
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 7

Model Development for Reliability Cannibalization

Bernard Tonderayi Mangara

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69609

Abstract

This chapter looks at cannibalization as a method (procedure) of improving reliability of
engineering systems. Cannibalization gives one the opportunity to use resources in the
most efficient way. In this chapter, we have explored strategies to reduce the adverse
effects of cannibalization on maintenance costs and personnel morale. The strategies
developed in this chapter, at least, can be used to determine (1) which types of cannibal-
izations are appropriate, (2) cannibalization reduction goals and (3) the actions to be
taken to meet the cannibalization reduction goals. In this chapter, we also presented a
combined analytical and simulation model of a two-line, three-line and k-line system
when cannibalization is not allowed and when cannibalization is allowed (with and
without short interruptions to the system). It is clear from the analytical and simulation
results that cannibalization can substantially increase the reliability of the systems
where it is allowed. The improvement factor of unreliability obviously exists in systems
where cannibalization is allowed as compared to those in which cannibalization is not
allowed. Moreover, the improvement factor is larger when we have two-stage cannibal-
ization (short interruptions) than without them.

Keywords: cannibalization, system, component, reliability, model

1. Introduction

Usually, policy dictates that systems of equipment are dispensed together with spare parts in

case of components which are prone to failure. With failed components being replaced and/or

repaired, the systems of equipment remain functional subservient to the said policy. Neverthe-

less, the two exceptions to the preceding policy are [1, 2] as follows: (1) as a result of the high

acquisition and holding costs, high-technology manufacturing environments and organiza-

tions, which make use of expensive equipment, will not be able to always stock spare parts

and (2) when equipment has reached its last life-cycle stage, failure rates have increased, spare

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



parts become increasingly difficult to acquire and there is a slump in the usage of the said

equipment. Therefore, the inclination is not to acquire numerous spare parts as the said

equipment will be phased out soon.

One conceivable way of maintaining systems whose spare parts have been depleted or are not

available is through cannibalization. Readiness requirements and short maintenance turn-

arounds in high-technology environments can be achieved through cannibalization. In gen-

eral, ‘cannibalization’ ascribes to the process of removing a failed component from a system

and replacing the said component by an operating component (of the same type) extracted

from another part of the system. The concept of cannibalization is illustrated in Figure 1. The

practice of cannibalization has a long history, especially in the military [3].

2. Strategies to conduct informed cannibalizations

Cannibalizations, when carried out imprudently, can have unintended negative effects. Canni-

balization actions often bear negative connotations because of the following [4, 5]: (1) canni-

balizations indicate that there are problems with the spare part supply chain, (2) there is a
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Figure 1. The cannibalization concept.
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potential of mechanically damaging systems during cannibalizations and (3) cannibalizations

increase the workload of maintenance personnel and if practiced frequently will dampen

their morale. Nonetheless, the practice of cannibalization is unlikely to be eliminated

completely. Therefore, one has to consider the idea of (1) designated cannibalizations and (2)

methodology-informed cannibalizations. These will then cushion against the negative effects

of cannibalizations.

The idea of designated cannibalizations means the designation of components in the require-

ments database as cannibalizable (i.e. easy to cannibalize) or non-cannibalizable (i.e. difficult

to cannibalize). It can be noted that the cannibalizable or non-cannibalizable of components is

mainly dependent on their type. For example, the cannibalization of a fuse is a trivial task

which maintenance personnel can conduct almost invariably rather than wait for long periods

of time for the spare part to be delivered. On the other hand, the cannibalization of an aircraft

wing spar, for example, is very costly (i.e. in terms of energy, time and money), very dangerous

and unfathomed in the world of aircraft maintenance. Cannibalization of components desig-

nated as cannibalizable will provide serviceable components when the spare stock is depleted.

Cannibalizations of components designated as non-cannibalizable will not be permitted as it

may be too costly in labour or time or money, or too risky in that the component (system) may

incur mechanical damage during removal.

The methodology-informed cannibalization is an alternative route to estimate optimum rates

of cannibalization required to meet the set readiness and operational demand goals, given the

system: (1) mean uptime (MUT) (also known as MTTF), (2) MTTR, (3) mean supply response

time (MSRT), (4) mean maintenance and supply time (MMST) and (5) mean downtime (MDT).

This methodology addresses designated cannibalizations only deemed necessary in the indus-

try. The theoretical model is presented in Section 2.1. This model is an extension of the model

developed in Ref. [6]. In the model developed in Ref. [6], it is assumed that the sum of the

supply time and maintenance time uniquely classifies the total downtime. Nonetheless, in real-

life situations, three categories of downtime, that are exclusive, exist. These are (1) mainte-

nance time, (2) supply time and (3) overlapping MMST. Hence, we extend the model of Ref. [6]

to accommodate these different categories of downtime because cannibalizations affect MTTR

and MSRT, as well as MMST. In Section 2.2, we provide cannibalizations policy implications

based on the results of Section 2.1.

2.1. Theoretical model to show the effects of cannibalization on mission

time availability of systems

We begin with the following definition of system mission time average availability. The system

mission time average availability (MTAAsystem) denotes the mean proportion of mission time

the system is functioning. It is assumed that every time a component (system) fails, it is

restored to an ‘as good as new’ condition through repair and the said system mission time

average availability is

MTAAsystem ¼
MUT

MUT þMDT
ð1Þ
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where MUT is the mean uptime (also referred to as MTTF) and MDT is the mean downtime.

The MUT denotes the mean functioning of the system. The MDT is decomposed into three

mutually exclusive activities: (1) the MTTR;, (2) the MSRT and (3) the MMST. If we substitute

these three variables into Eq. (1), we get

MTAAsystem ¼
MUT

MUT þMTTRþMSRT þMMST
ð2Þ

To simplify the calculations, one assumes a zero time for the decision to cannibalize and similarly

a zero time for accomplishing the cannibalizations. Therefore,MSRT is calculated as follows [6]:

MSRT ¼ ð1� GEÞð1� cÞμ ð3Þ

where GE denotes gross effectiveness—that is, the ratio of the parts required which can be

obtained in the supply chain, c denotes the ratio of the parts requests which cannot be obtained

in the supply chain and have to be cannibalized and μ is the mean customer wait time (CWT)

for spare parts.

The U.S. Navy describes the cannibalization action to be the number of cannibalizations

performed per 100 flight hours. This is referred to as the cannibalization rate and is denoted

CANNAF. In this research, it will suffice to use this definition. The ratio of all the parts requests

which are cannibalized, c, is determined as follows [6]:

c ¼
CANNAF

100ð1� GEÞθ
ð4Þ

where θ is the component mean failure rate.

If we substitute Eq. (4) into Eq. (3), we get

MSRT ¼
�
�

μ
�

CANNAF � ð100θÞ þ ð100GEθÞ
��

100θ
ð5Þ

It can be noted that Eq. (5) shows a negative linear relationship betweenMSRT and CANNAF. If

we hold θ, μ and GE constant, it can be deduced that when the cannibalization rate is higher

the MSRT becomes lower.

If we substitute Eq. (5) into Eq. (2) and solve for CANNAF, we get

CANNAF ¼
θð100GE� 100Þ MMST þ MTTR þ MUT � MUT

MTAAsystem � μðGE �1Þ

� �� �

μðGE� 1Þ
ð6Þ

We impose the following mathematical constraints when calculating with Eq. (6):

CANNAF ¼ 0 if ð1� GEÞμ ≤
MUT

MTAASYSTEM �MUT �MTTR�MMST
ð7Þ
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MTAAsystem ≤
MUT

MUT þMTTRþMMST
ð8Þ

It is impossible to achieve an MTAAsystem value higher than this. It can only mean that the

values set for the parameters in the model are not showing rational thought.

Using Eq. (6), we plot CANNAF as a function of μ for different values of MTAAsystem (with all

the other parameters fixed at values given and shown in Figure 2. It can be deduced from

Figure 2 that μ approaches infinity as CANNAF reaches a maximum of 12.31 for anMTAAsystem

of 0.65; 12.24 for an MTAAsystem of 0.60 and 12.17 for an MTAAsystem of 0.55.

Figure 3 shows that a policy to limit cannibalization activities is required. In the example of

Figure 3 (with all the other parameters fixed), it can be seen that a cannibalization rate above

14 does not add any value as the MTAAsystem is now 1.

2.2. Policy implications of the theoretical model

In this section, we state a number of conclusions based on our simulations using Eqs. (1)–(6).

These conclusions have implications on cannibalization policies. The conclusions are as follows:

a. The gradient ∂CANNAF

∂μ
of the graph in Figure 2 is positive. This shows that the longer μ is

the higher CANNAF is (for different values of MTAAsystem all other parameters being held

constant). Thus, cannibalization activities may be reduced by decreasing μ;
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Figure 2. CANNAF versus μ for different MTAAsystem values.
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b. The functionMTTR = F(CANNAF) is positive. Hence, more cannibalization activities imply

longer maintenance time;

c. The gradient ∂CANNAF

∂MUT
is negative. Thus, it shows that with higher system reliability or with

longer mean uptime, cannibalization rates become lower (for different values of

MTAAsystem with all other parameters being held constant). Thus, cannibalization activi-

ties can be reduced when systems are designed taking cognisance of probabilistic design

for reliability;

d. It can be deduced that the gradient ∂CANNAF

∂MTTR
is positive. It implies that with longer repair

time (MTTR), the cannibalization rate becomes high (for different values of MTAAsystem

with all other parameters being held constant). Therefore, cannibalization activities may

be reduced with a more efficient maintenance operation system (i.e. better trained and

qualified maintenance personnel);

e. The gradient ∂CANNAF

∂GE
is negative. It implies that the higher the GE, the lower the cannibal-

ization rate (for different values of MTAAsystem all other parameters being held constant).

Hence, increasing the availability of spare parts in the supply chain reduces cannibaliza-

tion activities;

f. It can be seen from the results that cannibalization activities serve a useful purpose in the

maintenance and operation of high performance and complex systems. Cannibalization

activities are necessary, viable and cost-effective, only if the optimum cannibalization rate

is sought for specific operating parameters; and
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g. Lastly, when the actual data on cannibalization rates and other parameters (i.e. the ones

related to MTAAsystem) is available, the models presented in Sections 2 and 3 can be

empirically tested.

3. Cannibalization revisited: theoretical model and example

This section considers a situation where repair facilities or spare components are not immedi-

ately available so that the probability of survival of a system can only be enhanced by

extracting needed replacement components from another part of the system. We develop a

model of cannibalization for the probability of survival (at time t) of a system with k -lines in

parallel of n series-connected components when short interruptions to the system are allowed

and when short interruptions to the system are not allowed. It is assumed for practical reasons

that the lines are identical. Let all components be also identical, with exponentially distributed

lifetimes with parameter λ. We can generalize the approach to the case of non-identical

components and lines but the resulting expressions will be extremely cumbersome. We start

with two lines as follows:

i. Assume that when only one line is left, the time for replacing the failed component of this

remaining line (if one has a spare, e.g. from the failed line) is not allowed. Then, there is

no possibility of cannibalization in this system and the survival function can be easily

obtained.

ii. The time for replacing the failed component is allowed. Then, when one line fails, all n � 1

non-failed components of the failed line can be used as spares for the operable line. The

corresponding formulas (survival function) are then derived and this is cannibalization.

Then, we consider the case of three lines:

i. No time is allowed for replacing the failed component. However, cannibalization is still

performed here. Indeed, when one line fails, we can use n � 1 spares for the system of

two lines (i.e. cannibalization) and when they will be exhausted, then no cannibalization,

as in the case with two lines. The formula for probability of survival (at time t) is then

written for the case with cannibalization and without and compared.

ii. Time for replacing the failed component is allowed. Then, the two-stage cannibalization

goes. When the first line fails, n � 1 non-failed components can be used to maintain the

two lines. When this is exhausted and one of the two lines fails, the same process as in the

previous case is followed and then the corresponding relationships are obtained.

We generalize the approach to the case when we have more than three lines and obtain the

corresponding recurrent equations for survival probabilities in this case that can be solved

numerically.

It can be noted that short interruptions to the system give us the possibility to use some

components of a system as spares.
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3.1. Notation

X: lifetime of a system.

S�knðtÞ: probability of survival (at time t) of a system with k -lines of n -series-connected

components with cannibalization (when short interruptions of the system are not allowed).

SþknðtÞ: probability of survival (at time t) of a system with k -lines of n -series-connected

components with cannibalization (when short interruptions of the system are allowed).

SncknðtÞ: probability of survival (at time t) of a system with k -lines of n -series-connected

components when no cannibalization at all is allowed.

q�þ
kn ðtÞ ¼

1 � S �
kn ðtÞ

1 � Sþ
kn
ðtÞ
: improvement factor of unreliability (at time t) for k -lines of n -series-

connected components with cannibalization due to allowing short interruptions.

qncknðtÞ ¼
1 � SncknðtÞ

1 � S
� ðþÞ

kn
ðtÞ
: improvement factor due to cannibalization of unreliability (at time t) for

k -lines of n -series-connected components when initially no cannibalization at all is allowed.

k ¼ 1, 2, …:

n ¼ 1, 2, …

Note: The improvement factor of unreliability shows how much the unreliability has

decreased due to cannibalization being allowed.

3.2. One-line system

This section is concerned with the probability of survival (at time t) evaluation of standard

series network occurring in engineering systems. The series network is the basic building block

of the work in this section. In this incident, n number of components form a series network, as

illustrated in Figure 4. The system fails if any one of the components fails. All components

constituting the system must not fail in order to ensure a successful system operation.

The four wheels of a car illustrate a typical example of a series system. The car cannot be

driven for practical purposes with any one of the tyres punctured. It therefore follows that

these four car tyres form a series system. When one assumes independent and identical

components (each component i(i = 1,2,…..,n) with a lifetime that is exponentially distributed

with failure rate λ), it then follows that the probability of survival for the series system as

shown in Figure 4 is

Snc1nðtÞ ¼ e � nλt ð9Þ

3.3. Two-line system

Now consider two identical lines of series-connected components as shown in Figure 5. Now,

we compute the probability of survival for two cases [7, 8]: (Section 3.3.1) when no short

interruptions to the system are allowed (i.e. no possibility of cannibalization: this is indeed
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the only case without cannibalization, but if we have three or more lines and no interruptions,

we already have cannibalization) and (Section 3.3.2) when short interruptions to the system are

allowed (i.e. when cannibalization can be executed).

3.3.1. No short interruptions to the system are allowed (i.e. no possibility of cannibalization)

The formula for Pr(X ≥ t) (i.e. the probability of survival) is written obviously as follows:

S �
2n ðtÞ ¼ Snc2nðtÞ ¼ PrðX ≥ tÞ ¼ 1 � ð1 � e � nλtÞ2 ð10Þ

3.3.2. Short interruptions to the system are allowed (i.e. cannibalization is allowed)

When one line fails, the time for replacing the failed component of the remaining line is

allowed and all n � 1 non-failed components of the failed line can be used as spares for the

operable line. The cannibalization formula for Pr (X ≥ t) (i.e. the probability of survival) is

written as follows:

Sþ2nðtÞ ¼ PrðX ≥ tÞ ¼ e � 2nλt þ

ðt

0

2nλe � 2nλx
X

n�1

i¼0

e � nλðt � xÞ

�

nλðt � xÞ
�i

i!

0

B

@

1

C

A
dx ð11Þ

where e�2nλt in the first term in Eq. (11) means that both lines have survived (i.e. by the law of

total probability); the integral corresponds to the probability that one line failed and then the

remaining line has survived with n � 1 spares and 2nλe�2nλx dx means the density of the first

failure of 2n components. Then with one line left, there will be no further failures.

Figure 4. One line of series-connected components.

Figure 5. Two lines of series-connected components.
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One can compare probabilities with and without cannibalization. More appropriately, we

compare probabilities of failures. Therefore, we compute the improvement factor of

unreliability for the two-line system as qncknðtÞ ¼
1 � SncknðtÞ

1 � Sþ
kn
ðtÞ

as shown in Figure 6.

3.4. Three-line system

Now consider three identical lines of series-connected components in a similar manner to the

two-line system. Now, we compute Pr(X ≥ t) for three cases [7, 8] (Section 3.4.1) when no

cannibalization is allowed at all (just three lines of n series parallel-connected components)

(Section 3.4.2), when no short interruptions to the system are allowed (cannibalization is made

possible here as we are using the operable components of the failed line as spares, as reflected

in Eq. (13)) and (Section 3.4.3) when short interruptions to the system are allowed (i.e. when

cannibalization is allowed).
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Figure 6. Improvement factor of unreliability for a two-line system (comparison of a system with no cannibalization and

that with cannibalization when short interruptions to the system are allowed).
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3.4.1. No cannibalization is allowed at all (just three lines of n series parallel-connected components)

The formula for Pr(X ≥ t) (i.e. the probability of survival) is written, obviously, as follows:

Snc3nðtÞ ¼ PrðX ≥ tÞ ¼ 1 � ð1 � e � nλtÞ3 ð12Þ

3.4.2. No short interruptions to the system are allowed (i.e. cannibalization is made possible

here by operable components of the failed line which are used as spares)

Cannibalization can still be done here. Indeed, when one line fails, we can use n � 1 spares for

the system of two lines. When the n � 1 non-failed components are exhausted, then no

cannibalization can be done. The formula is written as follows:

S �
3n ðtÞ ¼ PrðX ≥ tÞ

¼ e � 3nλt þ

ðt

0

 

3nλe � 3nλx

 

Xn � 1

i¼0
e � 2nλðt � xÞ

�

2nλðt � xÞ
�i

i!

þ

ðt � x

0

ð2nλÞn

ðn � 1Þ!
yn � 1e � 2nλye � nλðt � x � yÞdy

!!

dx

ð13Þ

where e�3nλt in the first term in Eq. (13) means that all three lines have survived (i.e. by the law

of total probability); the integral corresponds to the probability that one line failed and then the

remaining two lines survived with n� 1 spares, and 3nλe�3nλx dxmeans the density of the first

failure of 3n components. Then with two lines with n � 1 spares and the nth failure with

intensity 2λ will ‘ruin’ it and one line will be left and no further failures.

3.4.3. Short interruptions to the system are allowed (i.e. cannibalization is allowed)

The two-stage cannibalization goes. When the first line fails, the time for replacing the failed

component of the two remaining lines is allowed. n � 1 non-failed components of the

failed line can be used to maintain the two remaining lines. When these components are

exhausted and one of the two lines fails, the n � 1 non-failed components of the failed line

can be used as spares for the remaining operable line. The corresponding cannibalization

formula for Pr(X ≥ 1) is written as follows:

Sþ3nðtÞ ¼ PrðX ≥ tÞ

¼ e � 3nλt þ

ðt

0

 

3nλe � 3nλx

 

Xn � 1

i¼0
e � 2nλðt � xÞ

�

2nλðt � xÞ
�i

i!

þ

ðt � x

0

ð2nλÞn

ðn � 1Þ!
yn � 1e � 2nλy

Xn � 1

i¼0
e � nλðt � x � yÞ

�

nλðt � x � yÞ
�i

i!
dy

!!

dx

ð14Þ
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where e�3nλt in the first term in Eq. (14) means that all three lines have survived; the integral

corresponds to the probability that one line failed and then the remaining two lines survived

with n � 1 spares; 3nλe � 3nλxdx means the density of the first failure of 3n components, and
ð2nλÞn

ðn � 1Þ! y
n � 1e � 2nλy is the density of the nth event from the Poisson process with rate 2n. Then

with two lines with n � 1 spares and the nth failure with intensity 2λ will ‘ruin’ it and one line

will be left and no further failures.

Here, we can compare probabilities with no cannibalization at all (just three lines of n -series

parallel-connected components) and that with cannibalization (with and without short interrup-

tions). More suitably, we compare probabilities of failures. Hence, we compute the improvement

factor of unreliability for the three-line system (i.e. that for no cannibalization and cannibaliza-

tion with and without short interruptions) as qnc3nðtÞ ¼
1 � Snc3nðtÞ

1 � S
ðþÞ

3n
ðtÞ

and q � þ
3n ðtÞ ¼

1 � S �
3n ðtÞ

1 � Sþ3nðtÞ
as depicted

in Figures 7 and 8, respectively.
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Figure 7. Improvement factor of unreliability for a three-line system (comparison of a system with no cannibalization and

that with cannibalization when short interruptions to the system are allowed).
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3.5. k-Line system

Now consider k -identical lines of series-connected components in a similar manner to the two-line

system. Now, we compute Pr(X ≥ t) for three cases [7, 8]: (Section 3.5.1) when no cannibalization is

allowed at all (just k -lines of n -series parallel-connected components) (Section 3.5.2), when no

short interruptions to the system are allowed (cannibalization is made possible here as we are

using the operable components of the failed line as spares, as reflected in Eq. (16)) and (Section

3.5.3) when short interruptions to the system are allowed (i.e. when cannibalization is allowed).

3.5.1. No cannibalization is allowed at all (just k-lines of n-series parallel-connected

components)

The formula for Pr(X ≥ t) (i.e. the probability of survival) is written as follows:

SncknðtÞ ¼ PrðX ≥ tÞ ¼ 1 � ð1 � e � nλtÞk ð15Þ
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Figure 8. Improvement factor of unreliability for a three-line system (comparison of a system with cannibalization when

no short interruptions to the system are allowed and that with cannibalization when short interruptions to the system are

allowed).
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3.5.2. No short interruptions to the system are allowed (i.e. cannibalization is made possible here by

operable components of the failed lines which are used as spares)

Cannibalization can still be done here. Indeed, when one line fails, we can use n � 1 spares for

the system of k � 1 lines. When the n � 1 non-failed components are exhausted, then no

cannibalization can be done. The formula is written as follows:

S �
kn ðtÞ ¼ PrðX ≥ tÞ

¼ e � knλt þ

ðt

0

(

knλe � knλx

 

Xn � 1

i¼0
e � ðk � 1Þnλðt � xÞ

�

ðk � 1Þnλðt � xÞ
�i

i!

þ

ðt � x

0

�

ðk � 1Þnλ
�n

ðn � 1Þ!
yn � 1e � ðk � 1ÞnλyS �

ðk � 1Þnðt � x � yÞdy

!)

dx

ð16Þ

where e�knλt in the first term in Eq. (16) means that all k -lines have survived (i.e. by the law of

total probability); the integral corresponds to the probability that one line failed and then the

remaining k � 1 lines survived with n � 1 spares, and knλe � knλxdx means the density of the

first failure of kn components. Then with k � 1 lines with n � 1 spares and the nth failure with

intensity (k� 1) λwill ‘ruin’ it and one line will be left and no further failures. S �
ðk � 1Þnðt � xÞ is

recurrent from the probability of survival (at time t � x) of the system with k � 1 lines when no

short interruptions to the system are allowed (i.e. cannibalization is made possible here as we

are using the operable components of the failed line as spares).

3.5.3. Short interruptions to the system are allowed (i.e. cannibalization is allowed but it was made

possible in b) by operable components of the failed lines which are used as spares)

The k � 1 stage cannibalization goes. When the first line fails, the time for replacing the

failed component of the k � 1 remaining lines is allowed. n � 1 non-failed components of

the failed line can be used to maintain the k � 1 remaining lines. When these components are

exhausted and one of the k� 1 lines fails, the n� 1 non-failed components of the failed line can be

used as spares for the remaining operable lines. The process is repeated until one (line) remains,

and the time for replacing the failed component of this remaining line (if one has a spare) is not

allowed. The corresponding cannibalization formula for Pr(X ≥ t) is written as follows:

SþknðtÞ ¼ PrðX ≥ tÞ

¼ e � knλt þ

ðt

0

(

knλe � knλx

 

Xn � 1

i¼0
e � ðk � 1Þnλðt � xÞ

�

ðk � 1Þnλðt � xÞ
�i

i!

þ

ðt � x

0

�

ðk � 1Þnλ
�n

ðn � 1Þ!
yn � 1e � ðk � 1ÞnλySþðk � 1Þnðt � x � yÞdy

!)

dx

ð17Þ
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where e�knλt in the first term in Eq. (17) means that all k -lines have survived; the integral

corresponds to the probability that one line failed and then the remaining k � 1 lines survived

with n � 1 spares; knλe � knλxdx means the density of the first failure of kn components, and

Sþðk � 1Þnðt � xÞ is the probability of survival (at time t � x of the system with k � 1 lines when

short interruptions to the system are allowed. Then with k � 1 lines with n � 1 spares and the

nth failure with intensity (k � 1)λ will ‘ruin’ it and one line will be left and no further failures.

Thus, Eq. (17) is a recurrent relationship.

Again, we can compare probabilities with and without cannibalization. More usefully, we

compare probabilities of failures. Hence, we compute the improvement factor of unreliability

for the k-line system (i.e. that for no cannibalization and cannibalization with and without

short interruptions) as qncknðtÞ ¼
1 � SncknðtÞ

1 � S
ðþÞ

kn
ðtÞ

and q � þ
kn ðtÞ ¼

1 � S �
kn ðtÞ

1 � Sþ
kn
ðtÞ

as depicted in Figures 9 and 10,

respectively.
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Figure 9. Improvement factor of unreliability for a k-line system (comparison of a system with no cannibalization and

that with cannibalization when short interruptions to the system are allowed).
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3.6. Computation results

Figures 6–10 show the improvement factors of unreliability for the two-line system, three-line

system and k-line system, respectively. We are looking at reliable systems, where the survival

functions should be close to 1. For illustrative purposes, we choose the values of the failure rate

and time accordingly. Therefore, it is more effective to compare unreliability of the systems

with no cannibalization (i.e. 1 � S
nc

kn
ðtÞ) and with cannibalization (i.e. with and without short

interruptions) (i.e. 1 � S
þ
kn
ðtÞ and 1 � S

�
kn
ðtÞ). The improvement factor of unreliability is

obtained by dividing the unreliability of the said system without cannibalization (worse

quantity) by that of the said system with cannibalization (without short interruptions) (better

quantity) and thus is larger than one. This is then compared to that obtained by dividing the

unreliability of the said system with cannibalization with short interruptions (worse quantity)

by that of the said system with cannibalization (without short interruptions) (better quantity).

It can be seen from Figures 6–10 that the improvement factors of unreliability of the systems

in which cannibalization is allowed are better than in those in which it is prohibited.

0.4 0.5 0.6 0.7 0.8 0.9 1

50

100

150

200

250

300

time (t)

q
kn

-+
(t

)

0  

Improvement factor of unreliability: k = 4, n = 3; lamda = 0.3; t = 0.4 to 1
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Figure 10. Improvement factor of unreliability for a k-line system (comparison of a system with cannibalization when no

short interruptions to the system are allowed and that with cannibalization when short interruptions to the system are

allowed).
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From simulation results of Figures 6–10, it can also be shown that very larger values lead to

asymptotically equivalent system performance levels.

4. Conclusions

In this chapter, we have explored strategies to mitigate the unfavourable effects that cannibal-

izations have on the costs of maintaining systems of equipment and also on the morale of

maintenance personnel. The methodologies developed in this chapter, at least, can be used to

(1) ascertain those cannibalizations that are appropriate, (2) start implementation of goals to

reduce cannibalization and (3) enlist actions to be taken in order for cannibalization reduction

goals to be met.

We also presented a combined analytic and simulation model of a two-line, three-line and

k-line system when cannibalization is not allowed and when cannibalization is allowed (with

and without short interruptions to the system). It is clear from the analytic and simulation

results that cannibalization can substantially increase the reliability of the systems where it is

allowed. The improvement factor of unreliability obviously exists in systems where cannibal-

ization is not allowed as compared to those in which cannibalization is allowed. Moreover, the

improvement factor is larger when we have two-stage cannibalization (short interruptions)

than without them.
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