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Lower-Limb Wearable Exoskeleton 

J.L. Pons, J.C. Moreno, F.J. Brunetti, E. Rocon. 
Bioengineering Group, Instituto de Automática Industrial - CSIC 

Spain

1. Introduction

There are numerous causes that can affect the functioning of the human locomotor system, 
leading to the appearance of joint disorders in the lower limb and generating atypical gait 
patterns. The importance of research and development in assistance technologies to 
compensate pathological gait have been recognised since the beginning of the twentieth 
century and numerous challenges still lie ahead to make their clinical application a reality. 
In this section, GAIT, the lower-limb Wearable exoskeleton is presented, conceived as a 
compensation and evaluation system of pathological gait, for application in real conditions 
as a combined assistance and assessment methodology of the problems affecting mobility in 
individuals with neuromotor disorders. 
The main technological challenges are discussed with respect to sensing, actuation and 
control subsystems. Special emphasis is placed on advances in robotic lower-limb orthoses, 
and biomechanical requirements, structural design considerations and the approaches 
existing to develop robust real-time controllers for portable solutions with a common aim, 
human motor control, are analysed. 

2. Normal and pathological human gait

Regarding gait disabilities due to neurological, orthopaedic or traumatic conditions, there 
are different robotic approaches, and a classification of lower-limb robotic exoskeletons is 
presented in Rehabilitating robots, evaluation and tracking systems, and functional recovery 
wearable systems. 
The cyclical process of events during gait is known as the gait cycle, and it starts and ends the 
moment when one of the feet come into contact with the ground, and the stance phase begins. 
While one leg displaces moving the body, the other leg acts as a support; thus, the state of the 
lower extremity is divided into two phases depending on its situation with regard to the 
ground: swing phase and stance phase. During gait at normal speeds there is a short period of 
simultaneous support of both legs. As speed increases a cycle is reached where there are no 
bipodal supports. Gait can be characterised by a set of parameters: stride length, step length, 
rhythm and speed. The complexity of the human locomotion process implies studying the 
cyclical movements that are executed, considering the kinematics and kinetics (forces and 
moments) and also the work, energy and power engaged in the process. Moreover, to 
understand all the phenomenon, it is necessary to have knowledge of the principles and 
neurological movements that control movement, the periphery input or sensory systems that 
intervene and the mechanisms that command the musculoskeleton system. 

Source: Rehabilitation Robotics, Book edited by Sashi S Kommu,
ISBN 978-3-902613-04-2, pp.648, August 2007, Itech Education and Publishing, Vienna, Austria
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Fig. 1. Normal gait biomechanical data: angles (upper panel), moments (middle panel) and 
power (lower panel) of the ankle joint (left) and knee joint (right) at natural cadence (105 
steps/min). 

Typical patterns that characterise the biomechanics of joints obtained from normality 

average data (Winter, 1991) are shown in Figure 1. The temporary tracking of these 

variables is used to characterise a gait cycle. During rehabilitation therapies it is frequent to 

find patients affected at unilateral or bilateral level in the hip, knee and/or ankle joints due 

to numerous causes. Apart from serious lesions that lead to paralysis of the limbs in charge 

of locomotion, there are also disorders that restrict mobility, such as restriction of flexion 

during swing, excessive flexion of the knee and drop foot. These conditions can be treated 

with orthoses or active exoskeletons. These alterations occur as a result of different 

aetiologies, including muscular neurological disorders, trauma sequelae, spina bifida and 

others, and it is cerebrovascular accidents, poliomyelitis and post-poliomyelitis, which have 

the most impact, apart from other neurological afflictions like multiple sclerosis and 

cerebral palsy. 

2.1. Impact 

Individuals with proximal weakness in the lower limb can benefit from compensation using 

orthoses and functional compensation robotic exoskeletons. It is estimated that in the 

European Union the percentage of people who suffer diseases associated with reduced 

muscular capacity is between 0.05% and 1% of the total population. In the United States 

over 1.5 million people are partially or totally paralysed in their extremities. Many 

individuals require assistance technologies, and this demand increases with age. There is a 

notable increase in the frequency of paralysis in the lower limb with age (Irby et. al., 2002). 

Consequently, mobility in individuals with neuromuscular disorders is one of the aspects 

most commonly treated by rehabilitation professionals. 

Other causes that require technologically advanced systems for the lower limb are 

neurological disorders, post-traumatic sequelae, spina bifida and others. Joint instability can 

also be caused by insufficiency of stabilising forces due to ligament or bone disorders. The 

population of potential users of lower-limb wearable exoskeletons that permit a more 

natural gait are not restricted to muscular insufficiency cases but include different causes 

that result in gait disorder. 
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A lower-limb exoskeleton or robotic orthosis can have several objectives depending on the 
pathology. Table 1 lists the objectives with the main pathological cases that can potentially 
benefit from a wearable exoskeleton that applies compensation on the lower limb. 

Population  Pathologies   Purpose  

Knee
stability  

Support and 
improvement of 

gait 

Independent 
locomotion 

Support
during 

standing

Neuromuscul
ar disorder 

Post-polio
syndrome, 
spina bifida 

Protection/
joint support

Posttraumatic
sequelae, 
osteoarthritis

Injury  Spinal cord      

Table 1. Potential objectives for use and/or treatment with lower-limb wearable robotic 
exoskeletons.

2.2. Functional compensation wearable systems

Neuromuscular disorders and joint disorders that lead to atypical gait patterns are varied 
and can affect the hip, knee and ankle. In this work we will focus on the compensations 
applicable to the knee and ankle. We analyse from the functional point of view, the 
compensation strategies for the lack in strength in the lower-limb proximal muscles. In 
particular, quadriceps weakness, the possible compensations of knee stability during gait, 
the mechanical stabilisation means (support systems) and the compensation strategies of 
ankle instability are analysed. 
Lower-limb orthoses, as the most common traditional solution to compensate disorders 
related to lower-limb muscular weakness affecting the ankle and knees, are the unilateral 
knee, ankle and foot orthoses. Partial solutions that are commercially available are available 
which permit knee flexion during the swing phase but completely restrict movement during 
the stance phase. 
The modelling and processing methodologies of the information for controlling pathological 
gait generally include the application of finite state machines, linear control, neuronal 
networks, adaptive control and fuzzy control. The measurement methods that can be 
integrated into an wearable compensation solution can be based on a user’s manual control, 
or rather, on obtaining physical myoelectric, plantar contact, kinematic and/or kinetic 
signals. Myoelectric proportional control of pneumatic actuators has been proposed by 
Ferris, for regulation of artificial generation of dorsal flexion and plantar flexion torques, 
activated proportionally to the amplitude of EMG signals (Ferris et. al, 2006). Variable-
impedance control of ankle-foot orthosis to assist drop foot gait, is proposed by Blaya et al., 
discussing the application of a state machine with selective gait phase-dependent control of 
the stiffness of a spring, by means of a DC motor, (Blaya & Herr, 2004b). Kazerooni et. al., 
proposed the application of proportional control of position for the Bleex system, a powered 
lower extremity exoskeleton for human strength augmentation during locomotion 
(Kazerooni et. al., 2003). The authors propose the use of proportional control on each joint to 
cause the exoskeleton joint angles to track the human joint angles. 
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Computational methods for modelling and processing of sensory information in 
locomotion control using neuroprothesis are interesting for their application in lower-
limb exoskeletons. Orthoses that do not have joint locking capacity at knee level manage 
to meet the safety requirements, permit mobility and keep the knee rigid during the full 
gait extension. However, energy requirements increase unnecessarily and the gait 
patterns that are obtained are not very natural. There are several types of knee joints and 
systems commercially available that permit flexion of the knee during the swing phase 
but restrict movement during the stance phase. The evaluation of these orthoses does not 
exhibit obvious advantages in terms of energy demand for the patient. The loading 
application at joint level using an exoskeleton robotic system, which compensates gait 
disorders, is presented as a promising alternative for patients who cannot benefit from the 
orthoses available. The main technological challenge to make the application of this type 
of devices reality consists of a design that considers user aspects, such as portability, 
aesthetics and ease of use on equal terms. It is concluded that the crucial point is the 
problems related to the applicability to solutions because of integration problems, 
problems related to robustness, non-linearity and low repeatability of the sensor systems 
proposed.

3. The GAIT exoskeleton 

Interaction with the human neuromotor system to assist locomotion requires adequate 
design of the components, both the biomechanical and functional aspects. Robotic 
exoskeletons conceived as an aid to mobility are designed to be used in numerous 
environments.
The absence of activity in the body segments leads to joint instability and body collapse. To 
resolve this problem, a robotic exoskeleton should compensate the moment of strength 
lacking in the joint in order to stabilise and compensate the lack of muscular force. An 
exoskeleton with an actuation system should appropriately apply the external joint moment 
on the body segments. The most appropriate force system for knee and ankle joints is 
analysed below. 

3.1. Knee instability compensation 

The system should compensate the loss of control of the knee extensors, especially the 
quadriceps, which put the knee at risk of collapsing under weight. During gait, paralysis of 
these muscles will tend to have a greater effect just after heel contact. During this period the 
effect of gravity and the moment of body progression will cause flexion of the knee. Without 
the quadriceps, the knee would collapse unless stability is maintained with an internal 
compensation, for example, the use of the hip extensor or trunk flexion during initial stance, 
or applying an external system. 
An exoskeleton should ideally have the following actions: 

a) Stance phase: controlling the flexion of the knee and assisting the knee to recover 
total extension. 

b) Swing phase: permitting flexion of the knee during swing and assisting extension 
at the end in preparation for subsequent foot contact. 

This type of stabilisation can be achieved using a three- or four-force system. For the four-
point system (Figure 2), the interface forces will be fewer and also the internal moments on 
the sagital plane. 
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Fig. 2. Exoskeleton four-point support. 

3.2. Ankle instability compensation 

Ankle compensation requirements are related to the strategies adopted at knee level. In 
pathological cases with unilateral weakness of the knee extensors, this problem is usually 
overcome by adopting an internally flexed posture of the trunk to displace the action line of 
the ground reaction force in front of the knee, thus creating a stabilising moment. The 
success of this manoeuvre requires sufficient plantar flexion power to prevent dorsal flexion 
as the patient inclines forward. The exoskeleton should deliver sufficient dorsal flexion 
power to avoid involuntary plantar flexion. Dorsal flexion can be generated by an external 
actuation system at ankle level. 

3.3. Exoskeleton structure 

Depending on the type of interface or adjustment system to the limb, a unilateral or bilateral 
structure can be used. For example, if the interfaces cannot generate sufficient torque on the 
transversal plane at the connection points with the lateral bars, a unilateral system is not 
viable. Conversely, if the interfaces can generate moments on the transversal plane, it is 
possible to use a unilateral exoskeleton, whose supports are rigid to do the stabilisation on 
the sagital plane. Alignment in a bilateral solution is a crucial problem because if the two 
joints are not parallel, friction and undesired effort will be produced at each step. For the 
design of the mechanical structure a unilateral framework was used, with four loading 
interfaces on the soft surfaces, as the most appropriate to test the application of 
compensation strategies. The configuration of the exoskeleton adopted consisted of a 
included knee and ankle joints, lateral bars joined to the thigh (proximal), the leg (distal) 
and the foot (support and insole inserted into the shoe), and four securing bands to the limb 
(see Figure 6). 
In the analysis of the mechanical resistance of the exoskeleton for muscular paralysis 
conditions, we assume that a) internal muscular moments cannot be generated b) internal 
support forces can be generated and c) most of the forces exercised in the body by an 
exoskeleton are perpendicular to the local contact surface. 
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Fig. 6. Exoskeleton structure components. 

Exoskeleton-leg system stiffness. When an external load is applied to the exoskeleton-leg 
system strains are produced. The magnitude and relation between these strains determines 
the rigidity of the system, which can be defined as the ability to stabilise internal forces with 

minimum internal strains. If  is the external moment on the knee and the variation in 

the angle of the knee due to strains, the total rigidity of the exoskeleton system can be 
defined as 

 (1) 

The most significant strains in the system are: 

Soft tissue strains. In the limb interfaces the soft tissues are subject to loads. The 
effect of forces on the limb interfaces is soft tissue strain. The tissues react to non-
linear loads as a function of time.

Segment strain due to flexion efforts. The moments per flexion in the segment or 
proximal bar of an exoskeleton result in bar deflexions, characterised by  and 

, as depicted in Figure 7. The deflections of the interfaces, 2 and 3, depend on 

the forces, F1 and F2, in the interface: 

 (2) 
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where  are the distances in agreement with Figure 7, G is the module shear, J is 

the moment of inertia of the central bar with regard to the y-axis. 

Segment strain due to torsion. The torsion moments in the exoskeleton lead to a specific 
rotation angle in the proximal bar at the position of the securing bands. Owing to this, 
there is a slight rotation of the securing bands, which causes a specific change in the 
position of the point of contact of the interface force. Considering the fixed bar at the 
ends, the effect of torsion on the strains can be characterised by the deflections,  and 

, at the position and by the forces, F1 and F2. It can be expressed generally: 

 (3) 

 (4) 

Theoretically the forces applied on the limb by an exoskeleton can be calculated by modelling 
the rigidity of all the components as explained in the previous point. For the exoskeleton with 
four securing bands and forces applied externally, using the moment mean data on the knee 
given by Winter (Winter, 1991), an approximate estimate can be obtained of the internal forces 
in a gait cycle, as depicted in Figure 8. This estimate, although it does not include a precise 
model of soft tissue rigidity, it is useful as a reference to know the state of the interface, design 
new devices and size transducers to measure strains and forces. 

Fig. 7. Deflections in the central bar. 

Fig. 8. Model of location of external and middle forces, F1, during a complete gait cycle. 
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3.4. Knee joint 

The design of the knee joint is a key point in the functioning of the exoskeleton. Several 
authors (Regalbuto, 1989; Rovick, 1991) consider this joint as the most important 
component of a pathological functional compensation system. Accordingly, we analyse 
the anatomy of this joint and its mechanical characteristics in detail. For the design and 
interaction with the knee it is fundamental to know the knee composition and 
functioning. The bones of the knee, femur and ankle form a mechanical joint. The lateral 
menisci help to stabilise the knee. The collateral ligaments are located along the lateral 
bones and restrict side movement. The anterior crossed ligament connects the tibia to the 
femur in the centre of the knee. Its function is to restrict rotation and forward movement 
of the tibia on the transversal plane. The posterior crossed ligament restricts backward 
movement of the tibia on this plane. These components and the muscles work together to 
administer the effort that the knee receives during walking, running, jumping and other 
functional activities. 

Fig. 9. Crossed ligament role. a) extension b) flexion. 

For walking, the knee requires approximately 70 degrees of flexion, a range 
considerably lower than the total range of movement. It also necessitates the extension 
or even a slight hyperextension at the moment prior to heel contact. The geometrical 
place of the instantaneous centre of knee rotation on the sagital plane is not a specific 
point but a curve, which may be reproduced by a four-bar mechanism that simulates 
the crossed ligaments and reproduces the combined movement of knee sliding and 
rolling. 

3.4.1. Four-bar mechanism 

A four-bar mechanism was chosen for the exoskeleton knee joint, which permits 
movement in the normal range without restrictions and avoids the generation of 
migrations or undesired forces. The length and location of the bars was optimised by 
applying genetic algorithm methodology on the study presented by Baydal, (Baydal et. 
al., 2006), to track the instantaneous axis of rotation of the knee in the lateral part. The 
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Kurosawa-Walter model, (Walter et. al., 1985) , defines the instantaneous axis of rotation 
of the knee, see Figure 10. 

Fig. 10. Displacement of the helicoidal anatomical rotation axis in the lateral part of the knee 
determined with the Kurosawa-Walter model. 

The four-bar mechanism can be fully described by the coordinates of its axes in their natural 
position to the relative movement of the mechanism. From the solutions obtained in 
Baydal’s work, what best matched natural movement was chosen for the exoskeleton. 
Figure 11 presents the degree of complete movement of the four-bar mechanism compared 
with the natural movement of the knee. The knee joint of the exoskeleton based on this 
mechanism includes two lateral protection plaques to prevent the clipping effect. There are 
also two mechanical restrictions to maintain the natural range of movement of the knee, i.e., 
between 0 and +120 degrees (see Figure 12). 

Fig. 11. Comparison of the movement of the natural knee joint (red) and the four-bar 
mechanism (blue). Displacements on the sagital plane (mm). 
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Fig. 12. Knee joint design. 

3.5. Ankle joint

The ankle joint plays an important role in the progression and absorption of impact in the 
gait-stance phase, and helps to clear the ground during stance. In the complete gait cycle, 
the ankle does two plantar flexion trajectories and two dorsal flexion trajectories alternately. 
The design considers a monocentric joint adapted to the anatomy. The joint, whose design 
considers the trajectory of an external actuator element, varies in size depending on the 
user’s anthropometric data. In the GAIT exoskeleton the ankle joint is joined to an insole 
inside the user’s shoe. The shape of the insole follows the curvature of the sole of the foot to 
achieve effective distribution of the forces and obtain a good support and permit the most 
natural gait possible. The insole of the exoskeleton was designed with carbon fibre to 
provide sufficient rigidity to transmit ankle actuator torque and also be an elastic element 
capable of recovering energy to assist the lifting of the foot from the ground. 

3.6. Actuation methodologies 

Using an external joint system constant or variable impedance can be obtained. By applying 
joint locking, i.e., infinite impedance, during gait with quadriceps deficiency, the locomotion 
capacity can be enabled with joint rigidity. By applying null impedance, with the generation 
of movement, theoretically it is possible to compensate the absence of torque necessary to 
generate the joint trajectories. We analyse the functional situation at joint level to the 
absence of muscular control. The role of the knee extensors, active in the phase prior to 
stance and the end of the swing phase, is to control the degree of knee flexion which is 
generated by the ground reaction force. With quadriceps weakness during stance, flexion is 
uncontrolled and there is the risk of falling. The torque amount necessary will be 
determined basically by the subject’s weight and his/her remaining muscular capacity. 
Control of joint impedance during the stance phase is a critical aspect of safety which must 
guarantee stability for stance and flexion flexibility at the right moment in the phase prior to 
the swing phase. Moreover, assisting leg extension at the end of the swing phase is a 
requirement for gait with quadriceps deficiency, because it makes subjects adopt undesired 
compensatory movements to be able to walk. It is possible to provide torque during the 
final phase to assist extension using an external system or the recovery of energy of the 
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system during a prior phase. In this respect, the application of control has been researched 
to restrict the exaggerated extension generated in hybrid gait systems (orthosis + 
stimulation). 
Muscular weakness at quadriceps level typically affects the functioning of the ankle joint. 
Compensation manoeuvres of patients with deficient control of the knee have consequences 
on ankle displacements. To compensate gait using an external system at ankle level it will be 
necessary to provide sufficient plantar flexion to prevent involuntary dorsal flexion and 
provide dorsal flexion power to prevent uncontrolled plantar flexion. 

3.6.1. Technologies 

There are different actuation technologies that can be applied to control joint impedance in 
the knee and ankle joints of an exoskeleton. Regarding the compensation requirements of 
pathological gait according to a classification of impedance control (braking), infinite 
impedance (locking) or null impedance (generation of movement), in the state-of-the-art 
actuation technologies there are clear restricting factors: power, weight, and size 
requirements.

In particular, DC motors, which are presented as the most favourable actuation technology, 
present critical restrictions for an ambulatory solution. For example, a flat 50 W motor with 
nominal power, with a high-energy efficiency series (Maxon) and acceptable dimensions for 
the application (43 mm diameter, 21 mm thick), can deliver a maximum permanent torque 
of 8.14 Nm with a continuous current consumption of 2.58 A, a load that no accumulator or 
battery covers with the portability required. For a subject weighing 80 Kg, from the joint 
kinetic data of healthy subjects during gait at natural rhythm (Winter, 1991), in the stance 
phase of the knee joint a moment of approximately 50 Nm is generated, while in the ankle 
joint during the stance phase the moment increases progressively to exceed 120 Nm in the 
lifting of the foot. It is possible to conceive a hybrid actuation solution for integration in the 
exoskeleton. In the GAIT exoskeleton, this approach imitates the basic functionalities of the 
biological musculoskeleton system: a biomimetic approach. 

Biomimetism: Functional analysis of the joints 

It is highly unlikely that future actuators (e.g. based on polymers) use the same 
principles as biological muscle mechanisms. Thus, research currently focuses on 
designing actuators that imitate muscle functionality based on alternative functioning 
principles, (Meijer et. al, 2003). Imitation of muscular design can be considered a first 
step towards a new class of functionally diverse and robust actuators. The following step 
will require a system integration approach to interpret and imitate the functions of 
biological musculoskeleton systems during natural movements, (Full & Meijer, 2001). 
This type of approach will seek to identify the biomechanical principles to be introduced 
in the artificial model. An approach integrated into actuator design presents great 
potential for research. As an example, realistic biomechanical models of human limbs for 
the analysis of locomotion, which focus on interpreting underlying geometries and 
control problems, offer an interesting base to conceive a system-based approach: 
extensive groups of complex tendons have been successfully modelled as simple 
contractile elements in a functional model, (Roberts & Marsh, 2003). Redundancy 
problems associated with high numbers of muscles are resolved with an appropriate 
control criterion, (Rehbinder & Martin, 2001). 



482 Rehabilitation Robotics 

A biomimetic actuator for the compensation of pathological gait should be versatile and 
adaptable. The crucial construction needs for this system —and any other type of 
biomimetic wearable device— are low volume and size, low-energy consumption, low-heat 
dissipation and a high torque (in natural gait, 3.3 W are required per kilogram of body 
weight during the initial swing phase); we propose a biomimetic design to achieve these 
requirements. The weakened musculoskeleton system, in the absence of the quadriceps 
muscular group, requires assistance for impedance control and power generation 
(maximum demand during gait, 3.3 w/kg) and other compensations already mentioned 
(foot dragging, difficulty in lifting toe, etc.) We start from the hypothesis that this type of 
biomimetic system may increase the functionality level by increasing the integration level of 
actuation and control systems. In order to model and analyse the dynamic behaviour of the 
two joints during a gait cycle, we propose their separation into functional ranges where 
mechanical behaviour or impedance can be identified by each joint. We identify the 
mechanical functioning by analysing the relations between the rotations and joint moments, 
extracted from mean data representative of net moments and angles, at natural and low 
rhythms.

Knee 

In the knee (see Figure 13), we can identify three functional ranges. The AB range, while the 
joint during stance is absorbing the impact and damping the descent of the body, the joint 
set can be modelled as a linear system since the torque-angle relation represents an elastic 
behaviour given by 

 (5) 

where  is the torque, the angular position, 0 the initial state, and  the elastic constant 

representing the torque-angle rate that varies depending on the subject’s weight and gait 
speed. The BC range, with flexion and extension trajectories in the swing phase, presents a 
non-linear relation that can be interpreted as a pseudo-elastic system. This is characterised 
by an increase in considerable strain with minimum effort applied, once an initial loading 
effort has been overcome. The CD range, during extension before heel contact, can be 
characterised mechanically as an elastic system using the K2 elastic constant. 

Ankle 

In the ankle we identify three ranges (see Figure 14). The first, included between heel 
contact and a point around maximum flexion, where the joint controls plantar flexion, can 
be modelled as a linear system because of an elastic relation, which we call K3. During the 
AB range, dorsal flexion takes place during stance while a T1 absorption zone of energy is 
observed, and a linear model approximated by a K4 constant elastic can be defined. For the 
BC range, the plantar flexion trajectory coincides with the maximum energy demand and 
another approximately linear relation K5 is found, to approach the joint function. 

Identification 

It can be concluded that joint behaviour can be imitated using elastic devices during certain 
gait phases. For each functional range, from the data representative of gait normality at 
natural rhythm, we calculate the coefficients of a first-degree polynomial (A) to linearly 
adjust p (A(n)) to M(n), using the square-minimum method, where A is the angle of the 
knee, M the moment of force, n the percentage of the gait cycle. 
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Fig. 13. Torque-angle rate in the knee joint during a complete gait cycle and identification of 
functional ranges at natural rhythm (Winter’s average gait data). 

Fig. 14. Torque-angle rate in the ankle joint during a complete gait cycle and identification of 
functional ranges at natural rhythm (Winter’s average gait data). 

Range  Coefficients  (N.m/Kg)  

A-B  K1 6.013 x10-2

C-D K2 4,26 x 10-5

0-a K3 1,4 x 10-4

a-b K4 8,9 x 10-4

b-c K5  7,4 x 10-4

Table 2. Moment polynomial adjustment coefficients vs. angles calculated for the functional 
ranges in a gait cycle. 
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Table 2 presents the values of the coefficients obtained for each linear adjustment, 
depending on body weight. Proceeding in this way we characterise the functional ranges 
identified using linear parameters. Based on the biomimetic model of the compensation 
elements of the actuators, the different operation ranges of the musculoskeleton system are 
identified functionally and they are modelled using mechanisms. Figure 16 represents the 

resulting linear adjustments obtained from linear functions with  and  parameters 

which are calculated theoretically for the knee joint. Figure 15 represents the linear 
approximations for the moment and angle for the ankle joint. The dotted lines represent the 
phases when an adjustment to a greater order polynomial would be necessary. 

Interaction with the four-bar mechanism: viability analysis 

The instantaneous centre of rotation (ICR) in the knee joint must be followed by the rotation 
centre of the four-bar mechanism joint. The mechanism kinematics is crucial for the 
functioning but this adaptation leads to more complex kinematics and for this reason we 
analyse the viability of applying external torques on the four-bar mechanism. In the four-bar 
mechanism, a rotational actuator should transmit or receive torque on the fixed A- or D-axes 
(see Figure 18). To evaluate the torque relation to the angle on these application points, we 
developed a model based on the optimised four-bar joint. 

Fig. 15. Linear adjustments (blue solid lines) of the angle and force moment for the knee 
joint and normality patterns (red). 

We generate a free-body diagram of the mechanism depicted in Figure 17. To model the 
knee joint, we consider the optimised values of limb length and we assume that M torque is 
applied on the ICR. We formulate a linear system of nine equations with nine variables 
corresponding to the reaction forces to calculate the torque in A for a gait pattern: 
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 (6) 

where Ai are the coefficients that define the moments caused by the reaction forces at the 
application point. The model output evaluated on D-axis, for a complete cycle, is 
represented in torque terms and angular displacements in Figure 18. In the period between 

the load response and the final gait stance phase, the resulting  torque on the D-axis, 

maintains a linear relation with the axis rotation. 

Fig. 16. Linear adjustments (blue solid lines) of the angle and moment of force for the ankle 
joint and normality patterns (red). 

Fig. 17. Diagram of the free-body mechanism. 
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3.6.2. Biomimetic design of the actuation system 

Considering the characterisation and compensations necessary at joint level with the 
exoskeleton, the design of the actuation system is presented below. The actuation system is 
conceived as a semi-active solution based on: 

- Selective use of mechanical means. 
- Transition activated electrically or mechanically between the mechanical means. 

Fig. 18. Comparison of normal pattern of angular torque in the knee (M) and angular torque 
resulting on the D-axis of angular displacement, in the evolution of the mechanism in a gait 
cycle. 

Knee 

Given the linear rotations found that model joint functioning for some phases of the gait 
cycle, the functioning principle of the knee actuator (see Figure 19) is given by: 

- A K2 elastic element that is activated at heel contact, with locking at B1, in the 
initial stance phase, applying K2 rigidity on the knee with a maximum longitudinal 
trajectory corresponding to a flexion angle restriction. 

- A K1 elastic element (compression spring) is activated at the terminal stance phase, 
using the unlocking in B1 to release the joint and permit free swing, given that K2 
>> K1. The element presents a maximum longitudinal displacement, which 
corresponds to knee flexion restriction. Total locking at B1 to maintain full leg 
extension and give security when standing up or going up or down stairs or 
slopes.

The K2 elastic element, configured using stacked Belleville discs, has a maximum trajectory 
of 13 mm corresponding to 15 degrees of flexion permitting a safe load response and 
consequent extension prior to swing. The K1 elastic element presents a maximum 
displacement of 55 mm, which corresponds to a knee flexion of 95 degrees. 
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Fig. 19. Functioning of the actuator on the knee joint. 

Fig. 20. Actuator-joint model outputs of the knee during the stance and swing phases, in 
comparison with Winter’s mean data (dotted lines). 

Locking/unlocking intermittent mechanism 

A locking/unlocking mechanism was designed. In extension the linear displacement of the 
internal cylinder of the actuator is restricted. The unlocking is produced with the rotation of 
a piece that covers the actuator and this activation is done via a linear solenoid. With the 
joint model, we theoretically estimate the torques that the system operates during gait with 
the normality patterns for stance and swing. The K1 and K2 compensations are theoretically 
depicted for 80 Kg and 100 Kg subjects in Figure 20. 

Ankle 

The passive system that acts on the ankle contains springs that are sized according to the 
linear relations given by K3 and K4 which model the joint functioning. The functioning 
principle of the ankle actuator (see Figure 21) is given by: 

A K3 elastic element that is compressed stores energy and controls dorsal flexion at 
the stance phase. In compression, K3 has a maximum longitudinal trajectory 
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equivalent to a dorsal flexion restriction of the ankle. The energy stored in dorsal 
flexion is recovered towards a plantar flexion trajectory prior to swing with the K3 
extension. 

A K4 elastic element that adds rigidity to extension to control plantar flexion on 
stance and avoid the drop of the foot during swing. The element has a maximum 
longitudinal trajectory equivalent to a plantar flexion restriction of the ankle 
equivalent to a dorsal flexion restriction of the ankle. The energy stored in dorsal 
flexion is recovered towards a plantar flexion trajectory prior to swing with the K3 
extension. 

A K4 elastic element that adds rigidity to the extension to control plantar flexion on 
stance and avoid the drop of the foot during the swing. The element has a 
maximum longitudinal trajectory equivalent to a plantar flexion restriction of the 
ankle.

Fig. 21. Functioning of the actuator on the ankle joint. 

Fig. 22. Knee (left) and ankle (right) actuators attached to the frame. 

In particular, for the design of the knee actuator integrated into the ankle joint, the K3 elastic 
element (stacked Belleville disc) is compressed with a trajectory of 15 mm equivalent to 20 
degrees of dorsal flexion of the ankle. The K4 elastic compression element has a maximum 
displacement in plantar flexion of 6.5 mm, equivalent to 15 degrees. The final design of the 
biarticular actuation system integrated into the complete structure of the exoskeleton is 
presented in Figure 22. 
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3.7. Sensor system 

In previous works, the feasibility of inertial sensing for the control of walking was studied, 
(Baten et. al., 2004), and a particular design was proposed (Moreno et. al., 2006b). The 
sensors set up for control consist of an initial inertial measurement unit (IMU) on the foot 
element inside the shoe (below the orthotic ankle joint) and a second unit for the lower bar 
of the exoskeleton. Each IMU is composed of a) a single miniature MEMs rate gyroscope, 
sensing Coriolis force during angular rate by measuring capacitance (Analogue Device 
ADXRS300, volume less 0.15 cc, weight 0.5 gram) with maximum sensitivity +/- 300/s; and 
b) a complete dual-axis (surface micromachined) 200mV/g accelerometer (ADXL202 
5x4.5x1.78 mm). Units are housed in boxes attached to foot and shank orthotic bars, (as 
depicted in Figure 23), sensing rotational motion, tilt, tangential and radial segment 
accelerations in orthogonal directions (X and Y), while the majority of orthotic rotations at 
the level of joints and bars take place on the locomotion progression plane (sagittal), due to 
mechanical constraints imposed by the structure. Movements of interest occur at normal (2.6 
km/h) and low (2 km/h) gait speeds, and therefore, signals outside the band frequency 
related to gait kinematics (0.3–20 Hz) are rejected from the sensor outputs with -3 dB low-
pass filters, while lowering noise floor by bandwidth restricting. A precision angular 
position sensor, with an effective electric range of 340 degrees is fixed at one rotation axis of 
the four-bar mechanism of the knee joint, for continuous tracking of the knee joint angle on 
the sagittal plane. A resistive pressure sensor (5 mm in diameter active area, 0.30 mm 
thickness) is used to monitor the knee locking mechanism status. 
Each IMU is housed in boxes with straight angles and standards, useful for the assembly 
and development of calibration protocols. Moreover, the robustness of electric connections 
is another important factor due to the fact that each device will be subject to a high number 
of flexions, movements, impacts and efforts. The unit on the ankle bar measures rotational 
movements, inclination and tangential and radial accelerations of the limb in orthogonal 
direction on the sagittal plane. The same rotations and movements are measured in the leg 
by the second unit, mounted on the lateral side of the bar. A IMU is on the foot bar that is 
introduced into the subject’s shoe (under the ankle joint); a second IMU is on the foot bar 
(on the ankle joint). Figure 23 depicts the locations. The IMU signals are digitalised using a 
10-bit analogical-digital converter, sampled at 100 Hz, with a reference voltage of 3.3 V and 
a resolution of 2.92 mV/bit. Robust fixation and solid movement are assumed. The output 
of an accelerometer with its measurement axis aligned on the i-axis can be represented by 

 (7) 

 being the sensor linear acceleration, , the gravity, and , white noise. Additionally, 

from the combination of signals of the accelerometers mounted tangentially, a measurement 
of the angular acceleration of the limb can be obtained. Using the Coriolis force, , the 

gyroscope directly measures the angular speed s(t), which can be represented by the relation 

 (8) 

where m is the sensor mass and s(t) its speed. Thus, the sensor output corresponds to its 
rotation rate. In a later step and during cyclical gait, the orientation angle of the sensor can 
be calculated from the signal integration, in periods between consecutive steps, reinitiating 
the process to eliminate the cumulative error. Integration unbalance can be calculated 
during the quasi-static conditions detected (e.g. the foot segment during the stance phase, 
speed equal to zero). The relative angular speed of ankle joint rotation can be calculated 
from the subtraction between the foot and leg speeds. 
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Fig. 23. Configuration of the IMUs in the structure. 

3.8. Gait controller 

The strategies that can be applied to functionally compensate pathological gait can be 
classified according to their implementation a) position control b) impedance control and c) 
intermittent joint control. We propose selective control of joint rigidity by modifying the 
joint rigidity of the exoskeleton with exchanged external means. The control strategies 
implemented in ambulatory means have to be highly robust and should guarantee safe 
interaction between the human being and the machine. This section discusses the 
implementation of a strategy based on intermittent joint control. 

3.8.1. Functional compensation using intermittent control 

All the aspects related to the design and application of intermittent control for functional 
compensation of gait with the exoskeleton developed are analysed. We consider the lower-
limb system consisting of the thigh, leg and foot segments. Weakened quadriceps will 
provide minimum or null torque amount in the knee. The system is designed to apply 
torque on the sagittal plane and is restricted by the construction of exoskeleton joints. In the 
exoskeleton the ankle actuator is designed to passively compensate, i.e., without any need 
for a control action, and the elastic components (K3 and K4) of the device are customised to 
match the user’s weight. The spring with K3 is compressed to store energy during the stance 
phase and control dorsal flexion during the swing phase, and the spring with K4 applies 
rigidity to control the drop of the foot during the swing phase. 
The functional objectives of a gait cycle in the exoskeleton-limb system using the actuator 
control of the knee consist of approximating the characteristic conditions of natural human 
gait (Figure 24). The compensations using the ankle actuator affect foot movement with 
consequences on the configuration of all the kinematic chain of the limb and its state in 
relation to the ground. At knee level, the actuator reacts and generates the transition 
between the K1 and K2 compensations and passes from knee with restricted flexion to free 
flexion where the elastic element is loaded that recovers energy to assist the extension. The 
appropriate transition moment between the actuator components occurs in the phase prior 
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to swing and coincides with a specific dorsal flexion of the ankle and a period when the 
direction of rotation of the leg changes to the knee forward movement direction. 

3.8.2. Discrete controller 

The intermittent mechanism on the knee has two possible states, R0 and R1, during the 
cyclical gait. The correct intermittent transition of the system between these states permits 
the locomotion and application of joint compensation. The R0 to R1 transition is achieved 
via linear solenoid action. The R1 to R0 transition is done automatically using mechanical 
means, when the complete extension of the knee is recovered. 

Fig. 24. Partial objectives of knee control in a gait cycle: (a) heel contact (HC) with controlled 
plantar drop after knee extension stabilised using K1 at the end of the swing phase (b) heel 
lift (HL) in the stance phase after controlled knee flexion trajectory in the range of 15° (c) in 
the phase prior to swing, the direction of leg rotation is inverted. Using the K1 to K2 
transition the joint is released (d) leg rotation in response to knee flexion. Control of the 
plantar drop avoids dragging the toe and K2 is enabled to assist the extension in the air and 
the end of a cycle. 
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The aim of the discrete controller is to detect the transition moment (TI) using real time 
evaluation, at a sampling frequency of 100 Hz, of the information obtained from the inertial 
measurement units (IMUs) of the exoskeleton. The inertial system embarked directly 
measures on the sagittal plane, the angular speed of the leg, , the angular speed of 

the foot, , and the linear acceleration of the foot limb, , on the y-axis, where y is 

parallel to the upper-lower axis of the exoskeleton foot bar. The condition for detecting TI is 
defined in the cyclical gait discrete controller based on the speed of the segments using the 
following equation: 

 (9) 

with the  and  thresholds. The algorithm verifies the rotation of the foot 

segment by dorsal flexion of the ankle in the margins given by  and , and in turn 

verifies the trajectory of the lifting of the foot from the ground using the  threshold. 

Additionally, the algorithm evaluates the state of the system and degree of flexion of the 
knee in the swing phase to ensure that no undesired activations of the solenoid occur at the 
final swing phase. 

3.8.3. Activation 

The TI detector output in each cycle is a square pulse with a variable width, and a time-rise 
edge T after TI. This pulse produces activation and displacement of the linear actuator that 
causes the transition to R1 in the intermittent mechanism. 

Fig. 25. GAIT exoskeleton control system. 

Ideally, the width of the pulse should be sufficient to ensure that the knee is free the time 
necessary to initiate the flexion and maximum of half of the magnitude of the swing period. 
We define as an activation criterion in the gait cycle , the function: 

 (10) 

which evaluates the activation state of the previous cycle, the stance phase of the current 

cycle and the two stance phases immediately before, in order to adjust the

activation period of the actuator to match the gait rhythm trend. A  is defined a 

priori, which should correspond to the mean activation period adjusted to a mean rhythm 
expected.
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3.8.4. Preliminary results 

A version of the GAIT exoskeleton operated mechanically has been developed. This 
mechanical solution is cable-driven exoskeleton (CDE) that switches the state of the knee 
joint, based on the degree of ankle dorsal flexion. The first results with the (CDE) produces 
response errors on 2.4% of occasions in technical validation trials of 100 steps. 
Comparatively, according to the trial data with a normal subject, the controller significantly 
reduces the rate of errors and obtains 99% success in the functioning of all the trials at low 
and medium rhythm. 

4. Experimental trials 

A left-leg unilateral exoskeleton was customised to two patients with post-polio syndrome. 
The construction of the joints restricted movement at the sagital plane. Special attention was 
paid to achieving the right mechanical adjustment and adaptation of the exoskeleton to 
guarantee comfort and the appropriate transmission of forces, with the continual assistance 
of an expert in orthopaedics. The securing pieces were strained and material was added to 
adjust to the anatomical form until no marks were left on the skin after using the system for 
twenty-minute periods. The height of the ankle and toe were adjusted using additional 
material on the shoe insole, when it was necessary. Each protoype was made with the 
actuators consisting of the springs built to offer the compensations calculated according to 
the moment polynomial adjustment coefficients against angle, depending on the subject’s 
weight (according to the results in Table 2). 
For the intermittent mechanism of the knee actuator a traction solenoid was anchored (12 
Vdc, 10 W, Belling Lee) which transmits the force necessary (up to 700 g, 3 mm trajectory) 
for the switching between springs and joint unlocking during the stance phase. The solenoid 
was fed electrically from a lead-sealed battery (Serie Dryfit 1.2Ah, 12V, Sonnenschein) and 
controlled digitally using a switching circuit in pulsated mode to reduce power 
consumption. The circuit implements the discharge via a capacitor to offer rapid unlocking. 
The exoskeletons were made with the set of sensors consisting of the inertial measurement 
units, the angular position sensor and the resistive pressure sensor (active area of 5 mm and 
0.30 mm of thickness) on the unlocking mechanism to detect the state of the knee joint (R0: 
locking in extension [K1]; R1: free swing [K2]). 

Fig. 26. Image of the wearable exoskeleton on a patient after fitting to the anatomy. 
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The monitoring and control unit included two buttons for direct control by the subjects, 
offering the possibility of disabling the control strategy and thus totally unlocking the knee 
at any moment. The exoskeleton with the actuators, batteries, set of sensors and the 
monitoring and control unit weighed a total of 2.71 Kg. 
The ambulatory unit (Atmega128, Atmel Inc.; sampling frequency 100 Hz) was used as a 
real-time control interface with implementation of the control algorithm that generates the 
real-time control signals (pulses of 12V of amplitude) of activation and activation time of the 
linear solenoid to compensate gait. 

4.1. Protocol 

In the first approach of the exoskeleton on the patients the passive prototype version was 
used which controls the exchange mechanism on the knee actuator using the cable 
connected to the ankle joint, dorsal flexion control (CDE). With this system functioning 
the practical session was completed which consisted first of bipedal trials and after 
walking on flat ground with the patients’ normal aids. One controller was tuned 
following a sequential procedure from an initial adjustment. The electronically-controlled 
exoskeleton (ACE) could be disabled remotely from one-base unit at any moment to 
prevent joint unlocking. Adaptation was expected from the subject after a specific number 
of trials. In the event that the patient adapted and achieved complete gait cycles, and at 
the same time increased his/her perception of trust in the body weight support on the 
exoskeleton (stance phase) and after prior consent, 5 free-gait trials were done with the 
ACE without external supports. 

4.2. Results 

4.2.1. Effects on kinematics 

Patient S2 usually uses a knee and ankle orthosis to be able to walk. The orthosis has the 
knee joint locked while the ankle joint restricts plantar flexion and dorsal flexion mobility. 
The gait pattern with her orthosis is with the knee locked during the stance and swing 
phases. Immediately after the stance response, there is a dorsal flexion movement greater 
than normal in the ankle. During the swing phase the foot is protected from the plantar 
drop with the restriction imposed by the exoskeleton. To put the foot forward, the patient 
compensates with his body on the transversal and frontal plane. 
Using the exoskeleton with CDE, subject S2 required a training time of 30 minutes to 
walk with the crutches instead of standing on the parallel bars used in the first tuning 
trials of the cable-driven mechanism. After 30 minutes, the patient was able to walk 
with free swing of the knee (maximum flexion mean of 50°) with the two crutches, and 
although the speed adopted was low, the knee clearly reaches extension at the end of 
the swing phase (see Figure 27). After a short time, the patient learnt to manage joint 
locking at the beginning of stance, used only one crutch and felt sure without any risk 
of falling. 
On examining the ankle angle, dorsal flexion, excessive with the subject’s habitual 
orthosis, progresses appropriately during the stance phase from the action of the 
ankle actuator. Regarding plantar drop, it is restricted by a maximum of 5° (mean of 
4.5°). It was found that assistance to knee extension during the swing phase with the 
actuator functions considerably well, as can be observed in the mean knee flexions 
(Table 3). 
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Fig. 27. Effects (average values) on joint kinematics. 

The maximum mean values of knee flexion and ankle flexion for the swing and stance 
phases are represented in Table 3, and correspond to trials under final training conditions. 
The number of trials with CDE was reduced to measurements of 5 gait cycles, because of the 
fatigue problems mentioned earlier. 

 CDE (5 cycles)  ACE (25 cycles) 

Peak knee flexion in stance [°] 5.5 ± 2 5.5 ± 1 

Peak knee flexion in swing [°] 61 ± 5 61 ± 3 

Peak dorsiflexion in stance [°] 6 ± 3 5 ± 2 

Peak dorsiflexion in stance [°] 22 ± 5 20 ± 3 

Table 3. Mean values of maximum joint flexions for the stance and swing phases under final 
training conditions. 

4.2.2. Kinetics 

From the mean values of the ground reaction forces a reduction in mediolateral forces can 
be observed in patient S1 when automatic gait control is used. In Figure 28 this reduction in 
mediolateral forces can be observed in the initial stance phase, which avoids lateral 
movement, typical in the gait of patients with post-polio syndrome. 
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Fig. 28. Mean values of the ground reaction forces of evaluation data set of patient S1, under 
CDE and under ACE, and normality pattern with exoskeleton calculated for the subject’s 
weight.

The pattern obtained of vertical ground reaction forces with the exoskeleton with CDE 
approximates the normality pattern calculated for the subject with a correlation factor of 
0.94. An increase was observed in the level of lift force with ACE in comparison to CDE. 

5. Conclusions and discussion 

The differences found in the patients’ kinematic gait patterns during the application of 
functional compensation on the lower limb showed significant differences regarding the 
subjects’ usual gait. In both patients rapid adaptations were observed and new motor 
commands were learnt necessary for managing the exoskeleton with the constraints 
imposed on the limb. The benefits of the correct release of the knee in both instances is clear 
evidence of approximating their gait patterns to the normality pattern depicted in Figure 27, 
with the compensations of the biomimetic actuation system by applying intermittent 
impedance (K1 and K2). 
The GAIT exoskeleton made it possible for patient S1 to walk for the first time without 
compensation with the hip movement, necessary with the knee-locking orthosis. Assistance 
to the extension of the knee actuator using energy recovery is obvious and is effectively 
reached before contact with the ground, as can be observed in the mean values of Figure 27, 
when a low and constant gait speed is maintained. It is uncertain what percentage of 
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assistance to the knee extension is due to the actuator action and what percentage is 
determined by movement inertia. It can thus be hypothesised that the recovery spring for 
extension acts against movement at the beginning of extension. 

The results with patient S2 give an indication of the functioning of the ankle actuator for the 

partial recovery of energy —stored during stance by the spring with K3— in combination 

with the carbon fibre insole recovery of energy in the shoe if the resulting lift forces are 

observed with regard to the subject’s insufficient muscular capacity. 

The system was designed taking the weight to the most proximal part. Although the 

subjects’ first impression was that the system was a slightly heavy, with time this 

impression changed and the level of acceptance gradually improved. The cyclical control 

gait system applied is based on the speed of rotation of the limbs. It is important to 

highlight how at the end of trial, patient S2 preferred to use the ACE and rejected the CDE, 

which operates under the same principle of commercial orthotic systems. The importance of 

flexibility in the initial adjustment of the algorithm to be customised to the subject’s gait is 

clear. In the trials, it was observed that patient S2 had reduced mobility in the ankle, so the 

controller conditions were modified and the  and , thresholds reduced 

to detect the transition moment. It was observed that, although the algorithm monitored the 

state of the knee joint in order to avoid undesired activations of the solenoid, this condition 

was not sufficient, and it was necessary to change the adjustment of the  activation 

period consign. 

The results found in this study show that the patterns with ambulatory assistance using the 

robotic exoskeleton are significantly better than those offered by traditional orthoses or 

basic aids. Each pathological case has its own intrinsic characteristics, and the mechanical 

adaptation and control system therefore necessitate customisation of the robotic solution. 

The evidence obtained with both subjects with post-polio show the viability of the gait 

compensation concept using wearable robotic exoskeletons on the improved quality of daily 

life in subjects with lower-limb joint disorders. 
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