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Abstract

This chapter describes the method of airfoil optimization considering boundary layer for
aerodynamic efficiency increment. The advantages of laminar boundary layer expansion
in airfoil of horizontal axis wind turbine (HAWT) blades are presented as well. The genetic
algorithm (GA) optimization interfaced with the flow solver XFOIL was used with multi-
objective function. The power performance of turbine with optimized airfoil was calcu-
lated by using blade element method (BEM) in software QBlade. The CFD simulation from
OpenFOAM® with Spalart-Allmaras turbulence model showed the visualized airflow. The
optimized airfoil shows enlarged laminar boundary layer region in all flow regime with a
higher aerodynamic efficiency and the increased gliding ratio (GR). The power velocity
and annual energy production (AEP) curves show the performance improvement of wind
turbine with the optimized airfoil. The boundary layer thickness and skin-friction coeffi-
cient values support the decreased drag of the optimized airfoil. The smaller laminar
separation bubbles and reduced stall regime of CFD simulations illustrate the desirable
aerodynamics of the resulted airfoil.
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1. Introduction

The airfoil is the geometrically shaped structure for mechanical force generation from the

relative movement between the airfoil and surrounding airflow of the airfoil structures [1].

For wind turbines, the airfoil shape of the blades influences the turbine power production. The

lifting efficiency of the blades determines the effectiveness of rotor rotation to cause productive

energy conversion from wind kinetics to rotor rotation, which leads to higher electricity

generation from the drive unit.
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From the late eighteenth century, the curving surface geometry was discovered to be advanta-

geous for lifting efficiency in windmill by Smeaton [2]. In the 1880s, Lilienthal discovered the

specific shape from the bird’s wings, which inspired the airplane invention by Wright brothers

[3]. The research of Prandtl and Tietjens revealed the benefit of the thick airfoil through their

mathematical skills and wind tunnel tests in 1917 [4]. The US National Advisory Committee

for Aeronautics (NACA)-generated airfoil groups, “NACA airfoil families” in the 1930s, and

the series have been widely used even in these days [5]. In contradiction to the mathematical

methods to calculate the pressure distribution of airfoil, Jacobs proposed the airfoil design

which causes the desired pressure distribution. The laminar flow of airfoil was expanded to

cause higher L/D ratio and smaller drag [6]. Later, different types of airfoils for various

airplane design and off-design requirements were continuously designed.

The first wind turbine blades were also designed by the airfoils from aeronautic applications.

However, in the 1980s, the airfoils specially dedicated for wind turbines were begun to be

made due to the defects of aeronautic airfoils applied in a wind turbine. The sensitivity

roughness effect on the leading edge arose to be the required element for wind turbine airfoil.

The airfoil series for stall-regulated, variable-pitch control wind turbine was developed by

NREL in 1984, incorporated with SERI and Airfoils [7]. The wind turbine-dedicated airfoils

with the thickness from 15 to 40% of the chord were also made by the team of the Delft

University of Technology with the design objective of low sensitivity to roughness, Gurney

flaps, and trailing-edge wedge consideration [8]. The airfoils from Risø were designed to have

high aerodynamic efficiency and slender blade shape [9]. The airfoil design using numerical

optimization for tip region of the blades was researched by Grasso [10]. As mentioned in these

studies, the higher aerodynamic efficiency, insensitivity to roughness effect, structural stability

and smooth post-stall exhibition, etc., are required for wind turbine airfoil design. To accom-

plish these objectives, boundary layer consideration of the wind turbine airfoil can be advan-

tageous as it was proven from the laminar airfoil by Jacobs [6].

The boundary layer of the airfoil is exerted by additional pressure generated by the curvature

shape of airfoil compared to the constant pressure on boundary layer made of the plate with

zero incidences. The pressure distribution on the edge of the boundary layer is same with the

pressure distribution on the wall in the plate. However, due to streamline curvature of airfoil

surface, the pressure gradients and compensation for the centrifugal force of the streamline

flow are generated inside the boundary layer. Furthermore, the transition point of the bound-

ary layer on the airfoil is determined by the outer flow and its pressure difference generated by

the curvature shape of the surface [11].

To generate the airfoil shape which has the advantage for pressure distribution in the bound-

ary layer and transition points, genetic algorithm (GA) optimization was used in this study. As

all airfoils are designed for higher aerodynamic performance, GA objective functions therefore

had two objectives—higher transition points of the larger laminar boundary layer and higher

gliding ratio (GR). The airfoil S809 of NREL airfoil series for the wind turbine was chosen as a

reference. The shape of insensitiveness to the roughness effect of the airfoil S809 could be

maintained in the optimized airfoil. The final evaluations of turbine performance were done

with the sample of stall-regulated wind turbine of NREL phase VI, which consists of the same

airfoil-type composition [12].
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The B-spline parameterization was used for the airfoil description, and the y points of the

spline were considered to be the variables. The values of boundary layer parameters and GR of

the airfoil were calculated by the flow solver XFOIL. The power performances of turbine unit

with blades of the optimized airfoil were calculated by using blade element method (BEM) of

the software QBlade. The CFD simulations from OpenFOAM® were performed to visualize the

improved aerodynamic aspects.

Section 2 explains the GA airfoil optimization method, Section 3 presents the aerodynamic and

boundary layer results of the optimized airfoils with improved power production of turbine

unit, Section 4 visualizes the airflow of the optimized airfoil with the reference, and Section 5

concludes this chapter.

2. Genetic Algorithm optimization for airfoil

The GA algorithm is based on the principle of the survival of the fittest and natural selection,

observed by Darwin [13]. As the various bird breaks were developed for different foods that

they can survive with, the airfoil was set to be shaped to survive at the condition of the highest

GR and transition point. To put the airfoil in mathematical form, the B-spline was used, and its

variables were set as the y point of control points in MATLAB® (Figure 1).

The smoothness and number of variables were set according to the previous research for

effective GA operation within a given computation time [14]. The airfoil is described with the

B-spline. The corresponding equations and the example of description figure are the following.

The x, y points are for the B-spline control points to compose P matrix in coefs for determining

the smoothness of B-spline with k.When the constant a is designated, the knots are defined. The

x points of B-spline are defined with MATLAB function linspacewhich divides the x-axis space

according to the defined airfoil chord:

P ¼ x; y½ � (1)

coefs ¼ PP½ � (2)

knots ¼ �2∗a : 2∗aþ n (3)

Figure 1. Airfoil B-spline parameterization with upper and lower bounds.

Airfoil Boundary Layer Optimization Toward Aerodynamic Efficiency of Wind Turbines
http://dx.doi.org/10.5772/intechopen.70895

87



Figure 2. Genetic algorithm flow diagram.
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k ¼ length knotsð Þ � length coefsð Þ (4)

Bsp ¼ spmak knots; coefð Þ (5)

x ¼ linspace 1; 0;

n

2

� �

; linspace 0; 1;

n

2

� �h i

(6)

To achieve higher aerodynamic efficiency and larger laminar boundary layer region at the

same time, the multi-objective function was formulated to evaluate both parameters of the

airfoil. The objective function code was written as

f ¼ � TXtrþ BXtrþ GRð Þð Þ (7)

Then, TXtr is the transition point of the top of airfoil, and BXtr is the transition point of the

bottom part of airfoil surface. The GR values, TXtr and BXtr values, were given from the

results of XFOIL calculation [15]. The given Re number was 106, and the angle of attack was

7�. The algorithm flow diagram is shown in Figure 2.

3. The optimized airfoil

The airfoil shape with higher GR and transition points were given after the convergence of

default set of population and running operation in GA. The thickness was almost the same as

the reference, which was desirable thickness for the stall-regulated wind turbine, but the

curvature shape was slightly changed (Figure 3 and Table 1).

However, this slight curvature shape change generated different GR and boundary layer

transitions (Figures 4–8). As the gliding ratio was set to be higher at the angle of attack 7�,

there was some region (off-design) where GR values of the optimized airfoil are lower

than the reference. But the angle of attack range of increasing GR ratio was larger at the

optimized airfoil (design point). This means that the optimized one has the smaller range

of separation or stall occurrence, which is desirable for the stall-regulated wind turbine [7]

(Figure 4).

Although the maximum GR values of the reference and optimized airfoils were similar, the

advantage of the optimized is represented by the drag distribution in Figure 5. Significantly,

reduced drag coefficients are found in Figure 5, which advocate the lower drag of the opti-

mized curvature shape, especially at the stall regime. The reduced drags can be explained with

the enlarged laminar boundary layer region of the optimized (Figures 6–8).

The transition point distributions of the reference and optimized airfoils are compared in all

angle of attack regime. The top and bottom mean the upper and lower sides of the airfoil.

Including the angle of attack 7�, where the optimization was calculated, the transition points of

the optimized S809gx showed the higher values than the reference S809, which means a larger
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laminar boundary layer. This tendency was found in all flow regime—fully attached, separation-

transition, and dynamic stall regime. The boundary layer region difference can be also found by

the skin-friction coefficient (Cf) (Figure 9). In the separation-transition flow regimewhere the tip-

speed ratio (TSR) = 5 and the incoming velocity is 8.3 m/s, transition point comparison of two

airfoils at the top and bottom parts is presented in Table 2. The Cf value at the leading edge of

the top of the airfoil showed much higher value than the reference one. The Cf value hill range

was also higher at the reference than the optimized one which indicates that the optimized one

has the smaller shear wall stress on the top.

Figure 3. The optimized airfoil S809gx and the reference S809.

S809 S809gx

Thickness (%) 20.99 20.3

Max. thick. pos. (%) 38.3 38.7

Max. camber (%) 0.99 0.87

Max. camber pos. (%) 83.3 43.6

Table 1. The optimized airfoil S809gx and the reference S809.

Figure 4. Gliding ratio (Cl/Cd) distribution of the airfoil at the root, middle, and tip parts of the blades.
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Figure 5. Drag coefficient distribution of airfoils.

Figure 6. Transition point (Xtr) of the airfoils in fully attached flow regime.

Figure 7. Transition point (Xtr) of the airfoils in transition-separation flow regime.
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Figure 8. Transition point (Xtr) of the airfoils in dynamic stall flow regime.

Figure 9. Skin-friction coefficient (Cf) of the top and bottom surfaces of the airfoils.
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Although the values were relatively smaller than the top, the bottom part Cf distribution

shows the increasing and decreasing tendency change at the transition point. The optimized

airfoil shows the changing point to be located to the right side than the reference. If the

separation occurs at the point where shear stress gets zero, the optimized airfoil could have

the smaller adverse pressure gradient region than the reference one at the bottom side.

The improved aerodynamic efficiency of the optimized airfoil through laminar boundary layer

enlargement affected the power increment of rotor turbine with the optimized airfoil. The

wind turbine simulation of NREL phase VI blades with the airfoil S809 and S809gx is done

with the blade incorporation. The settings for power performance comparison of two turbines

are represented in Table 3 (Figure 10). The wind turbine with optimized airfoil shows higher

annual yield and power production at a given velocity condition (Figure 11). The increased

power production means the effective rotor rotation of the wind turbine with the optimized

airfoil, which was affected by lifting efficiency of the blades from the aerodynamically

upgraded airfoil composition. The 3D rotation effect to reduce the root vortex could be another

reason of increased rotor efficiency of the rotor as explained in Ref. [16].

4. CFD simulation

To visualize the improved aerodynamic behavior in the optimized airfoil compared to the

reference, the CFD simulations were performed.

S809gx S809

Xtr_t 0.4589 0.1776

Xtr_b 0.6864 0.5298

Table 2. The optimized airfoil S809gx and the reference S809.

NREL phase VI with airfoil S809 NREL phase VI with airfoil S809gx

Power regulation Stall Stall

Transmission Single Single

V cutin/cutout [m/s] 6/25 6/25

Rotational speed [rpm] 71.63 71.63

Outer radius [mm] 5532 5532

Variable losses 0.22 0.22

Fixed pitch/fixed loss 0 0

Weibull setting k 2(�3) A 9(�3) k 2(�3) A 9(�3)

Annual yield [W] 49,461,730 59,404,491

Table 3. Settings for the simulation of turbines consist of the airfoil S809 and S809gx.
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The meshes for two airfoils were generated with Gmsh [17] (Figure 12). The Gmsh tool offers a

certain tool for mesh refinement so that the validity of the mesh results can be assured. As the

six decimals of accuracy are used, the changes are only appreciated by the fourth digit with the

maximum of 0.1% [18].

The software OpenFOAM® uses SimpleFOAM solver with Spalart-Allmaras turbulence model

for Reynolds-averaged Navier–Stokes (RANS) equations as the governing equation. It was

developed for the aerospace flow problems including wall-bounded flow for boundary layers

under the adverse pressure gradients.

Figure 10. The blade designs with airfoil S809 (left) and S809gx (right).
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The transport equation with the working variable ~υ is mentioned in Ref. [19]. In model assump-

tion, the eddy viscosity is considered as the capability of turbulent flow to transport momentum.

The production term is assumed to be increased linearly with the magnitude of the vorticity (S).

The right-hand side of the equation also includes the third term, which is the destruction term. The

faster-decaying motion in the outer part of the boundary layer is expressed with the function (fw).

The detailed derivation and explanation about equations are found in Ref. [19].

Figure 11. Annual energy production [kWh] of NREL phase VI turbine with the airfoil S809 and S809gx.

Figure 12. Generated mesh of the reference airfoil S809.
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Figure 13. Velocity visualization with LIC, the airfoil S809 (top), and S809gx (bottom) at T = 650.
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Figure 14. Pressure visualization, the airfoil S809 (top), and S809gx (bottom) at T = 650.
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The solver visualized the following airflow with ParaView®. The velocity distribution at the outer

flow and boundary layer flow distributions are visualized through the aforementioned solution

method. The flow time was set to be 1000 with the time interval of 50. The dynamic stall regime

angle of attackwas at around 22�; the outer flow TSRwas 1.5 when incoming velocity was 27.7m/s.

In general, the reference airfoil shows larger stall area with more laminar separation bubble

occurrences than the optimized one. At the time point T = 650, the difference between two

airfoils was clearly visualized. At T = 650, the slope of the stall area is more smooth at the

optimized airfoil with the smaller total area (Figure 13).

The laminar separation bubbles are only found in the reference when the pressure gradient is

less drastic at the optimized one. This is supported by the pressure visualization in Figure 14.

The adverse pressure gradient difference was higher at the reference, and the area with the

minus pressure range is largely found at the reference. This milder stall and separation effects

explain the smaller drag at the optimized airfoil in dynamic stall regime.

5. Conclusion

The airfoil optimization using GA for higher aerodynamic efficiency and larger laminar

boundary layer is achieved. Furthermore, the turbine power performance increment and air

flow visualization of reduced stall from the optimized airfoil are proven via simulation. The

higher GR and transition point values due to the reduced drag from expanded laminar

boundary layer region are presented for the optimized airfoil. The boundary layer characteris-

tics such as diminished skin-friction coefficients and higher transition point values over all

flow regimes are found to be the reason behind the improved aerodynamics of the optimized

airfoil. The results present the contribution of specifically airfoil shape for aerodynamic effi-

ciency and modified boundary layer distribution on HAWT performance improvement

including an effective lifting of the blades and rotor rotation.
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