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Abstract

Abiotic constraints resulting from climate changes have widespread yield reducing effects 
on all field crops and therefore should receive high priority for crop breeding research. 
Conventional breeding has progressed a lot in building tolerant genotypes but abiotic stress 
tolerance breeding is limited by the complex nature of abiotic stress intensity, frequency, 
duration and timing, linkage drag of undesirable traits/genes with desirable traits; and trans-
fer of favorable genes/alleles from diverse plant genetic resources limited by gene pool bar-
riers giving molecular breeding a good option for breeding plant genotypes that can thrive 
in stress environments. Molecular breeding (MB) approaches viz., marker-assisted selection 
(MAS), marker-assisted backcrossing breeding (MABB), marker assisted recurrent selection 
(MARS) and genomic selection (GS) or genome wide selection (GWS) offer opportunities 
for plant breeders to develop high yielding maize cultivars with resilience to diseases in less 
time duration precisely. For complex traits (mainly abiotic stresses) where multiple QTLs 
control the expression, new strategies like marker assisted recurrent selection (MARS) and 
genomic selection (GS) are employed to increase precision and to reduce cost of phenotyp-
ing and time duration with disease resilience. This review discusses recent developments 
in molecular breeding for developing and improving abiotic stress resilience in field crops.

Keywords: cold, drought, waterlogging, climate change, salinity

1. Introduction

Even though climate change is one of the major current global concerns, it is not new. 
Several climate changes have occurred before, with dramatic consequences. Among them 
is the decrease in CO

2
 content, 350 million years ago considered responsible for the leaf 
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appearance. It took nearly 40–50 million years for leaves to appear [1]. The massive volcanic 
eruptions were the second climatic change during the end-permian age in Siberia when 
lava erupted over 4 million km3 onto the surface of earth [2] and today the volcanic erup-

tion remnants cover an area of 5 million km2. This volcanic eruption resulted in accumu-

lation of organohalogens causing depletion of the ozone layer worldwide. Consequently, 
UV radiation burst was one of the cause of mass extinction resulting in wiping out 0.95 of 
all the species [2]. The end of the last ice age came to an end was the third major result of 
climatic changes causing long dry seasons. Hence, the annual plants survived dry seasons 
either as tubers or as dormant seeds leading to birth of agriculture in Fertile Crescent and 
then in other areas. The fourth climate change induced the Holocene flooding, ago which is 
now believed to be associated with collapsing of the ice sheets, resulting in rise of global sea 

level up to 1.4 m [3]. Rising sea levels caused massive migration towards the North Western 
areas which explained the domestication of plants and animals, which reached modern 

Greece, Balkans and Europe. During the last 5000 years, drought has historically been the 
main factor limiting crop production. Water availability has led to rise of multiple empires, 
while drought caused collapse of various civilizations viz., Mesopotamia, (6200 years ago), 
Yucatan Peninsula (1400 years ago), coastal Peru, (1700 years ago) and early bronze society 
in the south of Fertile Crescent [4, 5].

Climate changes have adverse impacts on food production, quality security [6]. The num-

ber of undernourished people would increase by 150% in the areas like, north of Africa and 

Middle East by year 2080 compared to 1990 and 300% in sub-Saharan Africa [7]. Agriculture 
is extremely vulnerable to climate change. Higher temperatures eventually reduce crop yields 
without discouraging weed, disease and pest challenges. Long-term production declines and 
short-term crop failures result from changes in precipitation patterns. Overall negative impact 
of climate change on agriculture is expected to threaten the global food security [8] which 

would probably increase unless early warning systems and breeding strategies are developed 

[9]. Climate change is reducing production while increasing hunger among populations. High 
temperatures with less precipitation over semi-arid regions would reduce yields of crops in 

the next two decades causing negative impacts on global food security and calorie consump-

tion causing malnutrition [10]. Thus, agricultural productivity investments are needed to 
tackle the negative impacts of climate change on the health scenario and food security [8].

The most likely stresses within which plant breeding targets need establishing are: [11]

• High temperatures.

• Drought.

• Salinity.

• Biotic stresses.

• Increase in CO
2
 concentration.

There is a three-fold relationship between climate change and agriculture. Firstly, agriculture 
contributes indirectly to climate change by emitting methane from rice fields, N

2
O from fer-

tilizers & manure and CO
2
 emissions from field work, machinery, fertilizers and pesticides. 
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Second relation is the impact of these climate changes on agriculture caused by increased 
weather variability (extremes in temperature and precipitation), sea level rise and surge thus, 
inundating & ruining coastal agricultural lands, pathogen and pest pressures and decreased 
plant biodiversity. The third relation is that agriculture can itself become a potential modera-

tor of climate change by mitigating climate change by carbon sequestration by having agro-

forestry, rotations with cover crops, green manure, conservation tillage, by changing inputs 

like going for organic farming, reducing fertilizers, using bio-fuels and by adapting to climate 
changes by breeding crop varieties with resilience to climate change by selective breeding and 

developing genetically modified organisms (GMOs) [12, 13].

To increase the efficiency of breeding pipelines, a combination of conventional, molecular, 
and transgenic breeding approaches will be needed. Breeding approaches are not mutually 
exclusive and are complimentary under most breeding schemes [14].

Plant breeders respond to climate related stresses in multiple ways:

• Selection and backcross breeding.

• Extensive managed stress screening experiments to develop superior tolerant germplasm 

via recurrent selection.

• Exploitation of alien genetic variation (Conserved Wild Relatives).

• Breeding for earliness and varieties with specific adaptation to specific ecologies.

One of the effective ways for crop production to grow or to stay stable under new challenges 
from climate change is through improved varieties developed by plant breeding. The genetic 
diversity of crop plants is the foundation for the sustainable development of new varieties 

for present and future challenges. For example, common beans biodiversity has been used by 
plant breeding to develop both heat and cold tolerant varieties grown from the hot Durango 
region in Mexico to the cold high altitudes of Colombia and Peru. Similar is the case with 
other crops too. Resource-poor farmers have been using genetic diversity intelligently over 
centuries to develop varieties adapted to their own environmental stress conditions.

Biotechnological tools: The tools of modern plant breeding include following:

• Molecular breeding (marker-assisted selection (MAS), marker-assisted backcrossing breeding 
(MABB), marker assisted recurrent selection (MARS), genome wide selection (GWS)).

• Genetic engineering.

1.1. Molecular breeding (MB)

The MB approach involves first identifying quantitative trait loci (QTLs) for tolerance to 
abiotic stresses. After identifying the markers associated with QTLs or genes for traits of 
interest, the candidate QTLs or genes can be introgressed in elite lines through marker-
assisted backcrossing (MABC). Until recently, QTLs were identified by linkage mapping 
[15], but now association genetics has started to supplement these efforts in several crops 
[16, 17]. Nested association mapping, which combines the advantages of linkage analysis 
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and association mapping in a single unified mapping population, is also being used for the 
genome-wide dissection of complex traits in maize [18]. Association mapping, compared 
with linkage mapping, is a high-resolution and relatively less expensive approach. In the 
near future, it is likely to be routinely used for identifying traits associated with abiotic 

stresses [16], particularly given the availability of high-throughput marker genotyping plat-

forms [19]. An example of the systematic use of association mapping for drought tolerance 
is the collaborative project between Cornell University and CIMMYT (http://www.maizege-

netics.net/drought-tolerance).

MABC helps in developing crops that are drought and heat tolerance, adapted to low rain-

fall and high temperature conditions. In rice, molecular breeding was used for one major 
effect QTL for submergence tolerance Sub1 QTL [20] and drought tolerance [21]. One of the 
difficulties of developing superior genotypes for abiotic stresses such as drought or heat is 
that these traits are generally controlled by small effect QTLs or several epistatic QTLs [22]. 
Incorporating QTLs by MABC has been limited, mainly because of the large sizes of the back-

cross populations. Therefore, marker-assisted recurrent selection (MARS) and genome wide 
selection (GWS) or genomic selection (GS): are used to overcome this problem of pyramiding 
several QTLs in the same genetic background [19, 23].

The estimated genetic gain by MARS or GWS is greater than obtained by using MABC for 
transferring QTLs /gene alleles for complex abiotic stress traits in one genetic background 
[24, 14]. The MARS approach is used routinely in private sector breeding programs [14, 25]. 
MABC and MARS require information on marker trait associations which is not necessar-

ily required for GWS [26, 27]. GWS studies both phenotyping data as well as genome-wide 
marker profiling of a ‘training population’ and predictions of the genomic-estimated breeding 
values (GEBVs) of progeny GEBVs are calculated based on phenotyping and marker datasets. 
These values are used to select the superior progeny lines for advancement in breeding cycle 
[27, 28]. Several computational tools are available or are being developed to calculate GEBVs, 
such as the Best Linear Unbiased Prediction method and the geostatistical mixed model [29], 

(http://genomics.cimmyt.org/#Software).

2. Few case studies

2.1. Drought tolerance in rice

Birsa Vikas Dhan 111, an upland rice cultivar released in Jharkhand was bred by utilizing 
MABC for improved root growth QTLs towards improved performance under drought in 
a collaborative partnership programme between Birsa Agricultural University, Ranchi, 
Jharkhand, and CAZS-NR; Gramin Vikas Trust, Ranchi, Jharkhand. This variety is high yield-

ing (out yielding recurrent parent by 10% in rainfed conditions) with good grain quality and 
matures early with tolerance towards. This specific QTL was identified by Adam Price in first 
instance (Aberdeen University, UK) and Brigitte Courtois (CIRAD, France/IRRI, Philippines). 
Here marker-assisted back-crossing breeding and marker assisted pyramid crossing was 
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conducted to improve the morphological and root traits for drought tolerance of Indian rice 
variety, Kalinga III (indica) used as recurrent parent and Azucena, an upland japonica variety 
from Philippines as donor parent.

Five segments each from different chromosomes were targeted for introgression; four seg-

ments out of five carried the QTLs for root length and root thickness while as fifth segment 
had a recessive QTL for aroma. 24 NILs (Near isogenic lines) were evaluated in five field 
experiments in UAS Bangalore for root traits Dr. Shashidhar. The segment on chromosome 
number 9 with flanking markers viz., RM242-RM201 increased root length significantly both 
under drought & irrigated treatments thereby confirming the QTL from Azucena cultivar 
expressed well [21].

Significant number of QTLs associated with drought tolerance have been reported for drought 
tolerance. A QTL located on chromosome 9 has been found associated with spikelet fertility 
under drought stress and for root and shoot traits [30–32]. ‘Teqing’ a indica cultivar used as 

recurrent parent in a study with ‘Lemont’ as donor (japonica) several alleles from Lemont were 
found associated with improved drought tolerance [33]. Detection of qtl12.1 QTL for toler-

ance towards drought accounting for 51% of the genetic variance and located on chromosome 

12 was reported by [34] localized to a 10.2-cM region (RM28048 and RM511).

NERICA rice varieties are promising for Africa. These varieties mature early and escape 
drought. Rice varieties hardier than NERICA are being, developed by maximizing the diver-

sity of the African rice germplasm pool consisting of Oryza glaberrima, its wild relatives (Oryza 

barthii, Oryza longistaminata) and Oryza sativa landraces using both conventional breeding and 

biotechnology.

2.2. Drought tolerance in maize

One of the major limiting factors for maize production and productivity is inadequate soil 
moisture particularly during flowering and grain filling stages [35]. Studies on drought toler-

ance have focused on identifying the genetic basis of yield and its components and secondary 

traits viz., including anthesis-silking interval (ASI), root architecture and stay green. Stable 
genomic regions associated with flowering, maturity and yield components identified more 
than 1080 QTLs [36]. For narrow ASI, five QTLs were introgressed from a drought-tolerant 
donor Ac7643 through MABC to CML-247 an elite, drought-susceptible line. The selected 
lines out yielded the control under drought conditions while decreasing the yield advantage 

from mild to moderate drought stress [37].

In India several QTL mapping experiments on drought stress has been undertaken [38] and 

in China [39, 40]. In India, QTL mapping for maize drought tolerance identified major effect 
QTLs on chr. 1, 2, 8 and 10 after assessing a set of 230 CIMMYT developed RILs at Hyderabad 
and Karimnagar. A significant digenic epistatic QTL effect for kernel number ear−1 under 

drought stress was detected. A major QTL for ASI (anthesis-silking interval) and ear number 
per plant under drought stress was detected on chr. 1 (bin 1.03) and chr. 9 (bins 9.03–9.05) [39, 

40] from a cross between X178 (tolerant line) and B73 which corresponded to several QTLs 
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identified in different experiments carried on drought worldwide [41]. Several such identified 
‘consensus QTLs’ would serve as good candidates in marker-assisted breeding to improve 
maize production under drought.

Drought resilient maize product pipeline:

Over 80% maize is grown as rain-fed crop, with avg. yield less than half of irrigated maize. 
Following are the few projects for developing drought resilient maize:

• Drought tolerant maize for Africa (DTMA),

• Water efficient maize for Africa (WEMA),

• Affordable accessible Asian drought tolerance maize project (AAA),

• Asian maize drought tolerance project (AMDROUT).

Drought tolerance maize varieties developed:

2.3. Cold tolerance in rice

Tolerance of low temperature at both the vegetative and the reproductive stage is an 
important breeding objective for improving rice cultivars in the temperate and high alti-

tude areas of the tropics and subtropics. Low temperatures during booting stage reduce 
yields by causing cold-induced male sterility. Cold prevents sugar accumulation in the 
pollen causing no starch build-up and hence no energy for pollen germination hamper-

ing grain production. Enzyme invertase regulated by hormone abscisic acid (ABA) trans-

ports sugar to tapetum before moving to the pollen and cold decreases the invertase levels 

in susceptible cultivars [42] lowering pollination and hence grain development. Several 
QTLs for cold tolerance were identified at booting stages on chromosomes 4 (Ctb1) and 
8 (qCTB8) in Silewah (a javanica cultivar). Significant number of markers have been used 
by several workers [43, 44] to transfer cold tolerant gene (Ctb1) into japonica rice culti-
vars. Eight QTLs for booting-stage cold tolerance were identified in a RIL (recombinant 
inbred line) population derived from a cross between japonica and indica cultivars [45]. A 
QTL for cold induced wilting and necrosis tolerance has been fine mapped & identified on 
chromosome 12 [46, 47]. qCTS4 fine mapped to 128-kb region on chromosome 4 associated 
with tolerance to stunning and yellowing of seedlings under cold contributed 40% of the 
phenotypic variation [48].

Variety Trait + selection strategy Developed By

ZM 309, 401, 423, 521, 623, 625 and 721 Conventional breeding South Saharan Africa

KDV1, 4, 6 Conventional breeding South Saharan Africa

WS103 Conventional breeding South Saharan Africa

Melkassa 4 Conventional breeding South Saharan Africa

WH 403, 502, 504, and ZMS402, 737 Conventional breeding South Saharan Africa
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2.4. Salinity tolerance in rice

“White Leaf tip” is first symptom at vegetative stage in rice caused due to salinity stress fol-
lowed by “Tip burning” which extends towards base. At reproductive stage papery sterile 
spikelets is another symptom resulting in huge losses and ultimately extreme high Salt Stress 
kills the rice plants. Central Soil Salinity Research Institute, Karnal is a pioneer institute in 
breeding for salinity resistant varieties. Few varieties developed by different approaches are as:

• Conventional:

 ○ Pureline Selections from local traditional cultivars Pokkali, Nona Bokra and Kala-rata:

 ○ Damodar (CSR1), Dasal (CSR2), CSR3.

 ○ Pedigree: CSR10, 13, 23, 27, 30, 36.

• Nonconventional:

 ○ Anther Culture: CSR-21 for salinity.

 ○ CSR: 28 for salinity and alkalinity.

• Other salt-tolerant rice varieties

 ○ Usar dhan 1, 2 & 3 (India);

 ○ BRRI dhan 40, BRRI dhan 41 (Bangladesh);

 ○ OM2717, OM2517, OM3242 (Vietnam).

MABC is being employed to efficiently transfer the Pokkali seedling stage salinity tolerant Saltol 
QTL into popular varieties such as IR64, BR11, BR28, Swarna, etc. Saltol QTL has been fine 
mapped on Chr. 1 shirt arm associated with the Na-K ratio (high K+ & low Na+ adsorptions) [49]. 
SKC1, a QTL for salt tolerance, maintains K+ homeostasis in the tolerant cultivar and encodes 

HKT-type transporters [49]. QTLs for reproductive-stage salt tolerance are yet to be reported.

2.5. Submergence tolerance in rice

QTL Sub1 fine mapped on chromosome 9 contributes 70% of the phenotypic variation for 
survival under submergence [50]. Two of the three ethylene-response factor (ERF) like genes 
induced by submergence were identified at this locus. [51] reported gene Sub1A gene respon-

sible for submergence tolerance which has been integrated into Swarna by marker assisted 
backcross breeding [52] which demonstrated that QTLs controlling tolerance of abiotic 
stresses can be used to improve mega varieties in the target regions [53].

2.6. Waterlogging tolerance in maize

Over 18% of the total maize production area in South and Southeast Asia is frequently 
affected by floods and waterlogging problems, causing production losses of 25–30% annu-

ally [54]. Many QTLs for waterlogging tolerance at seedling stage have been reported [55]. A 
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F2:3 mapping population comprising 288 lines derived from HZ32 × K12 (sensitive) inbred 
lines studied under flooded and nonflooded conditions helped in identifying 25 and 34 QTLs 
accounting for between 4 and 37% of the genotypic variation to waterlogging tolerance. QTLs 
associated with plant height, root and shoot dry weight, total dry weight were identified in 
different experiments on chromosomes 4 and 9. In a F2 mapping population of B64 and teo-

sinte (Z. mays ssp. Huehuetenangensis) QTLs associated with adventitious root formation 
under flooding were identified on chromosomes 3, 7 and 8 [56] confirming the potential use 
of teosinte as donor for waterlogging tolerance. A cross between Z. mays spp. Nicaraguensis 
(a different teosinte accession) and inbred line B73 helped in identifying QTLs for aeren-

chyma formation located on chromosomes 1, 5 and 8 [57]. These QTLs from different donors 
hence, provide a valuable genetic resource for breeding waterlogging tolerant maize.

2.7. Wheat drought and heat tolerance

Markers associated with a QTL for grain yield in wheat under drought has been identified at 
4AL. 127 RILS were developed from a cross between Dharwar dry drought tolerant and Sitta 
drought susceptible [58]. XBE637912, Xwmc89, and Xwmc420 SSR markers were found linked 
to Grain Yield QTL.

3. Genetic engineering

Plant adaptation to environmental stresses is controlled by cascades of molecular networks. 
These activate stress responsive mechanisms to re-establish homeostasis and to protect and 
repair damaged proteins and membranes [59]. Abiotic stresses are multigenic, and hence dif-
ficult to control and engineer. Therefore, strategies like plant genetic engineering for building 
tolerance rely on gene expression involved in signaling pathways and regulatory pathways. 
Consequently, engineering genes that protect and maintain the function and structure of cel-

lular components can enhance tolerance to stress [60].

4. Few case studies

4.1. Heat-tolerant basmati rice developed by over-expression of hsp101

Heat-tolerant basmati rice was developed by introducing Arabidopsis thaliana hsp101 

(Athsp101) cDNA into the Pusa basmati 1 by Agrobacterium mediated transformation [61]. 
Transgenic lines were compared for survival after exposure to different levels of high-tem-

perature stress {45°C for 3 h and then were placed at 28°C} with the untransformed control 
plants. It was reported that transgenic lines (15 and 43) survived heat stress as compared to 
the untransformed ones and the optimum temperature for rice growth throughout its life 

cycle is 25–31°C [61].
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4.2. Barley gene in rice for drought tolerance

Barley gene HVA7 was introduced into rice suspension cells using the Biolistic-mediated 
transformation method in rice for drought tolerance [62], HVA7 is a late embryogenesis abun-

dant (LEA) protein gene, from barley and this gene was regulated by the rice actin 1 gene 
promoter leading to high-level, constitutive accumulation of the HVA 7 protein in both leaves 
and roots of transgenic rice plants.

4.3. Yeast gene in tomato for salinity tolerance

In yeast (Saccharomyces) overexpression of HAL 1 gene confers tolerance to salinity. So, intro-

duction of this HAL1 gene (using Plasmid pPM5 contained an EcoRI: HindIII fragment of 

1.75 kb with the reinforced 35 S promoter, the HAL1 ORF, and the nos terminator) was done in 
Tomato (Lycopersicon esculentum cv P-73) [63]. Transgenic tomato (TG

3
) was reported tolerant 

to salinity by maintaining K uptake in the presence of external Na.

4.4. Increased glycine betaine (GB) synthesis for salinity tolerance in cotton

Choline mono-oxygenase (CMO) is a major catalyst in glycine betaine (GB) synthesis. Glycine 
betaine is a osmolyte and overexpression of this osmolyte confers tolerance to salinity. This 
CMO gene cloned from Atriplex hortensis (AhCMO) was introduced into cotton (Gossypium 

hirsutum L.) via Agrobacterium mediation for development of Cotton plant having intro-

duced CMO gene for glycine betaine (GB) [64].

4.5. Alteration in fatty acids: for cold stress tolerance

Plants such as squash and arabidopsis having high proportion of cis-unsaturated fatty acids 
are chilling resistant. Hence, the degree of unsaturation of fatty acids is closely related to chill-
ing tolerance among the plants. Enzyme glycerol-3-phosphate acetyl transferase determines the 

phosphatidyl glycerol fatty acids unsaturation and hence cold tolerance.

5. Conclusions

Plant Genetic diversity and Plant Breeding are key elements in tackling climate change, and 
integration of plant breeding in climate change strategies is one of the best paths to sustain-

able food production by developing climate smart crops: Development of abiotic and biotic 
resistant crop varieties which cope with climatic vagaries, Varieties suited to new agricul-

tural areas resulting due to shift in climatic pattern, Varieties with reduced total pesticide and 
fungicide consumption and hence, their reduced ill effects on environment which indirectly 
contribute to Climate Change. “It is not the strongest of the species who survive, nor the most 
intelligent, but the one most responsive to change.” Let us be the difference we want to make 
to the world: Charles Darwin.

Molecular Breeding for Abiotic Stresses in Maize (Zea mays L.)
http://dx.doi.org/10.5772/intechopen.71081

33



Author details

Asima Gazal1*, Zahoor Ahmed Dar2 and Ajaz Ahmad Lone2

*Address all correspondence to: asimagazal@gmail.com

1 ITMU, ICAR-IIMR, New Delhi, India

2 DARS, Budgam (SKUAST-K), Srinagar, India

References

[1] Beerling DJ. The Emerald Planet: How Plants Changed Earth’s History. Oxford, UK: 
Oxford University Press; 2007

[2] Beerling DJ, Osborne CP, Chaloner WG. Evolution of leaf-form in land plants linked to 
atmospheric CO

2
 decline in the Late Palaeozoic era. Nature. 2001;410:352-354

[3] Turney CSM, Brown H. Catastrophic early Holocene sea level rise, human migration 
and the Neolithic transition in Europe. Quaternary Science Reviews. 2007;26:2036-2041

[4] Demenocal PB. Cultural responses to climate change during the late Holocene. Science. 
2001;292:667-673

[5] Rosen AM. Environmental change at the end of early Bronze Age Palestine. In: De 
Miroschedji P, editor. L’urbanisation de la Palestine à l’âge du Bronze ancien. Oxford, 
UK: BAR International; 1990. p. 247-255

[6] Atkinson MD, Kettlewell PS, Poulton PR, Hollins PD. Grain quality in the Broadbalk 
wheat experiment and the winter North Atlantic oscillation. Journal of Agricultural 
Science, Cambridge. 2008;146:541-549

[7] Tubiello FN, Fischer G. Reducing climate change impacts on agriculture: global and 
regional effects of mitigation, 2000-2080. Technological Forecasting and Social Change. 
2007;74:1030-1056

[8] Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, 
Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D. Climate Change: 
Impact on Agriculture and Costs of Adaptation. Food Policy Report. Washington, DC: 
International Food Policy Research Institute; 2009

[9] Brown ME, Funk CC. Food security under climate change. Science. 2008;319:580-581

[10] Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Prioritizing 
climate change adaptation needs for food security in 2030. Science. 2008;319:607-610

Maize Germplasm – Characterization and Genetic Approaches for Crop Improvement34



[11] Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, 
Taheri A, Al-yassin A, Benbelkacem A, Labdi M, Mimoun H, change NMC, paper a. plant 
breeding and climate changes. Journal of Agricultural Science. 2010;148:627-637

[12] Gomiero T, Paoletti MG, Pimentel D. Energy and Environmental Issues in Organic and 
Conventional Agriculture. Critical Reviews in Plant Sciences. 2008;27(4):239-254

[13] Niles JO, Brown S, Pretty J. Potential carbon mitigation and income in developing coun-
tries from changes in use and management of agricultural and forest lands. Philosophical 
Transactions. Royal Society of London. 2002;360:1621-1639

[14] Ribaut JM, de VMC, Delannay X. Molecular breeding in developing countries: Challenges 
and perspectives. Current Opinion in Plant Biology. 2010;13:213-218

[15] Varshney RK, Tuberosa R, editors. Genomics-Assisted Crop Improvement: Genomics 
Approaches and Platforms. Vol. I. The Netherlands: Springer; 2007

[16] Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in 
plants: Present status and future prospects. Plant Molecular Biology. 2005;57:461-485

[17] Hall D. Using association mapping to dissect the genetic basis of complex traits in plants. 
Briefings in Functional Genomics. 2010;9:157-165

[18] Yu J, Holland JB, McMullen MD, Buckler ES. Genetic design and statistical power of 
nested association mapping in maize. Genetics. 2008;178:539-551

[19] Varshney RK, Dubey A. Novel genomic tools and modern genetic and breeding 
approaches for crop improvement. Journal of Plant Biochemistry and Biotechnology. 
2009;18:127-138

[20] Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail 
AM, Mackill DJ. Development of submergence-tolerant rice cultivars: The Sub1 locus 
and beyond. Annals of Botany. 2009;103:151-160

[21] Steele KA, Price AH, Sashidhar HE, Witcombe JR. Marker-assisted selection to intro-
gress rice QTLs controlling root traits into an Indian upland rice variety. Theoretical and 
Applied Genetics. 2006;112:208-221

[22] Messmer R, Francheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM. Drought stress 
and tropical maize: QTL-by environment interactions and stability of QTLs across envi-
ronments for yield components and secondary traits. Theoretical and Applied Genetics. 
2009;119:913-930

[23] Tester M, Langridge P. Breeding technologies to increase crop production in a changing 
world. Science. 2010;327:818-822

[24] Bernardo R, Charcosset A. Usefulness of gene information in marker-assisted recurrent 
selection: A simulation appraisal. Crop Science. 2006;46:614-621

Molecular Breeding for Abiotic Stresses in Maize (Zea mays L.)
http://dx.doi.org/10.5772/intechopen.71081

35



[25] Ribaut JM, Ragot M. Marker-assisted selection to improve drought adaptation in 
maize: The backcross approach, perspectives, limitations, and alternatives. Journal of 
Experimental Botany. 2006;58:351-360

[26] Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding: From theory to 
practice. Briefings in Functional Genomics. 2010;9:166-177

[27] Heffner EL, Sorrells ME, Jannink JL. Genomic selection for crop improvement. Crop 
Science. 2009;49(1):12

[28] Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-
wide dense marker maps. Genetics. 2001;157:1819-1829

[29] Schulz-Streeck T, Piepho HP. Genome-wide selection by mixed model ridge regression 
and extensions based on geostatistical models. BMC Proceedings. 2010;4(Suppl. 1):S8

[30] Courtois B, McLaren G, Sinha PK, Prasad K, Yadav R, Shen L, Mapping QTL. associated 
with drought avoidance in upland rice. Molecular Breeding. 2000;6:55-66

[31] Li Z, Mu P, Li C, Zhang H, Li Z, Gao Y, Wang X. QTL mapping of root traits in a doubled 
haploid population from a cross between upland and lowland japonica rice in three 

environments. Theoretical and Applied Genetics. 2005;110:1244-1252

[32] Yue B, Xue WY, Xiong LZ, XQ Y, Luo LJ, Cui KH, Jin DM, Xing YZ, Zhang QF. Genetic 
basis of drought resistance at reproductive stage in rice: Separation of drought tolerance 
from drought avoidance. Genetics. 2006;172:1213-1228

[33] Xu JL, Lefftte HR, Gao YM, Fu BY, Torres R, Li ZK. QTLs for drought escape and toler-

ance identified in a set of random introgression lines of rice. Theoretical and Applied 
Genetics. 2005;111:1642-1650

[34] Bernier J, Kumar A, Ramaiah V, Spaner D Atlin G. A large effect QTL for grain yield 
under reproductive-stage drought stress in upland rice. Crop Science. 2007;47:507-518

[35] Joshi PK, Singh NP, Singh NN, Gerpacio RV, Pingali PL. Maize in India: Production 
Systems, Constraints, and Research Priorities. Mexico, D.F.: CIMMYT; 2005

[36] Ribaut JM, Betran J, Monneveux P, Setter T. Drought tolerance in maize. In: Bennetzen 
JL, Hake SC, editors. Handbook of Maize. New York: Springer; 2009. p. 311-344

[37] Ribaut JM, Ragot M. Marker-assisted selection to improve drought adaptation in 
maize: The backcross approach, perspectives, limitations, and alternatives. Journal of 
Experimental Botany. 2007;58:351-360

[38] Prasanna BM, Beiki AH, Sekhar JC, Srinivas A, Ribaut JM. Mapping QTLs for com-

ponent traits influencing drought stress tolerance of maize in India. Journal of Plant 
Biochemistry and Biotechnology. 2009;18:151-160

[39] Xiao YN, Li XH, George ML. Quantitative trait loci analysis of drought tolerance and 
yield in maize in China. Plant Molecular Biology Reporter. 2005;23:155-165

Maize Germplasm – Characterization and Genetic Approaches for Crop Improvement36



[40] Hao Z, Li X, Xie C. Two consensus quantitative trait loci clusters controlling anthesis-
silking interval, ear setting and grain yield might be related with drought tolerance in 
maize. The Annals of Applied Biology. 2008;153:73-83

[41] Tuberosa R, Salvi S, Giuliani S. Genome-wide approaches to investigate and improve 
maize response to drought. Crop Science. 2007;47:S120-S141

[42] Oliver SN, Dennis ES, Dolferus R. ABA regulates apoplastic sugar transport and is a 
potential signal for coldinduced pollen sterility in rice. Plant and Cell Physiology. 
2007;48:1319-1330

[43] Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A. Physical mapping and 
putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance 
at booting stage of rice. Theoretical and Applied Genetics. 2004;109:515-522

[44] Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y. A quantitative 
trait locus for cold tolerance at the booting stage on rice chromosome 8. Theoretical and 
Applied Genetics. 2007;115:593-600

[45] Andaya VC, Mackill DJ. QTLs conferring cold tolerance at the booting stage of rice 
using recombinant inbred lines from a japonica x indica cross. Theoretical and Applied 
Genetics. 2003;106:1084-1090

[46] Andaya VC, Mackill DJ. Mapping of QTLs associated with cold tolerance during the 
vegetative stage in rice. Journal of Experimental Botany. 2003;54:2579-2585

[47] Andaya VC, Tai TH. Fine mapping of qCTS12 locus, a major QTL for seedling cold toler-
ance in rice. Theoretical and Applied Genetics. 2006;113:467-475

[48] Andaya VC, Tai TH. Fine mapping of the qCTS4 locus associated with seedling cold 
tolerance in rice (Oryza sativa L.). Molecular Breeding. 2007;20:349-358

[49] Ren Z, Gao J, Li L, Cai X, Huang W, Chao D, Zhu M, Wang Z, Luan S, Lin H. A rice 
quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics. 
2005;37:1141-1146

[50] Xu K, Xu X, Ronald PC, Mackill DJ. A high-resolution linkage map in the vicinity of the 
rice submergence tolerance locus Sub1. Molecular & General Genetics. 2000;263:681-689

[51] Xu K, Xia X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AI, Bailey-
Serres J, Ronald PC, Mackill DJ. Sub1A is an ethylene response factor-like gene that 
confers submergence tolerance to rice. Nature. 2006;442:705-708

[52] Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih 
EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ. A marker-assisted backcross 
approach for developing submergence-tolerant rice cultivars. Theoretical and Applied 
Genetics. 2007;115:767-776

Molecular Breeding for Abiotic Stresses in Maize (Zea mays L.)
http://dx.doi.org/10.5772/intechopen.71081

37



[53] Mackill DJ. Breeding for resistance to abiotic stresses in rice: The value of quantita-
tive trait loci. In: Lamkey KR, Lee M, editors. Plant breeding: The Arnel R. Hallauer 
International Symposium. Ames, IA: Blackwell; 2006. p. 201-212

[54] Zaidi PH, Maniselvan P, Srivastava A, Yadav P, Singh RP. Genetic analysis of water-
logging tolerance in tropical maize (Zea mays L.). Maydica. 2010;55:17-26

[55] Qiu F, Zheng Y, Zhang Z, Xu S. Mapping of QTL associated with waterlogging tolerance 
during the seedling stage in maize. Annals of Botany. 2007;99:1067-1081

[56] Mano Y, Omori F, Muraki M, Takamizo T. QTL mapping of adventitious root formation 
under flooding conditions in tropical maize. Breeding Science. 2005;55:343-347

[57] Mano Y, Omori F, Loaisiga CH, Bird RM. QTL mapping of aboveground adventitious 
roots during flooding in maize x teosinte Zea nicaraguensis backcross population. Plant 
Roots. 2009;3:3-9

[58] Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK. Markers 
associated with a QTL for grain yield in wheat under drought. Molecular Breeding. 
2007;20:401-413

[59] Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme tem-

peratures: Towards genetic engineering for stress tolerance. Planta. 2003;218:1-14

[60] Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: 
Achievements and limitations. Current Opinion in Biotechnology. 2005;16:123-132

[61] Agarwal SK, Agarwal M, Grover A. Heat-tolerant basmati rice engineered by over-
expression of hsp101. Plant Molecular Biology. 2003;51(5):677-686

[62] Xu D, Duan X, Wang B, Hong B, Ho TD, Wu R. Expression of a late embryogenesis abun-
dant protein gene, HVA7, from barley confers tolerance to water deficit and salt stress in 
transgenic rice. Plant Physiology. 1996;110:249-257

[63] Carmina G, Rus AM, Bolarin MC, Lopez-Coronado JM, Montesinos C, Serrano R, 
Moreno V. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant 
Physiology. 2000;123(1):393-402

[64] Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X. Increased glycine betaine synthesis and 
salinity tolerance in AhCMO transgenic cotton lines. Molecular Breeding. 2009;23:289-298

Maize Germplasm – Characterization and Genetic Approaches for Crop Improvement38


