXCL9 773 (103) 1903 (1308) 2.1 0.0017

sTNF RII 2393 (759) 5301 (1694) 2.5 0.0011

Fas 1487 (557) 3779 (3301) 2.5 0.0067

IL-3 734 (191) 1720 (1058) 2.4 0.0006

CCL4 1312 (369) 2739 (1704) 2.2 <0.0001

CCL19 797 (184) 1712 (1521) 2.2 0.0155

IGFBP-1 2827 (1092) 6007 (4692) 2.1 0.0091

IL-6 R 3602 (1009) 7160 (4835) 2.0 0.0048

MIF 2920 (916) 5460 (3396) 1.9 0.0051

sgp130 1510 (359) 2510 (852) 1.7 0.0002

TIMP-1 1189 (233) 1669 (833) 1.5 0.0268

SEM: standard error of the mean.
a Relative fluorescent unit.

Table 1. Levels of cytokines in stage I/II versus stage III/IV ovarian cancer ascites.

Ascites in Ovarian Cancer Progression: Opportunities for Biomarker Discovery and New Avenues…
http://dx.doi.org/10.5772/intechopen.70993

151



Ascites Tumor cells

Mesothelial cells or CAFs

Epigenetic 

changes

Aggregation & survival

Primary tumor site

(ovary or 

fallopian tube)

CAFs 

crosstalk with 

shedding

promote 

tumor cells to 

shedding 

Tumor cells

Shedded 

cells

myofibroblastic 

Mesothelial lining

Multiple 

tumor 

implants

Immune 

evasion

Adhesion & Invasion

multicellular

Heterotypic 

spheroid

Aggregation

Aggregation of tumor cells

with shedded myofibroblastic cell

aggregates enabled tumor cells

to avoid anoikis 

Figure 2. Model for EOC dissemination. CAFs in the primary tumor become educated by the tumor cells to acquire 
pro-tumorigenic functions. CAFs then in turns secrete a plethora of factors that enable tumor cells to exfoliate from 

the primary tumor. Once in the peritoneal fluid, tumor cells aggregate with free-floating mesothelial cells to form 
multicellular heterotypic spheroids, which enables tumor cells to avoid anoikis and gain a more invasive phenotype. 
Multicellular spheroids then attach to the mesothelial lining using various cell adhesion molecules. Mesothelial cells 
lining the peritoneum dissociate which enables tumor cells to invade to mesothelium lining.

Therefore, disrupting specific factors in cell-free ascites may provide an additional level 

of therapeutic intervention.

5. How does the tumor environment affect EOC dissemination?

One of the reasons for unsuccessful EOC treatment is its insidious nature, resulting from an 

unusual mechanism of dissemination. In contrast to other tumors that spread predominantly 

through lymph and bloodstream, EOC has a distinct tendency for metastasizing via shedding 

of cancer cells from the primary tumor site into the peritoneal cavity and implanting onto 

the mesothelial lining of the peritoneal cavity. The current admitted model for pelvic and 
peritoneal metastasis involves the shedding of tumor cells from the primary tumor into the 

abdominal cavity, wherein they survive and travel as free-floating multicellular spheroids to 
disseminate at distant sites where they adhere onto the mesothelial lining of the peritoneum 

and disaggregate to form metastatic outgrowth (Figure 2). Although not clearly define, each 
of these steps must require adaptive changes in tumor and/or stromal cells to progress to the 

next step.
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A single mesothelial cell layer lines the pelvic and peritoneal organs including the diaphragm, 

bowel serosa, omentum and entire peritoneum. This mesothelial layer is highly receptive to 

ovarian cancer seeding [66]. Implantation of spheroids on the peritoneum involves interactions 

between cancer cells and the mesothelium. Adhesion of ovarian cancer cells to the mesothelial 

layer is facilitated by the expression of matrix metalloproteinase such as MMP-2 and MMP-9, 
and by fibronectin and vitronectin as well as their integrin receptors [67–69]. Once tumor cells 

have attached to the peritoneal surface, they gain access to the submesothelial environment by 
exerting force on the mesothelial lining, driving migration and clearance of the mesothelial cells 

[70]. Tumor cells undergo epithelial-to-mesenchymal transition (EMT) during the process [71].

Cells shed from the primary tumor aggregate to form free-floating multicellular spheroids in 
ascites, which initially spread to adjacent organs such as uterus, contralateral adnexa, bladder 

and rectum (stage II). After extension to the pelvic cavity, EOC will disseminate through-

out a transcoelonic route to the peritoneal cavity forming multiple tumor implants (stage 

III), which are often difficult to remove completely at the time of the cytoreductive surgery 
and, substantially contribute to the high morbidity associated with this cancer. Metastasis 
can also occur beyond the abdominal cavity (stage IV). Whether the metastatic characteristics 

are already inherent in the primary tumor or are present only in subclone of metastatic cells 

within the primary tumor mass or occur in response to environmental cues remains unclear. 

This process of transcolonic seeding could be a continuing metastatic adaptive behavior or 

a passive process, in which exfoliated tumor cells that have already acquired all the neces-

sary metastatic characteristics are merely transported via ascites into the peritoneal cavity 

to new sites. Comparative genomic studies showed similar genetic alterations in primary 

ovarian tumors and their respective metastasis supporting a passive transcolonic dissemina-

tion. However, transcriptomic analysis of matched primary tumors and peritoneal metastasis 

demonstrated the upregulation of certain pathways in metastatic lesions which suggest that 

the heterogeneity of tumor cells found in EOC is imposed, at least in part, by the nature of 

their surrounding environment [72]. The same group identified versican as a key upregulated 
gene in CAFs associated with the primary tumor, which promoted the motility and invasion 

of EOC cells by activating the nuclear factor-κB (NF-κB) signaling pathway and upregulating 
CD44, MMP-9, and hyaluronan-mediated motility receptor expression in cancer cells [73]. 

Versican expression was modulated by the activation of TGF-β signaling in CAFs induced 
by TGF-β ligands secreted by cancer cells. Therefore, these data further support the idea that 
ascites play an active, rather than a passive, role in EOC dissemination.

6. What are the effects of ascites on tumor cells?

The observation that ascites is often associated with the most invasive malignant tumors indi-

rectly supports the notion that ascites is involved in the progression of EOC. Although different 
soluble factors in ascites have been implicated in EOC cell migration and invasion, the com-

bined effect of the various factors found in cell-free ascites is also important to assess. Puiffe and 
colleagues have assessed the effect of 54 distinct ascites on growth, invasion and spheroid for-

mation in comparison to serum in a single cell line [23]. They showed that ascites fell into one of 
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two categories: stimulatory or inhibitory. The mechanisms or factors responsible for these oppo-

site effects were not further investigated. Consistent with the results of Puiffe et al., Lane et al. 
showed that not all EOC ascites tested (2/6) promoted cancer cell migration [29]. In this study, 

the authors found that CCL18 was one of the factors in ascites implicated in ascites-induced cell 

migration. As such, CCL18 might represent a potentially new target in EOC treatment.

HGSOC ascites possess pro-survival properties. Ascites inhibits drug and TRAIL-induced 

apoptosis in EOC cells. Unsurprisingly, given the heterogeneity of ascites, the magnitude 

of the effects varies depending on the cell line and ascites tested [74, 75]. Multiple signaling 
pathways are activated by ascites in cancer cells, including up-regulation of anti-apoptotic 

protein Mcl-1 through ERK1/2-Elk-1 [76], up-regulation of anti-apoptotic protein c-FLIP 

[74], and activation of Akt through αvβ5/FAK signaling [75, 77], all of which contributing 

to the pro-survival effect of ascites. Collectively, these data support the notion that ascites 
is a tumor environment enriched with pro-tumorigenic molecules. A considerable effort is 
required however to gain a comprehensive understanding of how the different factors in 
ascites may alter the properties of tumor and stromal cells. The complexity of these processes 

requires the development of models that reflect the in vivo conditions as close as possible.

7. How can we exploit ascites for developing new therapeutic strategies?

More effective therapies to combat metastatic disease are urgently required for EOC, particu-

larly in the context where early detection of this disease remain a difficult goal to achieve. Since 
the prognosis of patients with peritoneal metastases is directly correlated with optimal surgi-

cal cytoreduction [78], and widespread metastases are not often entirely amenable to surgery, 

the development of novel strategies to limit or stop metastatic progression is imperative. In that 

context, novel strategies that target interactions between cancer cells and their environment and 

inflammation-driven modifications are likely to be broadly applicable to cancers that metastasize 
within the abdominal cavity. In addition, as stromal cells are genetically more stable compared 

to tumor cells, targeting stromal cells rather than tumor cells would be less prone to the develop-

ment of resistance. Thus, targeting the tumor environment may be a more compelling option.

Based on our increasing knowledge of the role of ascites and its components, a number of targeted 
specific therapies have been developed to improve EOC outcome. Bevacizumab, an anti-VEGF 
targeted therapy, is probably the most studied VEGF-targeting agent in EOC patients in the set-

ting of front-line, maintenance or salvage therapy [79]. Although VEGF-targeting agents have 

yielded promising results in EOC in the settings of front-line and salvage treatment, the efficacy 
of these agents has yet to be clarified. Therapies taking advantage of the immune system could 
represent another potential avenue. For example, intra-peritoneal infusion of Catumaxomab, 

an anti-epithelial cell adhesion molecule (EpCAM), provided a significant improvement of asci-
tes-related signs and symptoms [80]. Catumaxomab mediates a T-cell-induced lysis of tumor 

cells. Abagovomab is a murine monoclonal anti-idiotypic antibody that mimics parts of CA125. 

It is designed to act as an active immunogen aimed at breaking immune tolerance to the anti-
gen. Unfortunately, abagovomab showed no improvement in progression-free or overall sur-

vival in a phase III clinical trial [81]. Another anti-CA125 antibody, Oregovomab, also failed 
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to show improved outcome in EOC patients [82]. Anti-IL6 chimeric antibody Siltuximab has 

been assessed in phase II clinical trial but has shown very limited clinical benefits [83]. Other 

emerging strategies include the concept of neutralizing tumor-associated chronic inflammation 
as ascites in a highly pro-inflammatory environment [84].

8. Conclusions and future directions

There is an increasing interest for understanding the role of the tumor environment in the 

context of ovarian cancer. Recent studies have revealed new biological concepts and iden-

tified new therapeutic strategies to target the ascites. As illustrated by the limited clinical 
success obtained thus far, many challenges remain, including how to identify and target 

susceptible molecules given the complexity and heterogeneity of the tumor environment. 

Although the heterogeneity of ascites is a potential limitation, it also provides a unique 

opportunity for the development of personalized medicine based on the patient’s character-

istics. In that context, the profiling of the cell-free ascites components could guide clinical 
decision making for patient management. An important aspect to overcome limitations to 
unsuccessful clinical trials is the development and implementation of suitable in vitro and 

in vivo pre-clinical models that accurately mirror the clinical situation. For example, mount-

ing evidence suggests that cell behavior in 3D cultures differs from monolayer cultures and 
better reflects the in vivo situation.

The accessibility of ascites translates into a readily available source of proximal fluids. In that 
context, ascites is a milieu from which we could potentially derive diagnostic and prognostic 

biomarkers. With the advances in our understanding of the crosstalk between the different 
cellular components of ascites and the various cues that cells receive from the surrounding 

environment, it is anticipated that reliable biomarkers will become available in the near future.

Acknowledgements

This work was supported by internal funding from Université de Sherbrooke.

Conflict of interest statement

Author declares no conflict of interests for this article.

Author contribution

Piché A. drafted the paper and wrote the final version. Matte I. and Bessette P. reviewed the 
draft and approved the final version.

Ascites in Ovarian Cancer Progression: Opportunities for Biomarker Discovery and New Avenues…
http://dx.doi.org/10.5772/intechopen.70993

155



Author details

Isabelle Matte¹, Paul Bessette² and Alain Piché¹*

*Address all correspondence to: alain.piche@usherbrooke.ca

1 Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, 
Sherbrooke, Canada

2 Département de Chirurgie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, 
Canada

References

[1] Siegel RL, Miller KD, Jemal A. Cancer Statistics 2017. CA: A Cancer Journal for Clinicians. 
2017;67:7-30. DOI: 10.3322/caac.21387

[2] Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, Xu X, Hamilton 
TC. Focus on epithelial ovarian cancer. Cancer Cell. 2004;5:19-24. DOI: 10.1016/S1535- 

6108(04)00002-9

[3] Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: New opportunities for 
translation. Nature Reviews. Cancer. 2009;9:415-428. DOI: 10.1038/nrc2644

[4] Shen-Gunther J, Mannel RS. Ascites as a predictor of ovarian malignancy. Gynecologic 
Oncology. 2002;87:77-83. DOI: 10.1006/gyno.2002.6800

[5] Ayhan A, Gultekin M, Taskiran C, Dursun P, Firat P, Bozdag G, Celik NY, Yuce K. Ascites 
and epithelial ovarian cancers: A reappraisal with respect to different aspects. International 
Journal of Gynecological Cancer. 2007;17:68-75. DOI: 10.1111/j.1525-1438.2006.00777.x

[6] Kobel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, Leung S, Bowen NJ, 
Ionescu DN, Rajput A, Prentice LM, Miller D, Santos J, Swenerton K, Gilks CB, Huntsman 
D. Ovarian carcinoma subtypes are different diseases: Implications for biomarker stud-

ies. PLoS Medicine. 2008;5:e232. DOI: 10.1371/journal.pmed.0050232

[7] Ramalingam P. Morphologic, immunophenotypic, and molecular features of epithelial 
ovarian cancer. Oncology (Williston Park). 2016;30:166-176

[8] Tan DS, Agarwal R, Kaye SB. Mechanisms of transcoelomic metastasis in ovarian cancer. 
Lancet Oncol. 2006;7:925-934. DOI: 10.1016/S1470-2045(06)70939-1

[9] Poveda VA, Casado HA, Cervantes RA, Gallardo RD, Garcia GE, Gonzalez MA, 
Lopez GG, Mendiola FC, Ojeda GB. Treatment guidelines in ovarian cancer. Clinical & 
Translational Oncology. 2007;9:308-316. DOI: 10.1007/s12094-007-0058-8

[10] Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the 
tumor microenvironment. Cancer Cell. 2012;21:309-322. DOI: 10.1016/j.ccr.2012.02.022

Ascites - Physiopathology, Treatment, Complications and Prognosis156



[11] Swartz MA, Lida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, 
DeClerck YA. Tumor microenvironment complexity: Emerging roles in cancer therapy. 
Cancer Research. 2012;72:2473-2480. DOI: 10.1158/0008-5472.CAN-12-0122

[12] Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metasta-

sis. Nature Medicine. 2013;19:1423-1437. DOI: 10.1038/nm.3394

[13] Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a 
vascular permeability factor that promotes accumulation of ascites fluids. Science. 1983;219: 
983-985. DOI: 10.1126/science.6823562

[14] Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene 
expression in normal and neoplastic human ovaries. Cancer Research. 1994;54:276-280 

DOI: Published January 1994

[15] Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: New ave-

nues for therapy and research. Nature Reviews. Cancer. 2013;13:273-282. DOI: 10.1038/

nrc3432

[16] Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are acti-
vated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kB-
dependent manner. Cancer Cell. 2010;17:135-147. DOI: 10.1016/j.ccr.2009.12.041

[17] Ren J, Xiao YJ, Singh LS, Zhao X, Zhao Z, Feng L, Rose TM, Prestwich GD, Xu Y. Lysophos-
phatidic acid is constitutively produced by human peritoneal mesothelial cells and 

enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Research. 

2006;66:3006-3014. DOI: 10.1158/0008-5472.CAN-05-1292

[18] Pasquet M, Glozio M, Mery E, Rafii A, Benabbou N, Mirshahi P, Hennebelle I, Bourin P, 
Allal B, Teissie J, Mirshahi M, Couderc B. Hospicells (ascites-derived stromal cells) pro-

mote tumorigenecity and angiogenesis. International Journal of Cancer. 2010;126:2090-

2101. DOI: 10.1002/ijc.24886

[19] Matte I, Lane D, Bachvarov D, Rancourt C, Piché A. Role of malignant ascites on human 
mesothelial cells and their gene expression profiles. BMC Cancer. 2014;14:288. DOI: 

10.1186/1471-2407-14-288

[20] Mills GB, May C, Hill M, Campbell S, Shaw P, Marks A. Ascitic fluid from human ovar-

ian cancer patients contains growth factors necessary for intraperitoneal growth of 

human ovarian adenocarcinoma cells. The Journal of Clinical Investigation. 1990;86:851-

855. DOI: 10.1172/JCI114784

[21] Richardson M, Gunawan J, Hatton MW, Seidlitz E, Hirte HW, Singh G. Malignant asci-
tes fluids (MAF), including ovarian cancer-associated MAF, contains angiostatin and 
other factor(s) which inhibit angiogenesis. Gynecologic Oncology. 2002;86:279-287. DOI: 

10.1006/gyno.2002.6760

[22] Yamada T, Sato K, Komachi M, Malchinkhuu E, Tobo M, Kimura T, Kuwabara A, 
Yanagita Y, Ikeya T, Tanahashi Y, Ogawa T, Ohwada S, Morishita Y, Ohta H, Im DS, 

Ascites in Ovarian Cancer Progression: Opportunities for Biomarker Discovery and New Avenues…
http://dx.doi.org/10.5772/intechopen.70993

157



Tamoto K, Tomura H, Okajima F. Lysophosphatidic acid (LPA) in malignant ascites stim-

ulates motility of human pancreatic cancer cells through LPA1. The Journal of Biological 
Chemistry. 2004;279:6595-6605. DOI: 10.1074/jbc.M308133200

[23] Puiffe ML, Le Page C, Filali-Mouhim A, Zietarska M, Ouellet V, Tonin PN, Chevrette 
M, Provencher DM, Mes-Masson AM. Characterization of ovarian cancer ascites on cell 
invasion, proliferation, spheroid formation, and gene expression in an in vitro model of 

epithelial ovarian cancer. Neoplasia. 2007;9:820-829. DOI: 10.1593/neo.07472

[24] Giuntoli RL, Webb TJ, Zoso A, Rogers O, Diaz-Montes TP, Bristow RE, Oelke M. Ovarian 
cancer-associated ascites demonstrates altered immune environment: Implications for 

antitumor immunity. Anticancer Research. 2009;29:2875-2884

[25] Matte I, Lane D, Laplante C, Rancourt C, Piché A. Profiling of cytokines in human epi-
thelial ovarian cancer ascites. American Journal of Cancer Research. 2012;2:566-580

[26] Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD, Jaffe 
RB. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, 
and causes dramatic vascular remodeling in an ovarian model. Clinical Cancer Research. 

2003;9:5721-5728

[27] Nakamura M, Ono YJ, Kanemura M, Tanaka T, Hayashi M, Terai Y, Ohmichi M. Hepatocyte 
growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via 

the mesothelial-mesenchymal transition of the peritoneum. Gynecologic Oncology. 

2015;139:345-354. DOI: 10.1016/j.ygyno.2015.08.010

[28] Matte I, Lane D, Laplante C, Garde-Granger P, Rancourt C, Piché A. Ovarian cancer asci-
tes enhance the migration of patient-derived peritoneal mesothelial cells via cMet path-

way through HGF-dependent and –independent mechanisms. International Journal of 
Cancer. 2015;137:289-298. DOI: 10.1002/ijc.29385

[29] Lane D, Matte I, Laplante C, Garde-Granger P, Carignan A, Bessette P, Rancourt C, Piché 
A. CCL18 from ascites promotes ovarian cancer cell migration through proline-rich tyro-

sine kinase 2 signaling. Molecular Cancer. 2016;15:58. DOI: 10.1186/s12943-016-0542-2

[30] Kassis J, Klominek J, Kohn EC. Tumor microenvironment: What can effusions teach us? 
Diagnostic Cytopathology. 2005;33:316-319. DOI: 10.1002/dc.20280

[31] Yung S, Chan TM. Pathophysiology of the peritoneal membrane during peritoneal 
dialysis: The role of hyaluronan. Journal of Biomedicine & Biotechnology. 2011;180:594. 

DOI: 10.1155/2011/180594

[32] Lopez-Cabrera M. Mesenchymal conversion of mesothelial cells is a key event in the 
pathophysiology of the peritoneum during peritoneal dialysis. Advances in Medical 
Sciences. 2014;473:134. DOI: 10.1155/2014/473134

[33] Rynne-Vidal A, Jimenez-Heffernan JA, Fernandez-Chacon C, Lopez-Cabrera M, Sandoval 
P. The mesothelial origin of carcinoma associated-fibroblasts in peritoneal metastasis. 
Cancer. 2015;7:1994-2011. DOI: 10.3390/cancers7040872

Ascites - Physiopathology, Treatment, Complications and Prognosis158



[34] Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaino P, Perez-Lozano ML, Ruiz-
Carpio V, Majano PL, Lamas S, Rodriguez-Pascual F, Borras-Cuesta F, Dotor J, Lopez-
Cabrera M. Blocking TGF-β1 protects the peritoneal membrane form dialysate-induced 
damage. Journal of the American Society of Nephrology. 2011;22:1682-1695. DOI: 10.1681/

ASN.2010111197

[35] Kajiyama H, Kikkawa F, Maeda O, Suzuki T, Ino K, Mizutani S. Increased expression of 
dipeptidyl peptidase IV in human mesothelial cells by malignant ascites from ovarian 

carcinoma patients. Oncology. 2002;63:158-165. DOI: 10.1159/000063801

[36] Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH. The role of CD36/ 
dipeptidyl peptidase IV in cancer. Frontiers in Bioscience. 2008;13:1634-1645

[37] Stadlmann S, Amberger A, Polheimer J, Gastl G, Offner FA, Margreiter R, Zeimet 
AG. Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells 

are possible source of vascular endothelial growth factor in inflammatory and malignant 
ascites. Gynecologic Oncology. 2005;97:784-789. DOI: 10.1016/j.ygyno.2005.02.017

[38] Matte I, Laplante C, Garde-Granger P, Bessette P, Rancourt C, Piché A. Ascites from ovar-

ian cancer patients stimulate MUC16 mucin expression and secretion in human peritoneal 
mesothelial cells through an Akt-dependent mechanism. 2017; Manuscript submitted.

[39] Thériault C, Pinard M, Comamala M, Migneault M, Beaudin J, Matte I, Boivin M, 
Piché A, Rancourt C. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, 
tumorigenesis and metastasis. Gynecologic Oncology. 2011;121:434-443. DOI: 10.1016/j.

ygyno.2011.02.020

[40] Giannakouros P, Matte I, Rancourt C, Piché A. Transformation of NIH3T3 mouse fibro-

blast cells by MUC16 mucin (CA125) is driven by its cytoplasmic tail. International 
Journal of Oncology. 2015;46:91-98. DOI: 10.3892/ijo.2014.2707

[41] Rao TD, Tian H, Ma X, Yan X, Thapi S, Schultz N, Rosales N, Monette S, Wang A, Hyman 
DM, Levine DA, Solit D, Spriggs DR. Expression of the carboxy-terminal portion of 
MUC16/CA125 induces transformation and tumor invasion. PLoS One. 2015;10:e0126633. 

DOI: 10.1371/journal.pone.0126633

[42] Reinartz S, Failer S, Schuell T, Wagner U. CA125 (MUC16) gene silencing suppresses 
growth properties of ovarian and breast cancer cells. European Journal of Cancer. 
2012;48:1558-1569. DOI: 10.1016/j.ejca.2011.07.004

[43] Giannakouros P, Comamala M, Matte I, Rancourt C, Piché A. MUC16 mucin (CA125) reg-

ulates the formation of multicellular aggregates by altering β-catenin signaling. American 
Journal of Cancer Research. 2014;5:219-230

[44] Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J, Zhu H, Thompson 
EW, Quinn MA, Findlay JK, Ahmed N. Isolation and characterization of tumor cells 
from the ascites of ovarian cancer patients: Molecular phenotype of chemoresistant ovar-

ian tumors. PLoS One. 2012;7:e46858. DOI: 10.1371/journal.pone.0046858

Ascites in Ovarian Cancer Progression: Opportunities for Biomarker Discovery and New Avenues…
http://dx.doi.org/10.5772/intechopen.70993

159



[45] Casey RC, Burleson KM, Skubitz KM, Pambuccian SE, Oegema TR, Ruff LE, Skubitz 
AP. Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicel-
lular spheroids. The American Journal of Pathology. 2001;159:2071-2080

[46] Shield K, Ackland ML, Ahmed N, Rice GE. Multicellular spheroids in ovarian cancer metas-

tases: Biology and pathology. Gynecologic Oncology. 2009;113:143-148. DOI: 10.1016/ 

j.ygyno.2008.11.032

[47] Matte I, Legault CM, Garde-Granger P, Laplante C, Bessette P, Rancourt C, Piché 
A. Mesothelial cells interact with tumor cells for the formation of ovarian cancer multicel-
lular spheroids in peritoneal effusions. Clinical & Experimental Metastasis. 2016;33:839-

852. DOI: 10.1007/s10585-016-9821-y

[48] Condello S, Morgan CA, Nagdas S, Coa L, Turek J, Hurley TD, Matei D. β-Catenin-
regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene. 2015;34:2297-

2308. DOI: 10.1038/onc.2014.178

[49] Sodek KL, Ringuette MJ, Brown TJ. Compact spheroid formation by ovarian cancer cells 
is associated with contractile behavior and an invasive phentoype. International Journal 
of Cancer. 2009;124:2060-2070

[50] Matte I, Laplante C, Garde-Granger P, Bessette P, Piché A. Ovarian cancer ascites pro-

mote tumor spheroid adhesion and invasion. 2017; manuscript submitted

[51] Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, Xu X, Zhang H, Santin AD, Lou G, Min W.  
Tumor-associated macrophages drive spheroid formatin during early transcoelomic 

metastasis of ovarian cancer. The Journal of Clinical Investigation. 2016;126:4157-4173. 

DOI: 10.1172/JCI87252

[52] Puls LE, Duniho T, Hunter JE, Kryscio R, Blackhurst D, Gallion H. The prognostic impli-
cation of ascites in advanced-stage ovarian cancer. Gynecologic Oncology. 1996;61:109-

112. DOI: 10.1006/gyno.1996.0106

[53] Lane D, Matte I, Rancourt C, Piché A. Prognostic significance of IL-6 and IL-8 ascites lev-

els in ovarian cancer patients. BMC Cancer. 2011;11:210. DOI: 10.1186/1471-2407-11-210

[54] Chen YL, Cheng WF, Chang MC, Lin HW, Huang CT, Chien CL, Chen CA. Inteferon-
gamma in ascites could be a predictive biomarker of outcome in ovarian carcinoma. 
Gynecologic Oncology. 2013;131:63-68. DOI: 10.1016/j.ygyno.2013.07.105

[55] Lane D, Matte I, Garde-Granger P, Laplante C, Carignan A, Rancourt C, Piché A.  
Inflammation-regulating factors in ascites as predictive biomarkers of drug resis-

tance and progression-free survival in serous epithelial ovarian cancers. BMC Cancer. 
2015;15:492. DOI: 10.1186/s12885-015-1511-7

[56] Mikula-Pietrasik J, Uruski P, Szubert S, Moszynski R, Szpurek D, Sajdak S, Tykarski A, 
Ksiazek K. Biochemical composition of malignant ascites determines high aggressive-

ness of undifferentiated ovarian tumors. Molecular Oncology. 2016;33:94. DOI: 10.1007/

s12032-016-0810-4

Ascites - Physiopathology, Treatment, Complications and Prognosis160



[57] Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: The long and 
uncertain path to clinical utility. Nature Biotechnology. 2006;24:971-983. DOI: 10.1038/

nbt1235

[58] Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers.
Nature. 2008;452:571-579. DOI: 10.1038/nature06916

[59] Kuk C, Kulasingam V, Gunawardana CG, Smith CR, Batruch I, Diamandis EP. Mining 
the ovarian cancer ascites proteome for potential ovarian cancer biomarkers. Molecular 
& Cellular Proteomics. 2008;8:661-669. DOI: 10.1074/mcp.M800313-MCP200

[60] Amon LM, Law W, Fitzgibbon MP, Gross JA, O’Briant K, Peterson A, Drescher C, Martin 
DB, McIntosh M. Integrative proteomic analysis of serum and peritoneal fluids helps 
identify proteins that are up-regulated in serum of women with ovarian cancer. PLoS 

One. 2010;5:e11137. DOI: 10.1371/journal.pone.0011137

[61] Bery A, Leung F, Smith CR, Diamandis EP, Kulasingam V. Deciphering the ovarian cancer 
ascites fluid peptidome. Clinical Proteomics. 2014;11:13. DOI: 10.1186/1559-0275-11-13

[62] Maccio A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58:133-147. 

DOI: 10.1016/j.cyto.2012.01.015

[63] Lo CW, Chen MW, Hsiao M, Wang S, Chen CA, Hsiao SM, Chan JS, Lai TC, Rose-John S, 
Kuo ML, Wei LH. IL-6 trans-signaling in formation and progression of malignant ascites in 
ovarian cancer. Cancer Research. 2011;71:424-434. DOI: 10.1158/0008-5472.CAN-10-1496

[64] Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, Lim ST, Tomar A, Tancioni I, 
Uryu S, Guan JL, Acevedo LM, Weis SM, Cheresh DA, Schlaepfer DD. VEFG-induced 
vascular permeability is mediated by FAK. Developmental Cell. 2012;22:146-157. DOI: 

10.1016/j.devcel.2011.11.002

[65] Shender VO, Pavlyukov MS, Ziganshin RH, Arapidi GP, Kovalchuk SI, Anikanov NA, 
Altukhov IA, Alexeev DG, Butenko IO, Shavarda AL, Khomyakova EB, Evtushenko E, 
Ashrafyan LA, Antonova IB, Kuznetcov IN, Gorbachev AY, Shakhparonov MI, Govorun 
VM. Proteome-metabolome profiling of ovarian cancer ascites reveals novel components 
involved in intercellular communication. Molecular & Cellular Proteomics. 2014;13:3558- 

3571. DOI: 10.1074/mcp.M114.041194

[66] Sodek KL, Murphy KJ, Brown TJ, Ringuette MJ. Cell-cell and cell-matrix dynamics in 
intraperitoneal cancer metastasis. Cancer and Metastasis Reviews. 2012;31:397-414. DOI: 

10.1007/s10555-012-9351-2

[67] Moss NM, Barbolina MV, Liu Y, Sun L, Munshi HG, Stack MS. Ovarian cancer cell 
detachment and multicellular aggregate formation are regulated by membrane type 

1 matrix metalloproteinase: A potential role in I.p. metastatic dissemination. Cancer 

Research. 2009;69:7121-7129. DOI: 10.1158/0008-5472.CAN-08-4151

[68] Kenny HA, Kaur S, Coussens LM, Lengyel E. The intital steps of ovarian cancer cell 
metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. The Journal 
of Clinical Investigation. 2008;118:1367-1379. DOI: 10.1172/JCI33775

Ascites in Ovarian Cancer Progression: Opportunities for Biomarker Discovery and New Avenues…
http://dx.doi.org/10.5772/intechopen.70993

161



[69] Kenny HA, Chiang CY, White EA, Schryver EM, Habis M, Romero IL, Ladanyi A, Penicka 
CV, George J, Matlin K, Montag A, Wroblewski K, Yamada SD, Mazar AP, Bowtell D, 
Lengyel E. Mesothelial cells promote early ovarian cancer metastasis through fibronectin 
secretion. The Journal of Clinical Investigation. 2014;124:4614-4628. DOI: 10.1172/JCI74778

[70] Iwanicki MP, Davidowtiz RA, Ng MR, Besser A, Muranen T, Merritt M, Danuser G, Ince 
TA, Brugge JS. Ovarian cancer spheroids use myosing-generated force to clear the meso-

thelium. Cancer Discovery. 2011;1:144-157. DOI: 10.1158/2159-8274.CD-11-0010

[71] Davidowitz RA, Selfors LM, Iwanicki MP, Elias KM, Karst A, Piao H, Ince TA, Drage 
MG, Dering J, Konecny GE, Matulonis U, Mills GB, Slamon DJ, Drapkin R, Brugge 
JS. Mesenchymal gene program-expressing ovarian cancer spheroids exhibit enhanced 
mesothelial clearance. The Journal of Clinical Investigation. 2014;124:2611-2625. DOI: 

10.1172/JCI69815

[72] Leung CS, Yeung TL, Yip KP, Pradeep S, Balasubramanian L, Liu J, Wong KK, Mangala 
LS, Armaiz-Pena GN, Lopez-Berestein G, Sood AK, Birrer MJ, Mok SC. Calcium-
dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on 
ovarian cancer metastatic potential. Nature Communications. 2014;5:5092. DOI: 10.1038/

ncomms6092

[73] Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, Zaid TM, Ghosh S, 
Birrer MJ, Mok SC. TGF-β modulates ovarian cancer invasion by upregulating CAF-
derived versican in the tumor microenvironment. Cancer Research. 2013;73:5016-5028. 

DOI: 10.1158/0008-5472.CAN-13-0023

[74] Lane D, Robert V, Grondin R, Rancourt C, Piché A. Malignant ascites protect against 
TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian cancer 
cells. International Journal of Cancer. 2007;121:1227-1237. DOI: 10.1002/ijc.22840

[75] Lane D, Goncharenko-Khaider N, Rancourt C, Piché A. Ovarian cancer ascites protects 
from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase 
and Akt activation. Oncogene. 2010;29:3519-3531. DOI: 10.1038/onc.2010.107

[76] Goncharenko-Khaider N, Matte I, Lane D, Rancourt C, Piché A. Ovarian cancer ascites 
increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate 
TRAIL-induced apoptosis. Molecular Cancer. 2012;11:84

[77] Lane D, Matte I, Laplante C, Garde-Granger P, Rancourt C, Piché A. Osteoprotegerin 
(OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian can-

cer cells to attenuate TRAIL-induced apoptosis. Journal of Ovarian Research. 2013;6:32. 

DOI: 10.1186/1757-2215-6-82

[78] Deraco M, Baratti D, Laterza B, Balestra MR, Mingrone E, Macri A, Virzi S, Puccio F, 
Ravenda PS, Kusamura S. Advanced cytoreduction as surgical standard of care and 
hyperthermic intraperitoneal chemotherapy as promising treatment in epithelial 

ovarian cancer. European Journal of Surgical Oncology. 2011;37:4-9. DOI: 10.1016/j.

ejso.2010.11.004

Ascites - Physiopathology, Treatment, Complications and Prognosis162



[79] Mabuchi S, Wakabayashi A, Kimura T. VEGF targeting agents in ovarian cancer. In: 
Farghaly SA, editor. Ovarian Cancer—Basic Science Perspective. Croatia: Intech; 2012. 
p. 335-354

[80] Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, 
Dudnichenko AS, Aleknaviciene B, Razbadauskas A, Gore M, Ganea-Motan E, Ciuleanu 
T, Wimberger P, Schmittel A, Schmalfelt B, Burges A, Bokemeyer C, Lindhofer H, Lahr 
A, Parsons SL. The trifunctional antibody catumaxomab for the treatment of malignant 

ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. 

International Journal of Cancer. 2010;127:2209-2221. DOI: 10.1002/ijc.25423

[81] Sabbatini P, Harter P, Scambia G, Sehouli J, Meier W, Wimberger P, Baumann KH, 
Kurzeder C, Schmalfeldt B, Cibula D, et al. Abagovomab as maintenance therapy in 

patients with epithelial ovarian cancer: A phase III trial of the AGO OVAR, COGI, GINECO, 

and GEICO–the MIMOSA study. Journal of Clinical Oncology. 2013;31:1554-1561. DOI: 

10.1200/JCO.2012.46.4057

[82] Berek J, Taylor P, McGuire W, Smith LM, Schultes B, Nicodemus CF. Oregovomab main-

tenance monoimmunotherapy does not improve outcomes in advanced ovarian cancer. 

Journal of Clinical Oncology. 2009;27:418-425. DOI: 10.1200/JCO.2008

[83] Angevin E, Tabernero J, Elez E, Cohen SJ, Bahleda R, van Laethem JL, Ottensmeier C, 
Lopez-Martin JA, Clive S, Joly F, et al. A phase I/II, multiple-dose, dose-escalation study 

of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced 
solid tumors. Clinical Cancer Research 2014;20:2192-2204. DOI: 10.1158/1078-0432.

CCR-13-2200

[84] Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflam-

mation: A magic bullet? Science. 2013;339:286-291. DOI: 10.1126/science.1232227

Ascites in Ovarian Cancer Progression: Opportunities for Biomarker Discovery and New Avenues…
http://dx.doi.org/10.5772/intechopen.70993

163




