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Abstract

The mechanisms of the action of sex steroid hormones on the nervous system are related 
to both classical, intracellularly mediated effects and non-classical membrane effects due 
to binding to membrane receptors. Some steroids are capable of inducing rapid neu-
rotransmitter-like effects, similar to those of dopamine or glutamate that alter the activity 
of neuronal systems via different types of receptors. The neuroactive steroids are endog-
enous neuromodulators synthesized in the brain and rapidly affecting neuronal excit-
ability. Sex steroids exert many pleiotropic effects in the nervous system: they modulate 
main neurotransmitter systems, promote the viability of neurons, play an important role 
in myelination, and influence cognitive processes. Estradiol protects neurons from exci-
totoxic damage and increases neuronal survival. Progesterone stimulates neurological 
and functional recovery. Androgens also exhibit a wide array of neuroprotective effects 
in motoneurons, including supporting cell survival, axonal regeneration, and dendritic 
maintenance. Despite the considerable increase of sex hormones and neurosteroids 
research in recent years and the ongoing discovery of biochemical mechanisms of action, 
their role in neurodegenerative processes remains not well determined.

Keywords: sex hormones, neurosteroids, genomic effects, non-genomic effects, 
neuroprotection, neurodegenerative diseases

1. Introduction

Sex hormones are synthesized from cholesterol mainly in the gonads and adrenal cortex. In 

the brain, different sex steroids can also be further metabolized to different neurosteroids or 
be produced anew in neurons and glial cells, with an even more potent effect on the nervous 
system. The mechanisms of action of the sex steroid hormones on the brain are related to both 

classical, intracellularly mediated effects and non-classical (non-genomic) membrane effects 
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due to their binding to membrane receptors. Some steroids are capable of inducing rapid 

neurotransmitter-like effects. Sex steroids exert diverse pleiotropic effects on the nervous sys-
tem: they modulate major neurotransmitter systems, promote the viability of neurons, play an 
important role in myelination, and influence cognitive processes. Estradiol increases neuronal 
survival and recovery. It protects neurons from excitotoxic damage, amyloid β (Aβ) toxicity, 
oxidative stress, and glucose deprivation. The defense induced by estrogens is mediated by 

complex mechanisms. Progestins have also been found to exert neuroprotective effects simi-
lar to those of estrogens. Androgens exhibit a wide range of neuroprotective effects in moto-
neurons, including supporting cell survival, axonal regeneration, and dendritic maintenance. 

The relationship between sex steroids and the brain-derived neurotrophic factor (BDNF) has 
garnered a growing interest due to the role BDNF plays in the pathogenesis of neurodegen-
erative diseases.

2. Steroidogenesis

Sex hormones are steroid compounds synthesized from cholesterol mainly in the testes, ova-
ries, and adrenal cortex. The male sex hormones (androgens) and female sex hormones (estro-
gens and gestagens) have a common biosynthetic pathway (Figure 1).

The final product of the steroidogenesis of sex hormones depends on whether or not specific 
metabolizing enzymes are available in the respective cell [1]. The sex steroids in human blood 

include androgens (testosterone, dehydroepiandrosterone (DHEA), dehydroepiandrosterone 
sulfate (DHEAS), androstenedione, and dihydrotestosterone), estrogens (estradiol, estriol, 
and estrone), and gestagens (progesterone and 17α-hydroxyprogesterone). The major male 
hormone, testosterone, is produced by the Leydig cells in the testes. Dihydrotestosterone 

(DHT) is a potent androgen, derived from testosterone by the enzyme 5α-reductase (type 
1 and type 2) in some peripheral tissues, mediating some testosterone-induced effects. This 
enzyme is expressed in the skin, scalp, prostate, epididymis, liver, and nervous system (neo-
cortex, subcortical white matter, and hippocampal tissues) [2]. DHEA, DHEAS, and andro-
stenedione are secreted mainly by the adrenal cortex in the same amounts in both sexes. 

DHEA and androstenedione are steroids involved in the sex hormones’ biosynthesis path-
way; both are primary endogenous precursors of testosterone and estrogens. Although they 

are weak androgens, they are circulating steroids that can be converted into active androgens 
and estrogens in the peripheral tissues [1, 3].

Estrogens are produced by aromatization of androgens, including those derived from adre-
nal steroidogenesis. Although the ovaries produce large amounts of androgens, they secrete 

little of these into the blood, while the rest are aromatized to estradiol, which is the major 
estrogen. The theca cells in the ovaries synthesize testosterone and androstenedione, which 

then diffuse into the granulosa cells of the follicles. There androstenedione is converted into 
testosterone, which in turn is aromatized to estradiol that enters the blood stream. A portion 

of the androstenedione is aromatized to estrone, which in turn is converted into estradiol. 

Androgen aromatization is realized under the influence of the enzyme aromatase, which is 
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expressed in steroidogenic tissues, the brain, and nonsteroidogenic tissues, especially fat and 

bone. Progesterone is the major progestogen and is produced in both theca and granulosa 
cells, the adrenal gland, and testes [1, 3].

The neuroactive steroids are brain-synthesized endogenous neuromodulators that rapidly 
alter neuronal excitability. Some of them reach the brain from adrenals and gonads and are 

further metabolized locally just like the aromatization of testosterone into estradiol [4]. They 

have been referred to as neurosteroids as they can be derived anew from cholesterol in neu-
rons and the glial cells [5]. The synthesis of neuroactive steroids requires the translocation of 

cholesterol across the mitochondrial membrane [6]. This process occurs through a molecular 

complex formed by the translocator protein 18 kDa (TSPO), the steroidogenic acute regula-
tory protein (StAR), the voltage-dependent anion channel protein (VDAC), and the adenine 
nucleotide transporter protein (ANT).

In the mitochondria, cholesterol is converted into pregnenolone by the P450 side-chain cleav-
age enzyme (P450scc). Soluble pregnenolone diffuses into the cytosol (the endoplasmic reticu-
lum) where it is further metabolized into various neuroactive steroids such as progesterone, 

Figure 1. Sex steroid biosynthesis pathway. Enzymes are shown as follows: (1) P450 side-chain cleavage enzyme; 
(2) 3β-hydroxysteroid dehydrogenase; (3) 17β-hydroxysteroid dehydrogenase; (4) 5α-reductase; (5) aromatase. The 
dashed arrow indicates poor flux. Not all intermediate steroids, pathways, and enzymes are included (modified from 
Refs. [1, 55]).

Cellular and Molecular Mechanisms of the Effects of Sex Hormones on the Nervous System
http://dx.doi.org/10.5772/intechopen.71140

3



5α-dihydroprogesterone, DHEA, androstenedione, etc. The enzyme 3β-hydroxysteroid dehy-
drogenase, required for further conversion of pregnenolone into progesterone, has been found 

in the brain [7]. The enzyme 17β-hydroxysteroid dehydrogenase type 10 catalyzes the oxi-
dation of neuroactive steroids in mitochondria with NAD+ as the coenzyme. This enzyme 

catalyzes most effectively the oxidation of allopregnanolone and allotetrahydrodeoxycortico-
sterone, which is essential for the homeostasis of these neuroactive steroids [8].

Although TSPO is highly expressed in microglia and astrocytes and is less abundant in neu-
rons, neurosteroidogenesis occurs primarily in principal neurons of several brain areas that 

have the necessary set of enzymes to convert cholesterol into neuroactive steroids [9].

3. Mechanisms of action

The first thing a hormone does is to bind to specific receptors on the target cell. Cells without 
receptors for the hormone do not respond to the action. The receptors for certain hormones 

are localized on the cell membrane, while others are located in the cytoplasm or nucleus. After 

binding to the specific receptor, the hormone triggers a cascade of cellular responses that 
become increasingly potent with each successive stage. Thus even small concentrations of the 

hormone can produce a significant effect [3].

3.1. Genomic action via steroid receptors

According to the classic genomic theory of action, sex hormones as steroid hormones bind 

preferentially to specific protein receptors within the cell rather than to receptors located on 
the cell membrane. These hormones are fat-soluble and can easily pass through the cell mem-
brane and bind to specific receptors in the cytoplasm. Depending on the steroid and tissue, 
however, unbound steroid receptors may be located in the nucleus as well. The particular 

distribution of the receptor between the cytoplasm and nucleus varies. When the cytoplas-
mic receptors bind to their specific steroid hormone ligands, they translocate to the nucleus. 
Depending on their mechanism of action and subcellular distribution, nuclear receptors may 

be classified into at least two groups [10]. Nuclear receptors that bind to steroid hormones 
are all classified as type I receptors. Only type I receptors have a heat shock protein (HSP) 
associated with the inactive receptor that will be released when the receptor interacts with the 

ligand. Type II nuclear receptors have no HSP and in contrast to the classical type I receptor 
are located in the cell nucleus. The activated hormone-receptor protein complexes then bind 
to a specific regulatory section of DNA, called hormone response element, by activating or 
inhibiting the transcription of specific genes and the formation of messenger RNA. Later on, 
after an extended period of time (usually from a few hours to a few days) counted from the 
entry of the hormone into the cell, new proteins develop in the cell and alter the cell functions.

The complexity of the steroid action can be accounted for by the abundance of identified 
steroid receptors and their affinity for the hormone. The excess/deficiency of the respective 
sex steroid regulates the number of the active receptors (downregulation/upregulation) in the 
target cells. Testosterone and DHT exert their functions via binding to the androgen receptor 
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(AR), resulting in conformational change of the receptor and translocation of the androgen/
AR complex from the cytosol to the nucleus. Various AR coregulators can further modulate 
the transcriptional regulation of target genes [11]. AR receptors are expressed in neurons and 
glial cells and their expression can be regulated by injury and by circulating testosterone 
concentration [12–14]. AR mRNA is downregulated post-orchidectomy and after axotomy 
[12]. AR levels also decrease with aging, especially in the nucleus basalis of Meynert (which 
degenerates in Alzheimer’s disease (AD)) and the diagonal band of Broca [15].

The estrogen receptor-α (ERα) was characterized as an intracellular, ligand-regulated tran-
scription factor located primarily in the nucleus [16]. Once bound to estradiol, ERα dimers 
were shown to regulate gene expression via interaction with estrogen response elements. 

Following a series of discoveries, a structurally related estrogen receptor-β (ERβ) was identi-
fied [17]. Sites of estrogen receptor expression identified in the brain comprised the hypo-
thalamus, pituitary, and preoptic area, among others, which, based on a series of lesion and 

stimulation studies, were known to affect physiology and behavior related to endocrine func-
tion [18]. Apart from the great number of various isoforms, the classic intracellular receptors 

have also many splice variants that have been studied and characterized. For example, for 
estrogens besides the ERα and ERβ isoforms, multiple splice variants (e.g., ERαΔ4) can initi-
ate signaling from the membrane [19]. Experiments demonstrated that the same protein is 
capable of mediating both intracellular and membrane actions of estradiol. For progesterone, 
a whole new class of progesterone receptors (PRs) has been identified—the membrane PRs 
localized on the membrane and involved in the reproductive actions of progesterone [20].

3.2. Non-genomic action

The classic genomic mechanism of the action of steroid hormones alone cannot account for 

all subsequent changes in the target cells; hence, it has been updated to include an additional 

(non-classic) explanation of the rapid, non-genomic, membrane-initiated action. For decades, 
steroid hormones have been known to induce acute changes (within minutes) in the physi-
ological functions [21], neuronal activity [22], and behavior [23].

Recent research demonstrated that steroids can function in a “neurotransmitter-like” way, being 
synthesized at precise spatial locations within neural circuits in the brain and acting within min-
utes as local neuromodulators that rapidly regulate cognitive functions and behavior [24–27].

Some steroids, such as progesterone, are capable of inducing rapid neurotransmitter-like 
effects, similar to those of dopamine or glutamate, which alter the activity of neuronal sys-
tems via multiple types of receptors [19, 25, 28]. Some of these steroid receptors have been 

classified as extranuclear or membrane receptors, which signal through G-proteins or other 
second messenger systems [29, 30]. There is recent evidence of these classical steroid recep-
tors binding to response elements on DNA to regulate gene expression, showing that they 
contain palmitoylation sequences allowing them to be trafficked to the plasma membrane to 
quickly alter cellular activity [19, 31]. After being trafficked, these nuclear transcription factors 
interact with other proteins to initiate their signaling at the level of the plasma membrane. 

From here, intracellular signaling cascades involving effectors (e.g., the mitogen-activated 
protein kinase (MAPK) and cAMP response element binding protein (CREB)) are initiated via 
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the transactivation of cell surface–bound receptors, most notably the metabotropic glutamate 

receptors (mGluRs). Subsequently, estrogen membrane–initiated signaling can in turn acti-
vate the regulatory section of DNA and trigger transcription processes.

The modern understanding of a cell response to a steroid action is that it occurs within the 

same time frame as that of the G protein–coupled receptors influencing a variety of cellular 
functions such as gating membrane channels, increasing the intracellular calcium release, acti-
vating tyrosine-protein kinase (Src), MAPK, and others [27]. Many studies support a model of 
integrated signaling that couples signal transduction cascades to transcription in the nucleus, 

providing an integrated view of hormone signaling in the brain [32].

Recently, extensive research focused on the rapid, non-genomic action of estrogens has raised 
the question of how rapidly the increase of these steroids can occur in the brain. Of course, 
estrogens, just like any other steroids, cannot be stored in synaptic vesicles prior to their rapid 
release, due to their lipophilic nature [4]. It has been suggested, therefore, that the rapid effects 
of estrogens require a corresponding rapid change of local steroid concentration via rapid 

changes in their rate of synthesis by androgen conversion [24, 33], which implies changes in 

aromatase activity. Changes of aromatase activity reflect changes in aromatase protein con-
centrations. For instance, sex steroids control the hypothalamic aromatase expression in most 
vertebrates: weak aromatase expression is detected in castrated male animals, while testoster-
one replacement increases significantly aromatase protein and enzyme activity [34, 35]. There 

is strong evidence suggesting that aromatase activity can be rapidly modulated via transla-
tional modifications, most notably via phosphorylation. The rapid modulation of aromatase 
activity by phosphorylation is a widespread mechanism present in certain tissues of various 

species, including humans [4]. The enzymatic changes lead to a rapid local modulation of 

estrogen availability and consequently to a modification of cellular estrogen-dependent pro-
cesses that are not mediated by the genomic actions of these steroids. The phosphorylation/
dephosphorylation processes provide a new widespread mechanism by which estrogen con-
centration could be rapidly altered in the brain and other tissues.

Although most of the research on neurotransmitter-like actions of steroid hormones is focused 
on sex hormones and reproduction, other steroids also induce effects through non-classic 
mechanisms. As with estrogens and progestins, glucocorticoids can act on the membrane to 

alter physiology, functioning more like neurotransmitters than classical steroid hormones.

Neurosteroids are also capable of interacting with cell surface neurotransmitter receptors to 
modulate neural cell physiology. Two of the endogenous neurosteroids, pregnenolone sulfate 

and pregnanolone sulfate, can potentiate or inhibit N-methyl-D-aspartate (NMDA) recep-
tor responses [36]. GABA

A
 receptors represent one of the most elaborate neurotransmitter 

receptor structures, harboring multiple binding sites for allosteric modulators, neuroactive 

compounds, and neuroactive steroids [37]. Allopregnanolone has been shown to promote 

neurogenesis in both rodent and human neuroprogenitor cells, most likely through binding 
to the GABA

A
 receptor [38]. The modulation of the activity of receptors by neurochemicals 

such as allopregnanolone has been extensively studied in the context of neurodegenerative 

disorders [39].
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Another mechanism of steroid action takes effect at the level of the microtubules via a pro-
posed receptor microtubule-associated protein of type 2 (MAP2) [40]. Neuronal microtubules 
play an important role in the growth and maintenance of neurites during neuronal differen-
tiation. They are composed of tubulin and microtubule-associated proteins (MAPs). MAPs 
determine neuronal shape and control the balance between rigidity and plasticity in neuronal 

processes. Neurosteroids may be involved in the formation and stabilization of microtubules 
and thus neuronal plasticity and function [40]. Experimental data demonstrate that progester-
one treatment attenuated the injury-induced loss of MAP2 [41].

4. Biological effects of sex hormones on the nervous system

Testosterone and its metabolite estradiol induce numerous effects during critical periods of 
pre- and perinatal brain developments (organizational effects) that are necessary for brain 
sexual differentiation. Testosterone exposure is an essential requirement for masculinization 
of the brain. Nuclear volume, neuronal morphology, and astrocyte complexity are examples 
of the wide range of effects by which testosterone and estradiol can induce permanent changes 
in the function of neurons [42]. In the developing male rat, testosterone secreted from the tes-
tes is not bound by α-fetoprotein and freely enters the brain where it is locally converted into 
estradiol in specific nuclei. Consequently, neonatal males have more than double the levels of 
estradiol than females in brain regions subject to sexual differentiation [43]. High levels of the 
ER are concentrated in the same brain regions and ER is essential for transducing the steroid 
signal [44]. The gain or loss of function upon developmental estradiol exposure corresponds 

to the specific cellular morphological changes observed during the critical period, and the 
dendritic spines and astrocytes seen in each brain region retain that “memory” of early ste-
roid exposure [42].

4.1. Effects of female sex steroids

It is generally accepted that estrogen acts as a conditional neuroprotectant with a complex 

pattern of biological actions, which are modulated by several interacting factors [45]. It has 

been found that administration of estradiol increases neuronal survival and recovery in adult 

animals and different lesion models [46, 47]. Estradiol protects neurons from excitotoxic dam-
age due to seizures and stroke, as well as in AD [48]. One of the suggested mechanisms of 
this effect is the ability of estrogens to enhance neuropeptide Y (NPY) expression and release, 
as NPY has antiexcitatory effects [49]. In vitro estradiol was found to protect neurons from 

glutamate toxicity and Aβ peptide toxicity, oxidative stress, and glucose deprivation [50–53]. 

The defense state induced by estrogen is mediated by complex mechanisms that converge 

upon regulation of mitochondrial function. Estrogen preserves ATP levels via increased oxi-
dative phosphorylation and reduced ATPase activity, thereby increasing mitochondrial respi-
ration efficiency. Estrogen increases antiapoptotic proteins, Bcl-2 and Bcl-xL, which prevent 
formation of the permeability transition pores protecting against estrogen-induced increase 
in mitochondrial Ca2+ sequestration and triggering of apoptotic processes [54]. Therefore, the 
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decreased levels of estrogen could most likely contribute to the increased risk of developing 
neurodegenerative diseases, especially in postmenopausal women [52, 55].

It is suggested that in addition to having a direct effect on neurons, estrogens may affect the 
astrocytes by stimulating them to release protective growth factors and regulate the astro-
cytes genes and proteins associated with the glutamate level control. Other mechanisms 
implicated here may include the anti-inflammatory effect associated with suppression of 
microglia, inflammatory cytokines, and free radicals production, which cause inflammatory 
damage to the neurons, effects on endothelial cells realized by increasing the mitochondrial 
efficiency and stimulating angiogenesis, genomic influence on anti-apoptotic protein genes of 
Bcl family and reduction of apoptotic trends and effect of free radical scavenging. These are 
the hypothetical models of estrogen neuroprotection in cerebral ischemia and in other neuro-
degenerative disorders such as Parkinson’s disease (PD) and AD [52, 56].

There is growing evidence that estrogen may have a neuroprotective role in PD. Experimental 
studies have demonstrated that estrogen is neuroprotective in 1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine (MPTP)-induced nigrostriatal lesions, an animal model of idiopathic PD [57, 

58]. In these and other studies, 17β-estradiol was used and its effect was shown to be stereo-
specific. An isomer with weak estrogenic activity, 17α-estradiol, was ineffective with regard 
to the prevention of MPTP-induced dopamine loss [52]. What is worthy of note is that the 

receptors ERα and ERβ are sparsely localized in the striatum and substantia nigra of mice, 
and treatment with MPTP or estrogen does not change the distribution and density of the 
estrogen receptor. Despite the low availability of ER in these parts of the brain, estrogen has 
managed to induce a protective effect on the striatum against MPTP-induced loss of dopami-
nergic neurons [59].

Studies in humans showed that short-term estrogen treatment in postmenopausal women 
increased dopamine transporter availability in the caudate putamen [60] and that women 

who had taken postmenopausal estrogen replacement therapy were less likely to develop PD 
than those who had not [61].

There is evidence of inducing differentiation of human neural stem cells, which develop in the 
tyrosine hydroxylase (dopaminergic) neurons, and the effect was blocked by application of an 
estrogen receptor antagonist [62, 63].

As it is supposed that oxidative stress plays an important role in the processes of neuronal 

degeneration in the PD, it is interesting that estrogens suppress free radical production and 

protect striatal neurons against oxidative stress, providing another mechanism of estrogen 

neuroprotection in PD [64, 65].

Recent studies in both animals and humans have provided additional evidence supporting a 
potentially beneficial protective role for estrogen in AD. The mechanisms of estrogen protec-
tion in AD are not clear. At the molecular level, estrogen has been shown to enhance activation 

of the survival factors, protein kinase B, BDNF [66, 67], while inducing phosphorylation and 

deactivation of glycogen synthase kinase (GSK3B) and Bcl-2 associated agonist of cell death 
(BAD), involved in death signaling pathways in neurons [67, 68].
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Progestins have also been found to exert neuroprotective effects similar to those of estrogens. 
Progesterone stimulates the neurological and functional recovery after spinal and brain trau-
mas [56, 69] and exerts neuroprotection in cerebral ischemia [70, 71].

4.2. Effects of androgens

The effects of androgens on the nervous system have been far less characterized than those 
produced by estrogens and progestins. Androgens also exhibit a wide array of neuroprotec-
tive effects in motoneurons, including supporting cell survival, axonal regeneration, and den-
dritic maintenance [72]. Testosterone influences neuroplastic changes in nuclei of the limbic 
system, particularly in the amygdala, bed nucleus of the stria terminalis, and the hippocam-
pus [73, 74]; it exerts neuroprotective effects by stimulating neuron survival and regenera-
tion after a nerve injury by actions mediated via the androgen receptor [75, 76]. It has been 

observed to have a protective effect on apoptosis in cell cultures of human neurons. This effect 
is mediated directly by androgen receptors, without testosterone aromatization to estradiol 

[77]. Testosterone replacement in gonadectomized male adult mice reverses the pathological 

changes in the spine morphology of hippocampal CA1 pyramidal neurons. The dendritic 
spines are specialized to receive synaptic inputs, and a change in spine morphology is cor-
related with the strength and maturity of each synapse [78]. Similar data were obtained in 

experimental motoneuron damage, with the use of DHT reducing the atrophy of adjacent 
dendrites [79]. Recent findings suggest that one of the mechanisms of the neuroprotective 
effects of physical training is the increased DHT production in the hippocampus providing 
evidence for androgenic mediation of neurogenesis by androgen receptors [80].

Androgens may regulate the production and the levels of Aβ, by a classic genomic mechanism 
and rapid non-genomic signaling or via aromatization to estradiol and activation of estro-
gen pathways [81, 82]. Testosterone can attenuate the toxicity of Aβ in cultured hippocampal 
neurons via a rapid, estrogen-independent mechanism [83]. DHT increases Aβ-catabolizing 
enzyme neprilysin in cultured neurons by an AR-dependent mechanism, which promotes Aβ 
degradation, thereby decreasing Aβ levels in AD [84].

4.3. Effects of steroid precursors

Precursors of estrogens, progestins, and androgens (pregnenolone and DHEA) also affect 
neuronal functions. When administered in vivo, pregnenolone reduces histopathological 

changes, protects neural tissues from secondary lesions, and promotes the recovery of motor 

functions after spinal cord injury [85, 86]. DHEA is one of the first neurosteroids identified 
in rat brains. Neuroprotective effects induced by DHEA and its sulfate DHEAS, defined as 
primary in their biological action, have been documented [87]. Both steroids contribute to the 
differentiation and survival of neurons in cell cultures [88]; have a protective effect on hip-
pocampal neurons against the toxic effects of glutamate [89]; stimulate the growth of neuritis 

of the cortical neurons of embryonic rat brains [90]; affect apoptosis, catecholamine synthesis, 
and secretion; and have exhibited anti-oxidant, anti-inflammatory, and anti-glucocorticoid 
effects [87].
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Studies suggest that these are different mechanisms for DHEA and DHEAS effects. It is 
assumed that DHEAS mediates its effects via GABA

A
 receptors, probably by metabolizing 

DHEAS into a GABA
A
 receptor agonist, such as androsterone or androstanediol [91]. The neu-

roprotective effect of DHEAS to NMDA receptor-induced cytotoxicity is probably mediated 
by the σ1 receptor, while DHEA inhibits NMDA-induced nitric oxide (NO) production and 
NO synthase activity by NMDA receptor, modulating calcium/NO signaling pathway [92]. 

Concentrations of DHEA and of its sulfate are also important with respect to the final effect. 
Low concentrations of these steroids may be neuroprotective, while high concentrations of 

DHEA are ineffective or neurotoxic and lead to the inhibition of complex I of the mitochon-
drial respiratory chain [93].

4.4. Interaction between steroids and neurotrophins

Recently, researchers have studied the relationship between the gonadal steroids, adrenal 
steroids, and BDNF focusing on intersexual differences and incidence of mental diseases [94]. 

BDNF belongs to the neurotrophin family and plays an important role in the survival, dif-
ferentiation, and outgrowth of select peripheral and central neurons during development. 

BDNF impacts significantly on neuronal survival, acting in the adult brain through a variety 
of cell types, which include neurons, astrocytes, oligodendrocytes, microglia, and endothelial 

cells. It is essential for the process of learning and improvement of cognitive function via 

activation of the TrkB receptor [95]. Our previous data demonstrated that the negative effect 
of the anticonvulsant lacosamide on the processes of learning and memory is related to sup-
pressed expression of BDNF/TrkB ligand receptor system in the hippocampus of rats [96]. 

Sex steroid hormones and neurotrophic factors are involved in the neuroendocrine control of 

reproduction as well as in brain adaptation during reproductive aging. There is a great body 

of evidence showing the role BDNF plays in the pathogenesis of neurodegenerative diseases. 
Low post-mortem parietal cortex BDNF levels have been found in patients with mild cogni-
tive impairment [97] and AD [97, 98].

Research shows that BDNF mRNA and protein expression levels in the brain cognitive regions 
are affected in a region-specific manner when hormone replacement therapy is administered. 
BDNF mRNA levels have been reported to be significantly reduced in almost all hippocam-
pal layers and the cortex in 28-week ovariectomized rats [99]. Estradiol replacement therapy 
reverses this effect in the hippocampus, suggesting a regional divergence in ovarian steroid 
requirements for BDNF expression. After gonadectomy, BDNF mRNA levels are significantly 
reduced at postnatal day 7 in male rat pups, but after treatment with estradiol benzoate, the 
levels were similar to those in intact animals. The authors demonstrated that ERα and BDNF 
were localized in the same cells (pyramidal cells of the CA3 sub-region and to a lesser extent 
in CA1) within the developing hippocampus [100].

Estrogens have been implicated in the increase of hippocampal BDNF mRNA and protein 
levels in exercising animals. The exercise effect on BDNF upregulation was reduced after 
7 weeks of estrogen deprivation. Exercise in combination with long-term estrogen replace-
ment increased the BDNF protein above the effects of estrogen replacement alone [101].

Androgens also have a bearing on the BDNF expression; some of their effects on the nervous 
system are most likely to be realized through influencing the production of this neurotrophin. 
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Testosterone administration was shown to increase BDNF protein levels in motoneurons of 
spinal nucleus of the bulbocavernosus of castrated male rats [102]. Gonadectomy induces a 
significant decrease in the protein levels of BDNF and its downstream target post-synaptic 
density protein 95 (PSD-95) in the hippocampal CA1 area, which is reversed by testosterone 
replacement [78]. Knowledge of the interactions between BDNF and sex steroids could be 
essential for the understanding of the BDNF role in brain development, adaptation during 
aging, and the pathogenesis of neurodegenerative diseases.

5. Conclusion

The functions of the sex hormones exceed the limits of reproduction in that they regulate 

vital neuronal and glial features. The chronic effects of neurosteroids are due to both genomic 
(classical intracellular steroid receptors) and non-genomic rapid effects (ion channels and 
membrane receptors) in the brain.

Some of the hypothetical models of estrogen neuroprotection include complex mechanisms, 

which converge upon regulation of mitochondria function–preserved ATP levels via increased 

oxidative phosphorylation and increased antiapoptotic proteins of Bcl family. Estrogen stimu-
lates the astrocytes to release protective growth factors and has an anti-inflammatory effect 
associated with suppression of microglia and inflammatory cytokines. It suppresses free radical 
production and protects striatal neurons against oxidative stress, providing another mecha-
nism for neuroprotection in PD. The female sex steroids promote cell survival via protein kinase 
B activation and BDNF upregulation; they inactivate GSK3B and BAD, involved in neuronal 
death signaling pathways in AD. The androgens also have neuroprotective effects in motoneu-
rons, including supporting neuron survival, axonal regeneration, and dendritic maintenance. 

Testosterone can attenuate the toxicity of Aβ and decreases Aβ levels in AD.

Despite the growing amount of research on sex hormones and neurosteroids in recent years 

and the ongoing discovery of biochemical mechanisms of action, their role in neurodegenera-
tive processes remains uncertain. Further elucidation of the cellular and molecular mecha-
nisms responsible for the effects of neurosteroids on the normal function of neuronal and 
glial cells would provide important insights related to the development of new therapeutic 

strategies aimed at delaying the onset and slowing the progression of cognitive dysfunctions 

and neurodegenerative diseases.
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