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Abstract

Comparative investigations are presented into the structure and properties of selected
engineering materials used for dental prosthetic restorations manufactured alternatively
by the subtractive method by milling on computerised numerical control (CNC) milling
machines and by the additive selective laser sintering (SLS) method of solid and porous
elements using computer-aided design/computer-aided manufacturing (CAD/CAM) tech-
niques; moreover, an original technology was presented of manufacturing the elements
used in prosthodontics, produced with titanium and Ti6Al4V alloy powders with the SLS
technique. Suitability was confirmed of applying the manufacturing technologies used in
prosthodontics from powders by the SLS technique. The results were compared of the
executed tests of strength micro-samples and of the selected prosthetic Bridges. The SLS
technology for titanium, and even more for Ti6Al4V alloy, ensures the achievement of
mechanical properties comparable or better than a reference Co-Cr alloy commonly used
for prosthetic restorations, including prosthetic bridges fabricated by milling solid discs
with CNC milling machines. For all the examined engineering materials, the milled and
then sintered ZrO2material exhibits the lowest strength properties. The results presented in
this chapter can be directly applied in dental practice.

Keywords: prosthodontics, machining, additive machining, selective laser sintering,
titanium and its alloys , Co-Cr alloys, zirconium oxide

1. Justification and scope of comparative investigations of selected alloys

and technologies of dental manufacturing of prosthetic restorations

Practical dental engineering encounters numerous problems with selecting the most suitable

material and technology of dental manufacturing of a prosthetic restoration by a dental

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



surgeon conducting treatment. One of the important reasons is inability to compare directly

the properties and structure of analogous prosthetic restorations but produced using various

technologies and from different alternative engineering materials accepted for medical, espe-

cially dental, uses as compared to the restorations used most often until now. It is beyond

any doubt that dental surgeons are responsible for the strategy and quality of dental treat-

ment. The literature studies carried out as well as the Author’s long-term own engineering

experience in running medical practice and a dental engineering workshop show that—

parallel to clinical experience of a dentist conducting treatment of dental system diseases—

the successfulness of such activities also depends on the results of a dental engineer’s

activities, consisting of the appropriate execution of prosthetic restorations and implants,

depending on the selection of the most appropriate engineering material and appropriate

manufacturing technology, ensuring, respectively, the required biocompatibility, mechanical

properties and corrosion resistance, as well as high production accuracy and aesthetic

requirements. Such activities require, therefore, close cooperation of a dentist and a dental

engineer having extensive and interdisciplinary engineering knowledge of the principles of

construction, technology and science of materials and computer-aided methods of engineer-

ing and dental works.

The dental system, especially teeth, is still subject to numerous disease processes, especially

tooth decay, so widespread in many countries and practically across the globe [1–4]. This

disease has a considerable social range and is a serious medical problem, not only due to local

mouth cavity disorders but also due to a high risk of systemic complications stemming from

the dental pulp disease, and is a direct cause of a majority of tooth losses among a wide group

of people in many countries. The extraction of unhealthy teeth was a dominant practice in such

cases for a long time. There may also be inborn causes of missing teeth, for example, due to

missing tooth buds. The basic method of producing permanent prosthetic restorations, which

is still often used, is to cast metal alloys requiring successive machining, mainly to remove

elements of the gate system, and to ensure required surface roughness and dimensional

accuracy. Apart from conventional technologies of manufacturing prosthetic restorations

including especially powder metallurgy, casting technologies, metallic foam manufacturing,

also additive technologies of fabricating solid and microporous materials in medicine and

dentistry are exceptionally useful. The potential of additive technologies is much larger than

of other technologies and is represented chiefly by opportunities ensured by three-dimensional

designing and the related control of the structure, sizes and shape of the materials produced

and the repeatability of geometric features of the elements produced, and because no wastes

are produced and because the simplicity of the technology is comprised of two key stages only:

designing and manufacturing.

Considering the additive technologies employed most extensively in industry, only few

have found their application in prosthetics, with selective laser sintering/selective laser

melting (SLS/SLM) offering the biggest opportunities [5–15]. This issue is even more impor-

tant to clarify whether such additive technologies, applied in dental engineering, are com-

petitive for conventional technologies, because original own works [5, 16–36] have been

undertaken concerning constructional solutions and fabrication technologies of a new gen-

eration of custom, original, hybrid, microporous, high-strength engineering and biological
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materials with microporous rigid titanium and titanium alloy skeletons manufactured by

selective laser sintering, whose pores are filled with living cells. The aim of such construc-

tional and technological solutions is to ensure conditions for natural ingrowth of living

tissues in the connection zone of prosthetic/implant elements, with bone or organ stumps,

to eliminate the need to apply for patients the mechanical elements which are positioning

and fixating the implants. In order to manufacture engineering and biological materials

and implant scaffolds, it is required to seek the most advantageous proliferation conditions

of living cells inside the pores of a microporous skeleton made of titanium and titanium

alloys, because the adhesion and growth of living cells are dependent on the type and

characteristics of the substrate. A porous zone requires surface treatment inside pores to

improve proliferation conditions of living tissues, which are not advantageous for a sub-

strate made of titanium or Ti6Al4V alloy. It appears that the improvement of proliferation

conditions of cells is ensured by a substrate made of fully compatible materials, including

TiO2, Al2O3 oxides and a hydroxyapatite, Ca10(PO4)6(OH)2, used as coatings of internal

surfaces of pores of a microporous skeleton fabricated by SLS. Thin layers inside pores

were deposited by two technologies ensuring the uniform thickness of coatings on all the

walls and openings of a substrate, that is, the so-called atomic layer deposition (ALD) [19,

37–43], and the sol-gel technology of coating deposition from the liquid phase by the

immersion method [37, 40, 44–52]. In order to be able to accomplish the above-mentioned

general aims of the investigations, it has to be confirmed that additive technologies, espe-

cially SLS, do not lead to unacceptable deterioration of useful properties of the so-

produced prosthetic restorations.

Apart from permanent prosthetic restorations made traditionally on ametallic substructure, new

technologies of introducing ceramic materials have been launched, including so-called fully

porcelain systems made of zirconium oxide and aluminium oxide. For dimensional accuracy

and aesthetics as well as biocompatibility and dental strength of prosthetic restorations, the

constant development of manufacturing technologies of prosthetic restorations is required along

with the evolvement of the engineering materials currently employed in prosthetics. Highly

varied conditions of joining the artificially produced prosthetic restorations and implants with a

body’s natural tissues, mainly in the oral cavity, are driving especially high requirements for the

engineering material applied for prosthetic restorations and implants. The reason for this is not

only special conditions of using various prosthetic and implantological restorations but also

different economic and technological conditions and differentiated availability and level of

clinical methods and also important aesthetic reasons. Computer-aided design/computer-aided

manufacturing (CAD/CAM) techniques [53–59], allowing to improve dimensional accuracy of

the fabricated prosthetic restorations, have become increasingly vital over the last decade.

CAD/CAM techniques find their application in dental engineering in machining, in plastic

forming, in additive manufacturing technologies and in special technologies and both in metal

and ceramics working. Computer-aided design enables, in particular, to produce a digital

prosthetic model by scanning with an intra-cavity scanner and also to customise the designing

and manufacturing of each prosthetic restoration under constant supervision of a doctor

conducting the treatment. Cone beam computed tomography (CBCT), used often in dental

surgeries these days as the basic diagnostic tool for comprehensive dental treatment, mainly
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implantological, prosthetic and endodontic treatment, creates excellent possibilities in this

field. A widespread application of CBCT also permits to utilise the information acquired

about the condition of a patient’s tissues in planning and performing implant and prosthetic

treatment [55, 60].

The assumptions made require special interest in the selected engineering materials finding

application in dental engineering, including mainly casting alloys of cobalt, titanium and its

alloys and ceramics on the zirconium oxide matrix [61–72]. The essential aspects underlying

the investigations described here were the questions whether—in each case—it is feasible to

apply prosthetic restorations made on a metallic substructure of zirconium oxide, guarantee-

ing currently best aesthetic results, for prosthetic restorations and to explain if it is possible to

use a zirconium oxide substructure in the side sections and in circular restorations together

with recognising the limitations for the use of this material. Another practical aspect is to

develop a methodology for application of titanium and its alloys as compared to Co-Cr alloys

of the Vitalium type for implantoprosthetic restorations so as to guarantee the lowest possible

mass of the completely manufactured prosthetic restoration while ensuring aesthetic require-

ments and the maximum, possible strength properties. For production of metallic substruc-

tures, it is necessary to ensure space for veneering porcelain, among others, in intermolecular

spaces on abutments between crowns and bridge spans but also on the vestibular space, so

that the dark colour of the substructure does not influence the colour of the ready veneering

ceramics. Considering that disadvantages and limitations are known of casting and machining

technologies such as computerised numerical control (CNC) milling currently used in dental

engineering laboratories, it was decided to compare the state-of-the-art manufacturing tech-

niques currently applied in dental engineering, including completely innovative additive tech-

niques which—due to high implementation price, but very low price of producing a single

prosthetic point—are rarely used in practice. As Co-Cr alloys are most often used in dental

practice and, therefore, most often described in the literature, such were used as a reference

point for the works performed already described in literature. This will allow practitioners,

especially dentists, to easily transfer the results presented in this article to everyday uses and to

consider such results for designing the extensiveness of prosthetic restorations and for cost

valuation. The matter is very complex and requires multi-criteria optimisation, which cannot

be performed individually by any prosthetic laboratory. The matter requires, therefore, meth-

odologically planned research which can demonstrate—to the practising therapists and pros-

thetic workshops cooperating with them—the advantages of some material and technological

solutions over those commonly in use these days. This will surely have a major impact on the

outcomes and durability of dental treatment and on satisfaction, comfort and patients’

improved health condition. The aspects highlighted were the reasons for outlining the topic

of the chapter presenting the results of the work [18], after making a thorough literature

analysis of the status of research into the dental system, its diseases and treatment methods of

tooth losses as well as materials and technologies applied in prosthetics. A concept presented

in this article is covered by a broader range of works followed in the recent years [5, 7, 16, 17,

21–26, 34, 55, 56, 73–79], in which the author has participated actively. The works concern
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principally the possibility of producing solid and porous titanium parts by additive technol-

ogy, for use in dentistry and reconstructive medicine.

This chapter depicts the outcomes of comparative investigations into the structure and prop-

erties of selected engineering materials used for dental prosthetic restorations manufactured

alternatively by the subtractive method by milling on CNC milling machines and by the

additive SLS method of solid and porous items using CAD/CAM techniques; moreover, an

original technology was presented of manufacturing the elements used in prosthodontics,

produced with titanium and Ti6Al4V alloy powders with the SLS technique. The assumptions

made in this chapter are focussed on the selected engineering materials finding application in

dental engineering, including mainly casting alloys of cobalt, titanium and its alloys and

ceramics on the zirconium oxide matrix.

Materials for milling were delivered in the form of discs with the diameter of 98.3 mm and

height of 10–16 mm, and the chemical composition, according to suppliers’ attestations, is

shown in Table 1.

Two types of powders with a spherical shape were used, respectively, for selective laser

sintering and with the composition shown in Table 2, also confirmed with spectral examina-

tions with the energy dispersive spectrometry (EDS) method:

• Titanium powder with Grade 4 and grain size of up to 45 μm, oxygen concentration

reduced to 0.14%, while average oxygen content in titanium powders is about 0.5%, the

aim of which is to ensure process safety,

• Ti6Al4V alloy powder with the grain diameter of 15–45 μm, for medical applications.

The results of comparative investigations are presented into the structure and properties of the

mentioned engineering materials used for dental prosthetic restorations manufactured alterna-

tively by the subtractive method by milling on CNC milling machines and by the additive SLS

method of solid and porous items using CAD/CAM techniques; moreover, an original developed

Material Mass concentration/fraction, %

Ti grade 2 Ti Others N, C, H, Fe, O altogether

> 99.6 < 0.4

Ti6Al4V Ti Al V Others N, C, H, Fe, O altogether

89.4 6.2 4.0 ≤ 1.0

Co-Cr Co Cr W Mo Si Others C, Fe, Mn, N altogether

59.0 25.0 9.5 3.5 1.0 < 1.0

ZrO2 ZrO2 + HfO2 + Y2O3 Including Y2O3

> 99.0 4.5-6.0

Table 1. Chemical composition of the examined materials manufactured by CAD/CAM by milling solid discs.
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technology was presented of manufacturing the elements used in prosthodontics, produced with

titanium and Ti6Al4Valloy powders with the SLS technique. Experimental comparative investiga-

tions were carried out of selected engineering materials recommended for clinical use for perma-

nent dental prostheses manufactured by CAD/CAM. The properties and structure were also

compared directly of analogous prosthetic restorations but produced using the various technolo-

gies mentioned and from different alternative engineering materials already mentioned, as well, as

compared to the restorationsmade of Co-Cr alloy bymilling solid discs, usedmost often until now.

In order to create a ranking of the materials and technologies applied, analogous elements were

produced by milling from solid discs made of ZrO2 ceramics and then by sintering. Such material

and technology are commonly regarded by dentist practitioners as the most avant-garde solution.

Elements were produced from titanium and Ti6Al4V alloy by machining by way of milling solid

discs, and analogous elements were made from such materials by the additive method in an SLS

process. An original technology was established of manufacturing elements used in prosthodon-

tics, produced with titanium and Ti6Al4Valloy powders with the SLS technique.

2. Additive and machining technology of fabrication of materials and

dental restorations and research methodology

The elements used for the investigations were fabricated by the machining method by milling

solid discs on a CNC milling machine and by the additive SLS method. In the case of the

engineering materials manufactured by the machining method by milling on CNC milling

machines, technological conditions of manufacturing were chosen experimentally. The techno-

logical processes mentioned have no influence on any structural changes, except that ceramic

ZrO2 material of the Cercon type has to be sintered already after milling, so the selection of

manufacturing conditions does not have to be verified experimentally and structural changes

do not have to be confronted with the mechanical properties obtained of the elements pro-

duced. The situation is opposite if the SLS additive technology is applied. Investigations over

the selection of technological conditions of selective laser sintering involve the selection of laser

power, laser beam diameter, a dependency between the laser beam diameter and the distance

between laser beams and the distance between laser remelting paths to desired geometrical

features of solid and porous elements produced from titanium and Ti6Al4V alloy and the

structure formed depending on such technological conditions and its influence on mechanical

properties. Each time before producing the examined elements, design was performed using

Powder Mass concentration of elements, %

Al V C Fe O N H Others total Others each Ti

Ti – – 0.01 0.03 0.14 0.01 0.004 < 0.4 < 0.01 remainder

Ti6Al4V 6.35 4.0 0.01 0.2 0.15 0.02 0.003 ≤ 0.4 ≤ 0.1

Table 2. Chemical composition of the powders used for selective laser sintering.
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the CADmethod, and relevant data in the stereolithography (STL) format is transferred for the

execution of computer-aided manufacturing in a relevant technological device.

The solid elements used for the investigations, fabricated by the machining method by milling

solid discs, were prepared with special CAD software, dental wings operation system (DWOS),

by Dental Wings and 3D Marcam Engineering AutoFab software (software for manufacturing

applications) for geometrically simpler shapes of test specimens.

The software features the width offset of the tools used for milling, to ensure the highest

possible design reproduction in reality. The so-designed elements were verified by the soft-

ware for surface cohesion and developed as ready designs in the stereolithography (STL)

format. The design files are then implemented to a CAM module, Mayka Dental, by Picasoft.

The CAM module enables to position the design prepared on a material disc according to the

optimum three-axial milling axis and ensures the placement of the milled elements in a way

least interfering with the design and to determine the optimum axis of precision five-axial

milling to exploit optimally the capabilities of the milling machine. The so-prepared design is

transformed into a machine language, and the file produced is transferred to the milling

machine’s software.

Another group of the examined elements was manufactured by an additive technology of

selective laser sintering by designing a given element virtually, in order to develop a 3D CAD

model in the STL format, transferred to the machine’s software and then by producing in

reality the so-designed element layer by layer until producing a ready product. 3D Marcam

Engineering AutoFab (software for manufacturing applications) software was used for model

designing as a CAD/CAM tool. The software enables to select model dimensions, construc-

tional features and the type of the model volume filling either as solid or porous and to choose

the size of a cell unit making up the entire model. A 3D model featuring a layered structure is

produced as a result of designing. The surface of the elements modelled in the STL format,

which is accommodated to SLS manufacturing conditions, is shown with a net of triangles,

with the accuracy of the surface being represented being inversely proportional to their size.

The model size and structure have to be assumed each time and divided into layers with the

expected thickness. The number of layers in a virtual model matches the actually designed

number of powder layers when the given element is really produced. A set of “hexagon cross”

unit cells was used, selected in a geometrical analysis and as a result of preliminary studies,

from the set available in the software. By duplicating them, the entire elements were designed,

consisting of nodes and single-lattice fibres, linking the particular skeleton nodes (Figure 1).

Fabrication conditions were also selected, at the stage of virtual design of elements, available in

the selective laser sintering system, including layer thickness, laser power, laser beam diame-

ter, scanning rate and distance between particular remelting paths. A spatial orientation of unit

cells of 45� relative to the axis x of the system of coordinates was also selected experimentally,

because other orientations analysed initially, including at the angle of 0�, at the angle of 45�

relative to the axis y, at the angle of 45� relative to the axis x and 45� to the axis y, at the angle of

45� relative to the axis y and 45� relative to the axis x, turned out to be less advantageous due to

the mechanical properties of the elements produced (Figure 1).
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Micro-samples for static tensile, bending and compression tests were specially selected for the

investigations (Figure 2), made of all the chosen materials manufactured using, respectively,

the additive SLS method from powders with individual CAD/CAM and with the machining

technology using CAD/CAM techniques by milling solid discs on CNC milling machines.

Micro-samples for tensile strength, bending strength and compression strength tests were also

designed for the conditions given above with the pore size of 200–250 μm.

In order to perform bending strength tests, models were created of three-point prosthetic

bridges from three different sections of a dental arch (Figure 3), including the front, front-

wing and wing section, taking into account first of all the highest possible stresses which may

occur in such type of prosthetic restorations. They were made as solid from all the examined

engineering materials for bending strength tests with the three-point bending method with the

both analysed technologies, that is, machining method by milling solid discs on a CNC milling

Figure 1. (a, b) “Hexagon cross unit cell”; (c) the arrangement of unit cells in the space of the system of coordinates at the

angle of 45� relative to the axis x.

Figure 2. Computer model image of solid samples for static test: (a) tensile test, (b) three-point bending test and

(c) compression test.

Figure 3. Computer model of bridges nos. 1, 2 and 3 for bending strength tests with the three-point bending method.
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machine and by the additive SLS method. The bending strength was compared to dental

bridges made of solid materials, that is, sintered titanium, sintered Ti6Al4V alloy, milled

Ti6Al4V alloy, milled Co-Cr alloy and milled and sintered ZrO2 sinter. The results of strength

tests of dental bridges selectively sintered by laser in optimised conditions were compared

with the results of tests for bridges milled with CAD/CAM methods from discs of other tested

materials, additionally sintered after milling in the case of ZrO2. The samples prepared corre-

spond to the prosthetic restorations designed in the author’s own clinical practice and in a

dental engineering laboratory for particular patients and used by them. Geometrical features

were taken into account, such as the fitting of a prosthetic restoration to a pillar, of 0.03 mm;

the width of the threshold area; the space for prosthetic cement in the occlusal region, of

0.1 mm; the reduction of the crown shape considering the space for porcelain, of 1.5 mm; and

the minimum thickness of the substructure according to the material manufacturer’s recom-

mendations, of 0.3 mm, for a substructure made of Co-Cr alloys, titanium and its alloys and

0.6 mm for a zirconium oxide substructure. The software features the width offset of the tools

used for milling.

The so-prepared micro-samples and bridges were verified by software for surface cohesion

and prepared as a ready design in the STL format (stereolithography), processed into a

machine language of a CNC milling machine by Yenadent D43W or AM 125 machine by

Renishaw for selective powder laser sintering. After designing the shape of the elements

produced, short machining of such elements takes place with a CNC milling machine from a

disc of the selected material and additional sintering in a resistance furnace for ceramic

prostheses (Table 3). In the case of additive treatment, after designing the produced element

the same as previously, the particular layers of metals and alloys are joined layer by layer in the

form of powder in an SLS process (Table 3).

As reference results, the results were used of tests of micro-samples and prosthetic bridges

fabricated by the machining method with CAD/CAM techniques by milling—with CNC

milling machines—solid discs made of Co-Cr alloy of the Vitalium type, used most often in

dental treatment, mainly because the alloys are commonly used in casting methods. In order to

create a ranking of the materials and technologies used, analogous elements were produced by

milling from solid discs made of ZrO2 ceramics and then by sintering. Titanium elements were

fabricated by the machining method by milling solid discs and by the additive SLS method.

Elements from Ti6Al4V powder by SLS (Table 3) were also produced for comparative pur-

poses. Apart from examinations of solid materials, examinations of porous elements with the

pore size of 200–250 μm manufactured by SLS from titanium and Ti6Al4V alloy powder were

also carried out for comparative purposes.

Milling from disc on CNC milling machine Manufacturing technology

Co-Cr ZrO2 Ti6Al4V Solid engineering material

Sintered solid engineering material Ti6Al4V Ti

Manufacturing technology Selective laser sintering of powders

Table 3. Diagram of selection of engineering materials and manufacturing technologies of the examined elements.
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3. Comparison of strength properties of the examined solid engineering

materials for dental prosthetic restorations manufactured by additive

and machining methods

The investigations of mechanical properties of the examined engineering materials were

performed in two series in each case. According to the assumed aim of the investigations,

mechanical properties were compared in the first series, starting with tensile strength, each

time mechanical properties of solid materials produced by the SLS technique for different laser

power, that is, sintered titanium and sintered Ti6Al4V alloy. Mechanical properties were

compared in the second series of all the examined solid materials, that is, sintered titanium,

sintered Ti6Al4V alloy, milled Ti6Al4V alloy, milled Co-Cr alloy and milled and milled ZrO2

sinter. The results of the examinations were presented in such order for, respectively, tensile

strength, bending strength and comprehensive strength.

The impact of laser power, ranging 70–110 W, was investigated in the first place on tensile

strength values of sintered titanium and sintered Ti6Al4Valloy (Figure 4). The results of tensile

strength tests for sintered titanium, sintered Ti6Al4V alloy, obtained in optimum conditions of

production, milled Ti6Al4V alloy, milled Co-Cr alloy and milled ZrO2 sinter, are shown in

Figure 5.

Figure 4. Comparison of diagrams of dependency between tensile stress and elongation for solid samples made of

Ti6Al4V alloy and pristine titanium sintered at different laser powers.
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The test results given in Figure 5 are an interesting reason for application of the tested materials

in dental prosthetics. A result of approx. 47 MPa for tensile strength of milled and then sintered

ZrO2 alloys is certainly concerning. Selectively laser sintered titanium exhibits the tensile

strength of approx. 740 MPa, slightly smaller than specific for milled Co-Cr alloy samples,

approx. 825 MPa, and Ti6Al4V alloy, approx. 858 MPa, and much lower than the tensile

strength of approx. 1312 MPa of the selectively laser sintered Ti6Al4V alloy. It is the highest

tensile strength value for all the examined engineering materials.

Bending strength tests were performed the same as tensile strength tests. The investigations

were performed in relation to solid materials manufactured by SLS for different laser power,

that is, sintered titanium and sintered Ti6Al4V alloy (Figure 6), as well as in relation to the

investigated solid materials, that is, sintered titanium, sintered Ti6Al4V alloy, milled Ti6Al4V

alloy, milled Co-Cr alloy and milled ZrO2 sinter (Figure 7). It is noted that the bending strength

of the sintered titanium of approx. 1682 MPA is only about 3% smaller than the bending

strength of about 1740 MPa of the Co-Cr alloy but strongly smaller than the bending strength

of approx. 1959 MPa of the milled Ti6Al4Valloy and much higher than the bending strength of

approx. 2374 MPa of this alloy after SLS. The smallest is the bending strength of approx.

605 MPa of sintered ZrO2 alloys milled from discs and then sintered.

Figure 8 is the comparison of diagrams of dependency between compressive stress and

deformation for selectively laser sintered Ti samples and Ti6Al4V alloy.

Figure 5. Comparison of diagrams of dependency between tensile stress and elongation for various examined materials,

that is, for sintered Ti, sintered Ti6Al4V alloy, milled Co-Cr alloy, milled ZrO2 sinter and milled Ti6Al4V alloy.
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4. Comparison of results of strength tests of dental bridges manufactured

from the investigated materials with the additive and machining

technology

The results of comparative investigations are presented of mechanical properties of dental

bridges manufactured from the investigated engineering materials. The results of strength

Figure 6. Comparison of diagrams of dependency between bending stress and bending for solid samples made of

Ti6Al4V alloy and pristine titanium sintered at different laser powers.
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tests of dental bridges selectively sintered by laser in optimised conditions were compared

with the results of tests for bridges milled with CAD/CAM methods from discs of other tested

materials, additionally sintered after milling in the case of ZrO2. The impact of laser power,

ranging 70–110 W, was investigated in the first place on bending strength values of three

bridges manufactured by SLS from sintered titanium and sintered Ti6Al4V alloy. The results

of bending strength tests of a dental bridge no. 1 produced from titanium and Ti6AlV4 alloy

were compared directly in Figure 9. Regardless the material produced by selective laser

Figure 7. Comparison of diagrams of dependency between tensile stress and bending for various examined materials,

that is, for sintered Ti, sintered Ti6Al4V alloy, milled Co-Cr alloy, milled ZrO2 sinter and milled Ti6Al4V alloy.
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sintering, the maximum bending strength strongly depends on laser power. Sintering with the

laser power of 70 W ensures small maximum bending force of approx. 260 and approx. 310 N,

respectively, for titanium and Ti6Al4Valloy and is rising almost proportionally to, respectively,

approx. 700 and approx. 730 N with laser power increase to 110 W. The maximum bending of

the produced dental bridges depends very strongly on the applied laser power and a selec-

tively sintered material. For titanium, this bending—depending on the laser power—varies

between approx. 0.9 and approx. 2.4%, when it is much higher for Ti6Al4V alloy and ranges

within approx. 2 to approx. 7%, and bending strength is systematically falling as bending is

rising (Figure 9).

Figure 8. Comparison of diagrams of dependency between compressive stress and deformation for selectively laser

sintered Ti and Ti6Al4V alloy samples.

Figure 9. Comparison of diagrams of dependency between bending strength and bending of solid bridge no. 1

manufactured by SLS from titanium and Ti6Al4V alloy for different laser power.
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The analogous strength properties were obtained for a dental bridge no. 2 produced from

titanium and Ti6AlV4 (Figure 10). In the case of a titanium bridge, if laser power is increased

from 70 to 110 W, this has a considerable effect on the value of the maximum bending strength,

which increases on average from approx. 350 to approx. 1315 N. In the case of a bridge made of

Ti6Al4V alloy produced by SLS, if laser power is raised in the same range, the maximum

bending strength rises from approx. 525 to approx. 1560 N. In the case of Ti6Al4V alloy, each

time, for each laser power, the maximum bending strength causing sample fracture is higher

than for bridges produced from titanium, and this takes place in each case for relatively

smaller bending. For example, selectively laser sintered solid bridges with laser power of

110 W from Ti6Al4V alloy are damaged at approx. 3% bending, when bending for titanium

exceeds 4.5% (Figure 10).

As laser power is increased from 70 to 110 W, the value of the maximum bending strength for

dental bridge no. 3, produced from titanium, increases from approx. 240 to approx. 580 N, in

Figure 10. Comparison of diagrams of dependency between bending strength and bending of solid bridge no. 2

manufactured by SLS from titanium and Ti6Al4V alloy for different laser power.
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the case of a bridge made of Ti6Al4V alloy, from approx. 340 to approx. 720 N (Figure 11). In

the case of selectively laser sintered Ti6Al4V alloy, each time, for each laser power, bending

strength causing sample fracture is higher than for bridges produced from titanium, and this

takes place in each case for relatively smaller bending (Figure 11).

Diagrams were compared of dependency between bending strength and bending of solid

bridges nos. 1, 2 and 3 manufactured from all the examined materials, that is, from selec-

tively laser sintered titanium and Ti6Al4V alloy and milled from Ti6Al4V alloy discs, Co-Cr

alloy and milled ZrO2 sinter and then sintered (Figure 12). The maximum bending strength

highly relies on the dental bridge type and varies from approx. 580 N for bridge no. 3 to

approx. 1320 N for bridge no. 2. On the other hand, bridge no. 3 exhibits the maximum

bending of approx. 10.4% while bridge no. 2 smallest bending of approx. 4.6%. Bridge no. 1

shows indirect properties. In the case of solid bridges nos 1, 2 and 3 manufactured by SLS

from Ti6Al4V alloy with laser power of 110 W (Figure 12), the maximum bending strength of

approx. 1570 N occurs for bridge no. 2, and the two other bridges show the strength of

approx. 720 N. Maximum bending for bridges nos 3, 2 and 1 is, respectively, approx. 3.2,

approx. 3 and approx. 2.4%. In the case of bridges nos. 2, 1 and 3 manufactured by CAD/

CAM by milling discs from Ti6Al4V alloy, as presented in Figure 12, the maximum bending

strength is much higher and is, respectively, approx. 2970, approx. 2030 and 1030 N, and

maximum bending is, respectively, approx. 5, approx. 3.4 and 5.6%. Diagrams were also

compared of dependency between bending strength and bending of solid bridges nos. 1, 2

and 3 manufactured by CAD/CAM by milling discs from Co-Cr alloy and ZrO2 sinter

(Figure 12). The comparison of diagrams of dependency between bending strength and

bending of solid bridges nos. 1, 2 and 3 manufactured from all the examined materials, that

is, from selectively laser sintered titanium and Ti6Al4V alloy and with the CAD/CAM

method by milling discs from Co-Cr alloy and ZrO2 sinter, shows that the highest maximum

bending strengths are specific for bridge no. 2 regardless the material applied, and highest

bending is seen for bridge no. 3.

Figure 11. Comparison of diagrams of dependency between bending strength and bending of solid bridge no. 3

manufactured by SLS from titanium and Ti6Al4V alloy for different laser power.

Biomaterials in Regenerative Medicine126



Figure 12. Comparison of diagrams of dependency between bending strength and bending of solid bridges nos. 1, 2 and 3

manufactured from all the examined materials, that is, from selectively laser sintered titanium and Ti6Al4V alloy and with

the CAD/CAM method by milling discs from Ti6Al4V alloy, Co-Cr alloy and sintered ZrO2 sinter.
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5. Structure of the investigated engineering materials manufactured by

additive and machining technologies

It was revealed in examinations of the structure of the investigated materials in a scanning

electron microscope that in the case of Co-Cr and Ti6Al4V alloy, the surface of the samples

produced by CAD/CAM, by milling solid discs, exhibits roughness distinctive for precision

machining (Figures 13 and 14), the same as for ceramic ZrO2 material which is sintered after

performing machining (Figure 13). The examinations of chemical composition with the EDS

method confirm the presence, in the first case, of Co, Cr and W (Figure 13) and in the second

case of, respectively, Ti, Al and V (Figure 14) and in the third case of Zr and O (Figure 13),

corresponding to the chemical composition of the materials applied. Figure 14 shows a surface

structure of pristine titanium and Ti6Al4V alloy manufactured by selective laser sintering with

Figure 13. Surface structure of the samples produced by CAD/CAM by milling solid discs with the results of examina-

tions of EDS chemical composition of (a) Co-Cr alloy, (b) sintered ZrO2 sinter after machining (SEM).
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Figure 14. Surface structure of samples manufactured by selective laser sintering with the use of laser beam of 50 μm

with laser power of 110 W of (a) solid titanium, (b) Ti6Al4V alloy and (c) Ti6Al4V alloy by CAD/CAM method by milling

solid discs with results of examinations of EDS chemical composition (SEM).
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the laser beam size of 50 μm and laser power of 110 W. It was revealed in the both cases that

apart from the completely sintered materials, with the shown paths of laser beam transition,

fine powder particles exist, as well, which—after sintering—should be removed mechanically

or by chemical etching.

X-ray tests allow to establish the phase composition of the investigated materials based on the

data derived from international files. The following was identified, respectively, in particular

samples: Co and Cr in Co-Cr, ZrO2 alloy, Ti in pristine titanium and Al0.3Ti0.7 phase and

Ti0.8V0.2 in Ti6Al4V alloy irrespective of the manufacturing technology by milling from discs

or selective laser sintering.

Investigations were carried out into the structure of the examined engineering materials

subjected to the examinations of mechanical properties, and the structure was compared,

especially of fractures of the examined materials produced by SLS, that is, sintered titanium

and sintered Ti6Al4V alloy, and also manufactured by CAD/CAM by milling discs from solid

Ti6Al4V, Co-Cr alloys and ZrO2 sinter milled and then sintered. The selectively laser sintered

materials have a continuous structure without pores, as for titanium (Figure 15a), in which

Figure 15. Surface structure of solid samples manufactured by selective laser sintering (a) with the use of laser beam of

50 μm with laser power of 110 W, (b) fracture structure after a static bending test of samples of solid Ti6Al4V alloy

manufactured by selective laser sintering with laser beam size of 50 μm after sintering with laser power of 70 Wand (c, d)

fracture structure after a static bending test of the samples produced by CAD/CAM by milling discs from solid alloys of

(c) Ti6Al4V and (d) Co-Cr; SEM.

Biomaterials in Regenerative Medicine130



particular laser paths can be distinguished, provided that laser power for a laser beam with a

diameter of 50 μm is 110 W. It is revealed by analysing a fracture of titanium, laser sintered

with the laser power of 70 W, subjected to a static bending test, that—especially—finest

powder particles are not sintered fully and also that a ductile fracture occurs in bridges of the

sintered material. The samples sintered with the laser power of 110 W are solid and show a

ductile fracture. A fracture structure of the samples from the laser sintered Ti6Al4V alloy after

a static bending test is analogous to this obtained for titanium (Figure 15b) and—after

Figure 16. View of dental bridges after static bending test, manufactured from (a,b) titanium by SLS, (a) bridge no. 2 and

(b) bridge no. 1; (c) from Ti6Al4V alloy by SLS bridge no. 3; and (d–f) fabricated by CAD/CAM by disc milling (d) from

Ti6Al4V alloy, bridge no. 2; (e) from Co-Cr alloy, bridge no. 3; and (f) from ZrO2 sinter manufactured by CAD/CAM by

disc milling and then sintering, bridge no. 3; stereoscope microscope.
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sintering with the laser power of 110W—shows a ductile fracture. A ductile fracture also exists

in the case of fractographic tests of Ti6Al4V alloy but in the form of discs for sample milling

(Figure 15c). The samples milled from Co-Cr alloy show, however, a brittle fracture, only with

the local presence of a ductile fracture (Figure 15d).

In the case of all the examined metallic materials, and independently from the applied

manufacturing technology, a fracture of samples occurs most often on a root of the abutments

linking successive teeth, while in the case of bridges made of ZrO2, such bridges undergo

brittle cracking in different places (Figure 16).

6. Suitability of application of additive manufacturing methods of

prosthetic restorations of the dental system as compared to machining

methods

Comparative investigations are presented in this chapter of the structure and properties of

selected engineering materials used for dental prosthetic restorations manufactured alterna-

tively by the machining method by milling on computerised numerical control (CNC) milling

machines and by the additive selective laser sintering (SLS) method of solid and porous

elements using CAD/CAM techniques; moreover, an original technology was presented of

manufacturing the elements used in prosthodontics, produced with titanium and Ti6Al4V

alloy powders with the SLS technique. The suitability was confirmed of applying the

manufacturing technologies used in prosthodontics from powders by the SLS technique. The

results of the executed tests of strength micro-samples and of the selected prosthetic bridges

were compared. The bending strength of the titanium sintered selectively by laser, of the

milled Ti6Al4V alloy and of the milled Co-Cr alloy is within the range of 1739–1959 MPa and

tensile strength is within 739 and 858 MPa. It points out that the materials can be employed as

prosthetic restorations, similarly as a selectively laser sintered Ti6Al4V alloy with the bending

strength of approx. 2374 MPa and tensile strength of approx. 1312 MPa and pristine Ti with the

bending strength of approx. 1682 MPa and tensile strength of 739 MPa. The SLS technology for

titanium, and even more for Ti6Al4V alloy, ensures the achievement of mechanical properties

comparable or better than a reference Co-Cr alloy which is commonly used for prosthetic

restorations, including prosthetic bridges fabricated by milling solid discs with CNC milling

machines. For all the examined engineering materials, the milled and then sintered ZrO2

material exhibits the lowest strength properties. The average tensile strength of this material

is approx. 47 MPa, that is, it is nearly 20 times smaller than of Co-Cr alloy, and the average

bending strength is smaller nearly 3 times than this of Co-Cr alloy and is approx. 605 MPa. The

maximum elongation does not exceed, respectively, 6%, and maximum bending is approx.

0.3%, and the both values are much smaller than such appropriate for Co-Cr alloy. The

microscopic examinations of the surface of prosthetic bridges fabricated from this material by

the machining method of disc milling and then sintering show more advantageous roughness

than bridges produced from Co-Cr alloy, and their fracture after bending is decisively brittle,

and cracking takes place in different places, not as in the case of Co-Cr alloy. Prosthetic

restorations on a substructure of sintered ZrO2 are, however, used more and more often,

especially because it is necessary to ensure the best aesthetic values of the solution employed.
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As a zirconium oxide substructure can be completely white, but also after colouring with

special paints before sintering, it can have a colour consistent with the VITA colour palette, a

fully natural aesthetic effect can be achieved of a ready prosthetic restoration. It is also note-

worthy that a translucence effect can be achieved, especially on secant edges of such a pros-

thetic restoration, responding to the most demanding patients’ needs. Such effects can be

attained on a substructure made of Co-Cr alloy. On the other hand, it is practically impossible

to use titanium as a substructure for prosthetic crowns and bridges because the material tends

to change the shade of porcelain to darker and colder; hence it is very difficult to ensure the

manufacturing repeatability of prosthetic restorations and their quality. A solution ensuring

the best possible aesthetic values is to use zirconium oxide as a substructure. Due to a substan-

tial technological and therapeutic risk, a solution with the lowest strength properties is most

expensive, though. Therefore, a dental engineer needs to be aware of the limitations of this

material and has to design prosthetic restorations on a zirconium oxide substructure differ-

ently than when metallic materials are used. The author of this work prepares in his daily

engineering practice all kinds of bridges with ¾ crowns, that is, such which are made on all the

walls, except for the vestibular wall and the chewing surface, with a full structure, as so-called

full contoured. Such a crown is coated from the vestibular part with veneering porcelain to

ensure the best aesthetic values, and special paints and glaze are applied onto the other

surfaces. The so-designed bridge, in the example shown in this work, would have walls with

a thickness of approx. 2.5 mm instead of 0.6 mm, and a section area of abutments would be

approx. 20–22 mm2 instead of 10–12 mm2, as for the designs presented in this work and

essentially relating to metallic materials. A much greater active section will allow to transfer

higher loads, accordingly. The designer also has to keep in mind to support bridge spans on

the periodontal tissue, never using the saddleback-like gum shape, but using an elliptic sup-

port with subgingival correction in each case. The so-designed prosthetic restoration will

surely feature much higher strength properties than a prosthetic restoration with a reduced

structure, being a reference point used in this work. Unfortunately, prosthetic restorations

made on a zirconium oxide substructure with a simplified structure, as so-called caps with

simple abutments, are still commonly used by dentists and dental technicians. The test results

obtained seem not to confirm the applicability of the bridges, made of this material, designed

this way. This puts into question a potential application of ZrO2 sinter bridges in dental

practice without using a special design method of such dental restorations. This fact can be

confirmed by cases, known from medical practice, when such bridges are damaged during

normal use by patients. The results presented in this chapter can be directly applied in dental

practice to remove consequences of teeth lost due to tooth decay.
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