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Abstract

High-resolution maps of soil property are considered as the most important inputs for
decision support and policy-making in agriculture, forestry, flood control, and environ-
mental protection. Commonly, soil properties are mainly obtained from field surveys.
Field soil surveys are generally time-consuming and expensive, with a limitation of appli-
cation throughout a large area. As such, high-resolution soil property maps are only
available for small areas, very often, being obtained for research purposes. In the chapter,
artificial neural network (ANN)models were introduced to produce high-resolution maps
of soil property. It was found that ANNs can be used to predict high-resolution soil
texture, soil drainage classes, and soil organic content across landscape with reasonable
accuracy and low cost. Expanding applications of the ANNs were also presented.

Keywords: ANN, soil drainage, soil texture, soil organic carbon, DEM, topography,
hydrological index, vertical slope position

1. Introduction

1.1. Soil properties

Difference of soils in physical and chemical determined what type of plants grows in a soil or

what particular crops grow in a region. Jack pine (Pinus banksiana), for example, occurs on

coarse sands, poor drainage, and shallow soils, and sugar maple (Acer saccharum) grows best

on deep, fertile, moist, well-drained soils in Ref. [1]. The most important soil properties

included soil texture, soil drainage, and soil organic carbon (SOC).

Soil texture is defined as relative proportions (percentages) of clay, sand, and silt contents.

These percentages are used to confirm soil textural classes in a soil texture triangle (Figure 1).

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Soil texture not only directly affects the porosity of soil, but also determines water-holding and

nutrient-holding capacity, flow characteristics, and long-term soil nutrient regime. For example,

soils with heavy clay in general have higher percentage of smaller pores, higher water-holding

capacity at lower water potentials and are often associated with poorly drained conditions with

limited aeration for plant growth. As a contrast, soils with heavy sand normally have relatively

higher percentage of larger pores with lower water-holding capacity under relatively dry

conditions. Soil texture also affects the risk of soil erosion and soil erodibility.

Soil drainage was defined as the frequency and duration of periods of water saturation or

partial saturation, and soil drainage classes reflect average soil moisture conditions in Ref. [3].

Soil drainage is associated with water-holding and nutrient-holding capacities, flow character-

istics, and solute transport. Soil drainage is also directly related to plant growth. For example,

plants grown on soil with poor drainage often suffer from reduced growth, leaf dieback as a

result of root suffocation, and root disease in Ref. [4]. Plants experiencing root decline from

excess water are also more susceptible to attack by secondary diseases and insects in Ref. [5].

Under natural conditions, soil drainage characteristic is one important factor that determines

which types of plants grow on a particular landscape site. For precision forestry and precision

agriculture, high-resolution soil maps are especially important in Ref. [6]. Soil drainage classes

are closely related soil texture and slope position (Figure 2).

Soil organic carbon refers to the carbon (C) occurring in soil organic matter of the soil. SOC can

help to improve soil physical properties by increasing water-holding capacity, stabilizing soil

structure in Ref. [8], soil chemical properties, and nutrients holding capacity in Ref. [9]. From a

land management perspective, SOC plays important roles in reducing soil erosion and improv-

ing crop productivity. For this reason, SOC content has been used as a required input variable

Figure 1. Canadian soil texture triangle in Ref. [2].
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for a number of hydrological simulation models in Ref. [10] and many landscape level models

for estimating soil water retention, cation exchange capacity, and soil bulk density in Ref. [11].

1.2. Mapping soil properties

Field soil surveys have been the primary method for determination of soil properties, includ-

ing soil texture, soil drainage, and SOC. For mapping purposes, soil surveys are normally

conducted with point samples, either systematically or randomly over a given area, and then

the point data are usually interpolated to produce soil maps. Various interpolation methods

have been used to produce soil maps, especially the kriging method in Ref. [12]. There is a

major limitation about interpolation method, i.e., the assumption that the spatial distributions

and changes of the interpolated properties are continuous. Therefore, large amount of data are

often required to produce accurate high-resolution soil maps. With the purpose of improving

Figure 2. Generalized soil drainage patterns and drainage classes for soils with coarse texture soil (A) and fine texture soil

(B) as influenced by slope position in Ref. [7].
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the interpolation accuracy with sparsely distributed sample points, various improved kriging

methods have been developed in Ref. [13]. However, the methods still require substantial

amounts of field samples to define the spatial autocorrelation and the precision of the resultant

maps will still depend upon the density and distribution of original data points in Ref. [14].

Due to high spatial variability of soil characteristics, large numbers of sampling points are

required to generate an accurate high-resolution soil map. Although the accuracy of a soil map

may be increased with increasing data points, intensive field surveys are expensive and time-

consuming. Furthermore, the accuracy is affected by the quality of the data, which, to a great

extent, depends on the field experience of the soil surveyors in Ref. [15]. As an alternative,

various models have been developed to produce soil property maps.

Statistical models with predictive powers could potentially overcome the problem of interpo-

lation methods in Ref. [16]. Bell et al., for example, related soil drainage class to parent material,

terrain, and surface drainage with the help of discriminant function analysis in Pennsylvania,

USA in Ref. [17]. According to this method, soil drainage probability maps were predicted well

when compared with published soil drainage maps. Campling et al. applied a logistic model

to successfully predict the probability of drainage classes in a tropical area using terrain prop-

erties (elevation, slope, distance-to-the-river channel) and vegetation indices from a Landsat

TM image in Ref. [18]. By applying discriminant function analysis and a co-kriging method,

Kravchenko et al. created soil drainage maps using topographical data, i.e., slope, curvature,

and flow accumulation, and soil electrical conductivity data in central Illinois, USA in Ref. [19].

But empirical models derived with traditional statistical methods may hinder the real relation-

ships between soil properties and independent data because the relationships are rarely linear

in nature.

1.3. Artificial neural networks

In recent years, artificial neural network (ANNs) have been increasingly used to overcome

non-linear problems. The ANN is a form of artificial intelligence that was inspired by the

studies of the human neuron and has been used to analyze biophysical data in Ref. [20]. ANNs

have the ability to auto-analyze the relationships between multi-source inputs (including

combinations of qualitative and quantitative data) by self-learning, and produce results with-

out hypothesis. Some ANNs have been successfully used to map soil properties in Ref. [21].

For example, in Licznar and Nearing’s study, soil loss was predicted quantitatively from

natural runoff plots with the ANN method in Ref. [22]. The results showed that correlation

coefficients (predicted soil loss versus measured values) were in the range of 0.7–0.9. Ramadan

et al. applied two different multivariate calibration methods (PCA and back-propagation

ANN) to predict soil properties (sand, silt, clay, etc.) with the help of DNA data from microbial

community in Ref. [23].

1.4. Objectives

In the chapter, we focused on describing a general approach for using ANNs to produce high-

resolution soil properties, from preparing data, building ANN structure, training ANNs,

optimizing networks, to simulating ANNs.
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2. Data preparation for modeling soil properties

Preparing data, including input data and target data, is an important and indeed a critical step

before building ANN for soil properties.

2.1. Input data

Input data were composed of potential variables that describe or determine the predicting soil

properties, including DEM-generated topo-hydrological variables, such as slope steepness, soil

terrain factor (STF), sediment delivery ratio (SDR), vertical slope position (VSP), topographic

witness index (TWI), and potential solar radiation (PSR) (Figure 3), and existing coarse resolu-

tion soil map, such as soil property map, geology map, surficial parent material map, and

hydrologic map, because (1) at local levels, soil properties are assumed to have been modified

by hydrological processes that are associated with topography and they can be modeled with a

Figure 3. The images of slope (A), soil terrain factor (B), sediment delivery ratio (C), vertical slope position (D), topo-

graphic witness index (E), and potential solar radiation (F) in the black brook watershed, New Brunswick, Canada.
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DEM in Ref. [24]; (2) at landscape levels, average soil properties were related to geological

formations and soil parent materials. These landscape features are assumed to have been

captured by existing coarse resolution soil maps.

Soil terrain factor is a modified version of the hydrological similarity index in Ref. [25]. It

considers total drainage area and slope as well as the clay content in rooting zone. The STF

was calculated using Eq. (1):

STF ¼ ln
Aþ 1ð ÞPclay

sþ kð Þ2
(1)

where A is the flow accumulation (m2); Pclay is the clay content (wt. %) from the coarse

resolution soil data; k is a parameter (=1); and s is the slope steepness (m m�1).

Sediment delivery ratio is the percent of sediment delivered to surface waters from the total

amount of soil eroded in a watershed. The ratio, calculated by Eq. (2), indicates the efficiency of

sediment transport in the watershed and is largely influenced by topography and the flow

distance to streams in Ref. [26].

SDRi ¼ exp �βti
� �

(2)

where ti is the travel time from cell i to the nearest channel (s); and β is a watershed-specific

constant.

Traveling time, ti, is defined by Eq. (3):

ti ¼
X

Np

j¼1

lj

vj
(3)

where Np is the total number of cells from cell j to the nearest channel, along the flow path (m);

lj is the length segment cell j along the flow path (m); and v is flow velocity (m s�1).

Flow velocity, v, is got based on Eq. (4) in Ref. [27].

v ¼ ds1=2 (4)

where s is slope steepness (m m�1) and d is a coefficient dependent on surface roughness

characteristics (m s�1) for cell i.

By using HYDRO-tools extension in ArcView, the flow length, ti, was calculated in order to

acquire travel time, with an inverse velocity grid used as a weighting factor in Ref. [28].

The watershed parameter, β was estimated by numerically solving Eq. (5):

SDRw ¼

P

N

i¼1

exp �βti
� �

l0:5i s2i ai

P

N

i¼1

l0:5i s2i ai

(5)
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where SDRw is the watershed average SDR, which was calculated with an empirical formula

similar to SDRw = pAT
c in Ref. [29]. Parameters p and c were confirmed as 0.42 and �0.125

because they represent a good general approximation between SDRw and SDR in Ref. [30].

N is total number of cells over the watershed, ai is area of the cell (m2), li is the length of cell i

along the flow path (m), AT is the area of the watershed (km2).

Vertical slope position (m) is defined as the elevation differences between the land and the

nearest water surface and calculated by integrating the elevation difference for each cell alone

the path to the nearest water body using the following Eq. (6) (Figure 4):

VSP ¼ min
X

dsð Þ (6)

where d is the distance between two adjacent cells (m); s is slope steepness (m m�1).

Topographic wetness index is a steady-state wetness index that reflects soil moisture and

drainage conditions, defined as a function of the natural logarithm of the ratio of local upslope

contribution area and slope angle in Ref. [32].

TWI ¼ ln
A

s

� �

(7)

where A is the flow accumulation (m2) ands is the slope steepness (m m�1).

Potential solar radiation (MJ m�2) is the total of annual potential solar radiation. PSR reflected

the potential light distribution along with the change of topography. The higher the value, the

stronger the light radiation. Potential solar radiation takes into account the central Latitude,

days of 1 year from 1 to 365 and hours of 1 day from 1 to 24 by an ArcView Extension in

Ref. [33].

Coarse resolution soil maps are widely available. These maps usually reflected average soil

properties over a large area (Figure 5). Researches indicated that coarse resolution soil data

had a significant influence on the distribution of high-resolution soil property maps, especially

around the boundary in Ref. [34].

Figure 4. Vertical slope position of a slope profile in ref. [31].
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2.2. Target data

Target data, used as reference data in training ANNs, were composed of collecting field soil

samples with soil property data (Figure 6). Representativeness and density of target data will

directly affect the performance of ANNs.

3. Building ANNs for soil properties

A full process of modeling soil properties with ANNs was composed of building ANN

structure, training ANNs, and network optimization.

3.1. Building ANN structure

The most popular ANN in modeling soil properties is back-propagation (BP) ANN because

this kind of ANNs can map non-linearity when limited discontinuous points exist between

input and output data in Ref. [35]. Common BP ANN has three layers: the input layer contains

the independent variables used to make model predictions; the output layer contents variables

to be predicted; hidden layer connects the input layer and output layer. Each node in one layer

is linked with all nodes of the adjacent layer. The number of nodes in the hidden layer

determined the complexity of the model. The input weight matrix consisted of all links

between the input layer and the hidden layer and the output weight matrix consisted of all

links between the hidden layer and the output layer. Weight (w), which affects the propagation

value (x) and the output value (o) from each node, was fine-tuned using the value from the

preceding layer based on Eq. (8).

Figure 5. Comparison of coarse resolution soil map (A) and high-resolution soil map (B).
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o ¼ f �T þ

X

wixi

� �

(8)

where T was a specific threshold (bias) value for each node; f was a non-linear sigmoid

function, which increased monotonically.

When building ANNs for soil properties, the combinations of coarse resolution soil data (i.e.,

average soil drainage, sand, clay, silt contents) and DEM-derived topo-hydrological data

(i.e., slope, STF, SDR, VSP) composed the input layer nodes. Predicted soil properties were

the nodes in output layer.

3.2. Training ANNs

The aim of training ANN is confirming coefficients according to different rules or algori-

thms. BP ANN is trained by self-adjusting weight and bias values of each neuron along a

negative gradient descent to minimize the mean squared error (MSE) in Ref. [36]. The MSE

between the network outputs (o) and targeted values (t) was calculated through each train-

ing cycle (i) by Eq. (9). Training was stopped when the MSE could not be reduced by a set

threshold. Frequently-used algorithm included the Levenberg-Marquardt (LM) algorithm

and the resilient (RP) algorithm. The LM algorithm was based on Levenberg-Marquardt

optimization theory in Ref. [37]. The RP was a kind of rebound back-propagation algorithm

in Ref. [38].

Figure 6. A sample of target data referring to polygons and points.
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MSE ¼
1

n

Xn

i¼1

ti � oið Þ2 (9)

An early stopping method was used to avoid “over-fitting”, which has the effect of decreasing

prediction accuracy outside of the training data, and improving ANN generalization in Ref.

[39, 40]. Through this method, in order to compute the gradient, update the network weights

and estimate biases, a training set was used. Another data set, that is, the validation set, was

applied to monitor the training process with the purpose of preventing “over-fitting”. If

training MSE decreased but the validating MSE increased, the training of the ANN model

was stopped.

3.3. ANN optimization

The purpose of ANN optimization is adjusting networks structure and improving prediction

accuracy of ANNs. It included two parts: (1) selecting the best combination of inputs. The

schemes of combining inputs should follow one-variable, two-variable, three-variable, etc. (2)

selecting the fittest number of hidden layer’s nodes. When the number of hidden layer nodes

was too small, prediction accuracy of the ANN was low. When the number of hidden layer

nodes was too large, there was a potential over-fitting.

4. Built ANNs for soil properties

4.1. ANNs for soil texture

A BP ANNwas developed to estimate soil texture with three-layer structure in Figure 7 in Ref.

[41]. The input layer had six nodes, including average clay and sand contents from coarse

Figure 7. ANN structure for predicting high-resolution clay content and sand content.
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resolution soil data, and four DEM-generated topo-hydrologic variables. The output layer

contained two nodes: predicted high-resolution clay and sand contents.

The predictive capability of the ANN trained with LM and RP methods was assessed when the

hidden layer nodes changed from 5 to 40, and training cycles changed from 25 to 250.

Accuracy of ANN models with the LM and RP training methods when 100 training cycles to

various net structures is reported in Table 1. Results showed that the ANN models trained

with the LM methods had much higher ROA �5% and lower MSE than the models trained

with the RP methods when holding the same number of hidden layer nodes. The LM trained

ANN models had better prediction capability. With increasing the number of hidden layer

nodes, the MSE of ANNs trained by the LMmethod was decreasing, but the ROA �5% got the

highest value with 25 hidden layer nodes. According to the results, the best ANN model of

predicting clay and sand was a 6-25-2 ANN. Results also directed that when the number of

hidden layer nodes was less than 25, the hidden layer scale was too small and the accuracy of

model prediction was low. However, over-fitting happened when the number of hidden layer

nodes exceeding 25. When the ANN model has been over-fitted, the training accuracy (MSE)

Training algorithm Net structure MSE (%) ROA �5% (%)*

Clay Sand

Levenberg-Marquardt back-propagation (LM) 6-5-2 29 81 76

6-10-2 26 86 76

6-15-2 25 85 80

6-20-2 24 86 80

6-25-2 24 88 81

6-30-2 24 85 80

6-35-2 24 86 81

6-40-2 23 84 74

Resilient back-propagation (RP) 6-5-2 61 34 33

6-10-2 39 75 70

6-15-2 38 79 70

6-20-2 38 74 68

6-25-2 35 76 71

6-30-2 33 80 76

6-35-2 31 75 72

6-40-2 28 74 72

*Relative overall accuracy (ROA)�5%, a parameter of assessing the relative accuracy of model predictions, was calculated

by counting all predictions within a 5% range of the referenced clay and sand content.

Table 1. Prediction accuracy of ANNs trained with LM and RP algorithms with 100 epochs and nodes of hidden layer

changing from 5 to 40 in ref. [41].
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increased but the prediction accuracy decreased. In another word, over-fitted ANN models

would have poor “generalization” and could lead to inaccurate prediction when using to other

input data than the original training set. The same results were presented for the nets trained

by the RP method, but the RP method had the highest value of prediction accuracy with 30

hidden layer nodes and the best net structure was 6-30-2.

Prediction accuracies of the 6-25-2 network using the LM training method with training cycles

of 25–250 are showed in Table 2. As presented, the values of ROA �5% had the maximum

value after 100 epochs. The results indicated that when the epochs of training was more than

100, the ANNs could be over-trained, which is another form of over-fitting.

It can be concluded that net structure, training algorithms, and training cycles would have

significant impacts on performance of an ANN.

4.2. ANNs for soil organic carbon

A set of ANNs were developed to predict SOC distribution across the landscape in Ref. [42].

The ANNs used widely available coarse resolution soil map data, high-resolution DEM-

generated topo-hydrologic variables, and detailed land use data as inputs. In order to select

the best combination of inputs, the various schemes of combining inputs were designed and

showed in Table 3.

Results from the two-input-node ANN (Level 1) are shown in Figure 8. The STF was the poorest

predictor of SOC with a MSE of 84 and ROA �1% (a parameter of assessing model predictions,

calculated by counting all predictions within a 1% range of the referenced SOC value) of 66%.

The VSP stood out as the best predictor of SOC, with MSE of 29 and ROA �1% of 70.6%. These

results indicated that VSP was the best predictor of SOC distribution across the landscapes.

For Level 2, VSP combined with SDR was the best three-input-node ANN SOC prediction

model with MSE of 22. The model of VSP combined with PSR also exhibited a slightly higher

Training cycles MSE (%) ROA � 5% (%)*

Clay Sand

25 27 86 76

50 25 83 72

100 24 88 81

150 24 87 80

200 23 83 80

250 23 84 81

*Relative overall accuracy (ROA)�5%, a parameter of assessing the relative accuracy of model predictions, was calculated

by counting all predictions within a 5% range of the referenced clay and sand content.

Table 2. Predicted soil clay and sand content based on 6-25-2 ANN model using the LM method when the epoch was

25, 50, 100, 150, 200 and 250 times in ref. [41].
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MSE (23). However, in terms of MSE, the difference between the twomodels was considered to

be insignificant. Furthermore, the CSOC-VSP-PSR ANN had better performance when mea-

sured with ROA �1% (77 vs. 74%) than the CSOC-VSP-SDR ANN. The model of VSP com-

bined with slope showed the highest values of ROA �1% (79%).

Within the four input node ANN models (Level 3), the CSOC-VSP-slope-PSR ANN had the

best performance, while the CSOC-VSP-SDR-slope ANN had the poorest accuracy of predic-

tion. A further increase of input nodes by adding other DEM-generated topo-hydrological

variables could not improve the accuracy of model prediction. As shown in Figure 8, the

method of adding SDR as a new input node into the CSOC-VSP-slope-PSR ANN could cause

a decrease in the accuracy of model prediction.

Input data extracted from high-resolution soil maps significantly improved model prediction

accuracy (Level 4). For example, the addition of one soil parameter reduced MSE from a range

of 8–20 (level II) to 2–9. Based on the results, soil parameters that were extracted from high-

Scheme Level 1 Level 2 Level 3 Level 4 Level 5*

1 CSOC, STF CSOC, VSP, STF CSOC, VSP, SDR,

slope

CSOC, VSP, slope, PSR,

sand

CSOC, VSP, slope,

PSR, land use

2 CSOC, slope CSOC, VSP, slope CSOC, VSP, SDR, PSR CSOC, VSP, slope, PSR,

silt

CSOC, VSP, slope,

PSR, land use, drainage

3 CSOC, PSR CSOC, VSP, PSR CSOC, VSP, slope,

PSR

CSOC, VSP, slope, PSR,

clay

—

4 CSOC, SDR CSOC, VSP, SDR CSOC, VSP, SDR,

slope, PSR

CSOC, VSP, slope, PSR,

drainage

—

5 CSOC, VSP — — — —

*CSOC: coarse resolution SOC data; sand, silt, clay, drainage: high-resolution sand, silt, clay, and drainage data; land use:

detailed land use map with 13 classes.

Table 3. Schemes of combining inputs with different levels.

Figure 8. Mean squared error of ANNs (A) and prediction accuracy referring to relative overall accuracy �1% (B) under

different schemes of combining inputs.
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resolution soil maps could significantly improve the accuracy of model prediction. Both of the

content of silt and clay and soil drainage classes were better predictors than the sand content.

With MSE decreased to 2 and ROA �1% increased to 98%, soil drainage was the best addi-

tional parameter for modeling SOC.

When land use was introduced as an input layer node in addition to the best four-input-node

ANN, CSOC-VSP-slope-PSR, the MSE increased from 2 to 3 but the ROA �1% decreased from

98 to 97% (Level 5).

4.3. ANNs for soil drainage

An ANN was developed and trained to predict high-resolution soil drainage class maps

following the flowchart in Figure 9. The research indicated that the best ANN for mapping

soil drainage had five input nodes (two from coarse resolution soil maps: average soil drainage

class, sand content; three from DEM-generated topo-hydrological variables: slope, SDR, and

VSP) and 20 hidden nodes in Ref. [34]. After training, the calibration correlation coefficient of

the ANN was 0.69, which was slightly higher than the prediction correlation coefficient (0.65),

with MSE of 0.758.

The trained ANN was used to produce a high-resolution soil drainage map for a little water-

shed (Figure 10). An error matrix was constructed using soil drainage records (measured soil

Figure 9. Schematic diagram showing structure and flow of the artificial neural network for predicting soil drainage in

ref. [34].
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drainage classes) from 1:10,000 soil maps as reference data (Figure 10B) and predicted soil

drainage classes using the ANN (Figure 10C). Results indicated that 52% of model-predicted

drainage classes were exactly the same as the field assessment. About 94% of model-predicted

drainage classes were within �1 class compared to the field assessment.

The comparing of coarse resolution soil drainage map (Figure 10A) and predicted soil drain-

age map using ANN model (Figure 10C) showed that the predicted soil drainage maps have

more detailed soil drainage condition information than the coarse resolution soil drainage

map. As shown in Figure 10C, the original soil polygon boundaries of coarse resolution soil

map are still visible in the high-resolution soil map, which indicated that coarse resolution soil

data had a significant influence on the distribution of soil drainage in high-resolution soil

drainage map produced. This implied that the accuracy of the coarse resolution soil sand

content data, especially around the boundary, will affect the accuracy of predicted high-

resolution soil drainage maps.

Figure 10. Low-resolution soil drainage map (A), high-resolution soil drainage map (B) and predicted soil drainage map

based on artificial neuron network model (C) in ref. [34].
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5. Expanding applications of ANNs

5.1. Deducing general rules from an ANN-analysis approach

It is well documented that soil properties, especially those associated with soil drainage, can be

describe in terms of DEM-generated topo-hydrologic variables. However, relationships

between soil drainage and these variables are usually difficult to define with conventional

statistical methods because of their intense non-linearity. ANNs provide a useful tool to

address the non-linear mapping. However, ANNs are “black boxes” with little or no possibil-

ity to understand their internal behaviors in Ref. [43] and as a result, relationships between soil

drainage class and independent variables are not transparent to users. Furthermore, ANN-

prediction accuracy is heavily dependent on the data used to calibrate the model. ANNs also

potentially can over-fit the calibration data, which has the effect of decreasing prediction

accuracy outside of the calibration data in Ref. [34]. These problems inherently limit the use

of ANNs outside areas where the model was originally developed. ANNs could, however, be

used to analyze relationships between soil drainage class and topo-hydrologic variables that

were quantified by network-parameter.

Once the ANNs were trained and tested, they were used to generate the relationships (curves)

between ANN-predicted soil drainage classes and topo-hydrologic variables (Table 4). Within

ANNs with one topo-hydrologic variables, ANN-predicted soil drainage classes (dependent

variable) were plotted against independent single variables, with coarse resolution soil drain-

age data (CSD) being set as constants. Within ANNs with two topo-hydrologic variables,

ANN-predicted soil drainage classes were plotted as three dimension surfaces against the

two variables, with CSD being set as constants.

The ANN-generated soil drainage-variable relationships (curves) were subsequently formu-

lated as simple mathematical equations using non-linear regression method. Parameters of soil

drainage equations were estimated with the Curve Fitting Tool of MATLAB. The used

weighted least-squares regression that minimizes the error estimate was used to avoid biases

in Ref. [39], included an additional scale factor (the weight factor; the cell count (%) of topo-

hydrologic variables) based on Eq. (10):

S ¼

X

n

i¼1

wi yi � y
_

i

� �2
(10)

where wi are the weights, n is the number of data points included in the fit, S is summed square

of residuals, yi is the observed response value, y
_

i is the fitted response.

Soil drainage equations with single topo-hydrologic variables are summarized in Table 4.

Most of the soil drainage equation curves (fitting curves) compared well to the corresponding

ANN-generated curves, it indicated that prediction performance of soil drainage equations

agreed with ANNs in most cases. The maps predicted by the best soil drainage-single variable

equation (soil drainage-VSP equation) had accuracies of 44%. Compared to the corresponding

ANNs, reductions of accuracy were 2% for the equations.
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Inputs of ANNs* Soil drainage curves Soil drainage equation**

Coarse resolution

soil drainage (CSD)

VSP

CSD, slope

CSD, SDR

a = 43.77

b = 0.00005794

c = �0.004975

d = �0.01193

CSD, TWI
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Some disagreements also were observed between soil drainage equation curves (fitting curves)

and ANN-generated curves. It implied an advantage of soil drainage equations. These

disagreed sections are most likely to occur when there are no or few data points in calibration

or validation data sets. In these cases, ANN model predictions appeared unrealistic. For

example, when VSP was >18.5 m, CSD-VSP ANN predictions demonstrated a sudden change,

which could not be explained and was highly unrealistic. In contrast, the corresponding soil

drainage equations curve (fitting curve) logically extended its curvilinear trend, which could

avoid the unrealistic predictions made by ANNs in value range where there are insufficient

calibration data. Thus, the obtained soil drainage equations could overcome the poor general-

ization problem of ANN models.

Inputs of ANNs* Soil drainage curves Soil drainage equation**

CSD = well, VSP,

slope

—

CSD = well, VSP,

SDR

—

*ANN structure: input layer’s nodes: (inputs) hidden layer’s nodes (20) output layer’s nodes (1).
**Digital soil drainage classes: rapidly drained (VR)-0, rapidly drained (R)-1, well drained (W)-2, moderately well drained

(MW)-3, imperfectly drained (I)-4, poorly drained (P)-5, very poorly drained (VP)-6.

Table 4. ANNs, ANN-generated curves with fitting curves, and equations for soil drainage.
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In addition, no requirement for special software support when performing predictions was

another advantage of soil drainage equation, compared to ANNs using MATLAB software in

Ref. [34] or soil landscape models using ARC/INFO software in Ref. [17].

For ANNs with two topo-hydrologic variables, we intended to produce three-dimensional

surfaces (Table 4). However, the results were not able to produce meaningful mathematical

equations because of the complexity of the data and the uneven distributions of data points

across the range of independent variables. For example, the soil drainage surface (CSD = well)

from the CSD-VSP-slope ANN model has a contour surface that was too difficult to formulize

because of lack of general patterns.

5.2. Mapping soil property maps over a very large area

Various models, including ANNs, have been developed to predict soil properties. However, it

is difficult to use these existing models to produce high-resolution soil property maps over a

very large area (>1000 km2). This is because these models are either interpolation models or

statistics models that were built based on the relationships between local environment vari-

ables and observed soil property conditions in the field. When applied over a large area, these

models may perform well in areas with similar landforms where field samples were collected,

but have trouble in areas with significantly different landforms. It is also difficult to build a

new model that can produce soil property maps over a large area because it is very difficult to

collect sufficient field samples for either interpolation or model calibration. In order to produce

soil drainage map over a very large area with limited number of field samples, a two-stage

approach was used to produce soil drainage map over a large area (e.g. the province of Nova

Scotia) in Ref. [44]. In the first stage, soil drainage-VSP equation, generated from a soil drain-

age ANN in BBW, was used as the base model because it can capture the general trend of soil

drainage distribution rules along topographic gradient. The base equation was directly used to

predict soil drainage maps in the province of Nova Scotia. In the second stage, after dividing

the entire provincial area into sub-area (landform) based on different division methods,

corresponding linear transformation models were subsequently developed to adapt soil drain-

age classes produced by the base model to fit field samples. Each linear transformation model

is composed of a set of linear equations and each linear equation responded to a special

landform. Each linear equation was designed as Eq. (11).

SD
i

linear
¼ a

i
þ b

i
SDbase (11)

where SDbase is the initial drainage classes produced by base model.

a
i, bi and SD

i
linear responded to a special landform (i) of Nova Scotia. ai is the shifting parameter,

which described average difference of soil drainage conditions between the BBWand a special

landform of Nova Scotia. bi is the stretching parameter, which described the change rate of soil

drainage conditions between two the BBW and a special landform of Nova Scotia. SDi
linear is

the adapted soil drainage classes. Attributes of coarse soil maps were used as the criteria to

divide the entire area of Nova Scotia into sub-area (landforms), including slope, topographic

pattern, drainage, and texture. Each dividing criteria responded to a set of landforms (Table 5).
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For each landform of each linear transformation model, using all of field samples within the

landform (sub-area) as calibration data, parameters ai and b
i of the landform (i) were estimated

with the regression analysis tool. Only linear equations that passed P < 0.05 based on F and t

test for the significance of the correlation coefficient were kept. In order to reduce the number

Attributes of dividing sub-

area (landform set)

Deduced soil drainage curves from base equation Parameters of linear equation

SD
i

linear
¼ ai þ b

i
SDbase

� �

Slope:

level (L)-1

undulating (U)-2

rolling (R)-2

a1 = 2.083; b1 = 0.341

a2 = 1.065; b2 = 0.604

a3 = 1.060; b3 = 0.500

Topographic pattern:

drunlinoid-1

hummocky-2

knob&knoll-3

ridged-4

smooth-5

a1 = 0.132; b1 = 0.856

a2 = 1.694; b2 = 0.432

a3 = 1.209; b3 = 0.576

a4 = 0.566; b4 = 0.775

a5 = 0.990; b5 = 0.550

Drainage:

well-1

Imperfect-2

a1 = 1.011; b1 = 0.593

a2 = 1.567; b2 = 0.364
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of linear equations, field samples that come from different landforms were combined when no

significant differences were detected (P > 0.05).

As showed in Figure 11, prediction accuracies of linear transformation models under different

landform sets (Table 5) were always better than prediction accuracy of base equation. It

indicated that the two-stage methods provide a viable way to extend base equation to generate

soil drainage maps over a large area with limited number of field samples.

Attributes of dividing sub-

area (landform set)

Deduced soil drainage curves from base equation Parameters of linear equation

SD
i

linear
¼ ai þ b

i
SDbase

� �

Texture:

coarse-1

medium-2

fine-3

a1 = 0.939; b1 = 0.518

a2 = 1.064; b2 = 0.558

a3 = 2.497; b3 = 0.283

Table 5. Linear transformation models with different landform sets.

Figure 11. Accuracy comparison of base equation and linear transformation models with different landform sets.
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6. Summary

This chapter presented a general approach in using ANNs to produce high-resolution soil

properties. It started from preparing input and target data, following by building ANN struc-

ture, training ANNs, and optimizing networks. Three successful ANNs for soil texture, SOC,

and soil drainage described how to select the fittest hidden layer’s nodes, how to select the best

combination of inputs, and how to produce high-resolution maps. Two extending applications

of the ANNs gave advices in using the obtained ANNs outside the area of ANN calibration.
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