
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 5

Robust Adaptive Output Tracking for Quadrotor
Helicopters

Keyvan Mohammadi and Andrea L’Afflitto

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70723

Abstract

Quadrotor helicopters are drawing considerable attention both for their mobility and their
potential to perform multiple tasks in complete autonomy. Moreover, the numerous limi-
tations characterizing these aircraft, such as their underactuation, make quadrotors ideal
testbeds for innovative theoretical approaches to the problem of controlling autonomous
mechanical systems. In this chapter, we propose a robust model reference adaptive control
architecture and design an autopilot for quadrotors, which guarantees satisfactory output
tracking despite uncertainties in the vehicle’s mass, matrix of inertia, and location of the
center of mass. The feasibility of our results is supported by a detailed analysis of the
quadrotor’s equations of motion. Specifically, considering the vehicle’s equations of motion
as a time-varying nonlinear dynamical system and avoiding the common assumption that
the vehicle’s Euler angles are small at all times, we prove that the proposed autopilot
guarantees satisfactory output tracking and verifies sufficient conditions for a weak form
of controllability of the closed-loop system known as strong accessibility. A numerical
example illustrates the applicability of the theoretical results presented and clearly shows
how the proposed autopilot outperforms in strong wind conditions autopilots designed
using a commonly employed proportional-derivative control law and a conventional
model reference adaptive control law.

Keywords: robust model reference adaptive control, e-modification, quadrotors, autopilot
design, output tracking

1. Introduction

Quadrotor helicopters, also known as “quadrotors,” are currently employed in diverse scenarios,

which range from search and rescue missions to infrastructure inspection, precision agriculture,

and wildlife monitoring ([1, Ch. 1], [2, 3]). Employing quadrotors in enclosed industrial environ-

ments or inproximityof untrainedpersonnel is still consideredas a challenge for thehigh reliability
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required to these aircraft. Additional complexity in the use of quadrotors for commercial applica-

tions, such as parcel delivery, is that users demand satisfactory trajectory following capabilities

without tuning the controller’s gains prior to eachmission, whenever the payload is changed.

Autopilots for commercial-off-the-shelf quadrotors are currently designed assuming that the

vehicle’s and the payload’s inertial properties are known and constant in time. Moreover, it is

assumed that the propulsion system is able to deliver maximum thrust whenever needed. These

assumptions considerably simplify the design of control algorithms for quadrotor helicopters,

but also undermine these vehicles’ reliability in challenging work conditions, such as in case the

propulsion system is partly damaged or the payload is not rigidly attached to the vehicle. For

instance, the authors in [4] show that if the payload’s mass and matrix of inertia vary in time,

then autopilots for quadrotors designed using classical control techniques, such as the

proportional-derivative control, are inadequate to guarantee satisfactory trajectory tracking.

In recent years, numerous authors, such as Bouadi et al. [5]; Dydek et al. [6]; Jafarnejadsani

et al. [7]; Loukianov [8]; Mohammadi & Shahri [9]; Zheng et al. [10], to name a few, employed

nonlinear robust control techniques, such as sliding mode control, model reference adaptive

control (MRAC), adaptive sliding mode control, and L1 adaptive control, to design autopilots

for quadrotors that are able to account for inaccurate modeling assumptions and compensate

failures in the propulsion system. These autopilots are generally designed assuming perfect

knowledge of the location of the quadrotor’s center of mass, supposing that the vehicle’s Euler

angles are small at all times, and neglecting the inertial counter-torque. Furthermore, in several

cases also the aerodynamic force and the corresponding moment are omitted. Because of these

simplifying assumptions, these autopilots are inadequate for aircraft performing aggressive

maneuvers, flying in adverse weather conditions, and transporting payloads not rigidly

connected to the vehicle’s frame [11]. The vehicle’s guidance system is usually delegated to

avoiding obstacles detected by proximity sensors and cameras installed aboard. For details,

see the recent works by Faust et al. [12]; Gao & Shen [13]; Lin & Saripalli [14].

In the first part of this chapter, we present the equations of motion of quadrotors and analyze

those properties needed to design effective nonlinear robust controls that enable output track-

ing. Specifically, we present the equations of motion of quadrotors without assuming a priori

that the Euler angles are small and without neglecting the inertial counter-torque and the

gyroscopic effect. Since the inertial counter-torque cannot be expressed as an algebraic func-

tion of the quadrotor’s state and control vectors, we account for this effect as an unmatched

time-varying disturbance on the vehicle’s dynamics and hence, we consider the equations of

motion of a quadrotor as a nonlinear time-varying dynamical system. Successively, we verify

for the first time sufficient conditions for the strong accessibility of quadrotors’ altitude and

rotational dynamics; strong accessibility [15] is a weak form of controllability for nonlinear

time-varying dynamical systems. As a result of this analysis, we show that a conservative

control law for quadrotors must prevent rotations of a �π/2 angle about either of the two

horizontal axes of the body reference frame; otherwise, the vehicle may be uncontrollable.

In the second part of this chapter, we present a robust autopilot for quadrotors, which is based

on a version of the e-modification of the MRAC architecture [16]. This autopilot is character-

ized by numerous unique features. For instance, we assume that the quadrotor’s inertial
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properties, such as mass, moment of inertia, and location of the center of mass are unknown.

Moreover, we assume that the quadrotor’s reference frame is centered at an arbitrary point,

which does not necessarily coincide with the vehicle’s center of mass. In addition, we suppose

that the coefficients characterizing the aerodynamic force and moment are unknown. In order

to reduce the rotational kinematic and dynamic equations to a form that is suitable for MRAC,

we employ an output-feedback linearization approach so that the controlled rotational dynam-

ics is captured by a linear dynamical system, whose virtual input is designed using the

proposed robust MRAC architecture.

We design the autopilot’s outer loop so that it regulates the vehicle’s position in the inertial frame

and the inner loop so that it regulates the vehicle’s attitude. In conventional autopilots for

quadrotors, the outer loop regulates the vehicle’s position in the horizontal plane and the inner

loop controls the quadrotor’s altitude and orientation. As in conventional architectures, our

outer loop defines the reference pitch and roll angles for the inner loop to track. However, our

control architecture allows us to verify a priori that the reference pitch and roll angles meet the

sufficient conditions for strong accessibility of the quadrotor’s altitude and rotational dynamics.

Conventional autopilots’ outer loop may generate large reference pitch and roll angles that are

not guaranteed to lay in the vehicle’s reachable set.

The conventional MRAC architecture ([17], Ch. 9) is designed to regulate time-invariant dynami-

cal systems and, for this reason, autopilots for quadrotors based on the classical MRAC are unable

to account for time-varying terms in the vehicle’s dynamics, such as the inertial counter-torque.

Moreover, autopilots for quadrotors based on the classical MRAC architecture are robust to both

matched and parametric uncertainties, but not unmatched uncertainties, such as aerodynamic

forces. The autopilots presented in this chapter, instead, are robust to unmatched uncertainties as

well and account for the fact that quadrotors are inherently time-varying dynamical systems.

A numerical example illustrates our theoretical framework by designing a control law that

allows a quadrotor to follow a circular trajectory, although the vehicle’s inertial properties are

unknown, one of the motors is suddenly turned off, the payload is dropped over the course of

the mission, and the wind blows at 16 m/s, which is usually considered as a prohibitive

velocity for conventional quadrotors. In this example, we clearly show how the proposed

robust control algorithm outperforms both the classical proportional-derivative (PD) control

and the conventional MRAC. Indeed, it is shown that quadrotors implementing autopilots

based on the PD framework crash as soon as one motor is turned off. Moreover, we verify that

quadrotors implementing autopilots based on the classical MRAC framework [6] are unable to

fly in the presence of wind gusts faster than 6 m/s. Lastly, we show that, to fly in a wind

blowing at 16 m/s, our autopilot requires a control effort that is smaller than the one required

by a conventional MRAC-based autopilot to fly in a 6 m/s wind.

2. Notation and definitions

In this section, we establish the notation and the definitions used in this chapter. LetR denote the

set of real numbers, Rn the set of n� 1 real column vectors, and Rn�m the set of n�m real
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matrices. We write 1n for the n� n identity matrix, 0n�m for the zero n�mmatrix, andAT for the

transpose of the matrix A∈Rn�m. Given a = [a1, a2, a3]
T∈R3, a� ≜

0 �a3 a2

a3 0 �a1

�a2 a1 0

2

6

4

3

7

5
denotes

the cross product operator. We write ∥ � ∥ for the Euclidean vector norm and ∥ � ∥F for the Frobenius

matrix norm, that is, given B∈Rn�m, ∥B∥F ≜ tr BBT
� �� �

1
2. The Fréchet derivative of the continu-

ously differentiable function V :Rn!R at x is denoted by V
0

(x)≜ ∂V(x)/∂x.

Definition 2.1 ([18], Def. 6.8). The Lie derivative of the continuously differentiable function

V :Rn!R along the vector field f :Rn!R
n is defined as

LfV xð Þ≜V 0 xð Þf xð Þ, x∈Rn
: (1)

The zeroth-order and the higher-order Lie derivatives are, respectively, defined as

L0f V xð Þ≜V xð Þ, LkfV xð Þ≜Lf Lk�1
f V xð Þ

� �

, x∈Rn, k ≥ 1: (2)

Given the continuously differentiable functions f, g :Rn!R
n, the Lie bracket of f(�) and g(�) is

defined as

adf g xð Þ≜
∂g xð Þ

∂x
f xð Þ �

∂f xð Þ

∂x
g xð Þ, x∈Rn

: (3)

To recall the definition of uniform ultimate boundedness, consider the nonlinear time-varying

dynamical system

_x tð Þ ¼ f t; x tð Þð Þ, x t0ð Þ ¼ x0, t ≥ t0, (4)

where x(t)∈Rn, t ≥ t0, f : [t0,∞)�R
n!R

n is jointly continuous in its arguments, f(t, �) is locally

Lipschitz continuous in x uniformly in t for all t in compact subsets of t∈ [t0,∞), and 0 = f (t, 0),

t ≥ t0.

Definition 2.2 ([19], Def. 4.6). The nonlinear time-varying dynamical system (4) is uniformly

ultimately bounded with ultimate bound b > 0 if there exists c > 0 independent of t0 and for every

a∈ (0, c), there exists T =T (a, c) ≥ 0, independent of t0, such that if ∥x0 ∥ ≤ a, then ∥x(t) ∥ ≤ b,

t ≥ t0 +T.

3. Robust MRAC for output tracking

In order to enable robust output tracking, in this section we present a robust nonlinear control

law that is based on the e-modification of the conventional model reference adaptive control

[16]. This control law guarantees that after a finite-time transient, the plant’s measured output

tracks a given reference signal within some bounded error despite model uncertainties and
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external disturbances. In practice, the proposed controller guarantees uniform ultimate bound-

edness of the output tracking error.

Consider the nonlinear time-varying plant and the plant sensors’ dynamics

_xp tð Þ ¼ Apxp tð Þ þ BpΛ u tð Þ þΘ
T
Φ xp tð Þ
� �� �

þ bξ tð Þ, xp t0ð Þ ¼ xp,0, t ≥ t0, (5)

_y tð Þ ¼ εCpxp tð Þ � εy tð Þ, y t0ð Þ ¼ Cpxp,0, (6)

where xp tð Þ∈Dp ⊆R
np , t ≥ t0, denotes the plant’s trajectory, 0np�1 ∈Dp, u(t)∈R

m denotes the

control input, y(t)∈Rm denotes the measured output, ε > 0, Ap∈R
np� np is unknown, Bp∈R

np�m,

Cp∈R
m� np, Λ∈Rm�m is diagonal, positive-definite, and unknown, Θ∈RN�m is unknown, the

regressor vector Φ :RnP!R
N is Lipschitz continuous in its argument, and bξ : t0;∞½ Þ ! R

np is

continuous in its argument and unknown. We assume that ∥bξ tð Þ∥ ≤bξmax, t ≥ t0, and Λ is such

that the pair (Ap,BpΛ) is controllable and Λmin1m ≤Λ, for some Λmin > 0. Both Λ and Θ
T
Φ(xp),

xp ∈Dp, capture the plant’s matched and parametric uncertainties, such as malfunctions in the

control system; the term bξ �ð Þ captures the plant’s unmatched uncertainties, such as external

disturbances.

Eq. (6) models the plant sensors as linear dynamical systems, whose uncontrolled dynamics is

exponentially stable and characterized by the parameter ε > 0 ([20], Ch. 2). Given the reference

signal ycmd : [t0,∞)!R
m, which is continuous with its first derivative, define ycmd,2 tð Þ≜ _ycmd tð Þ,

t ≥ t0, and assume that both ycmd(�) and ycmd, 2(�) are bounded, that is, kycmd(t)k ≤ ymax, 1, t ≥ t0,

and kycmd, 2(t)k ≤ ymax, 2, for some ymax, 1, ymax, 2 > 0.

The following theorem provides a robust MRAC for the nonlinear time-varying dynamical

system (5) and (6) such that the measured output y(�) is able to eventually track the reference

signal ycmd(�) with bounded error, that is, there exist b > 0 and c > 0 independent of t0, and for

every a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥y(t0)�

ycmd(t0) ∥ ≤ a, then

∥y tð Þ � ycmd tð Þ∥ ≤ b, t ≥ t0 þ T: (7)

For the statement of this result, let n≜ np +m and x tð Þ≜ xTp tð Þ; y tð Þ � ycmd tð Þ
� �Th iT

∈Rn, t ≥ t0,

note that (5) and (6) are equivalent to

_x tð Þ ¼ Ax tð Þ þ BΛ u tð Þ þΘ
T
Φ xp tð Þ
� �� �

þ ξ tð Þ, x t0ð Þ ¼
xp,0

Cpxp,0 � ycmd t0ð Þ

" #

, t ≥ t0, (8)

where x tð Þ∈D⊆Rn, D≜Dp � R
m, A≜

Ap 0np�m

εCp �ε1m

" #

, B≜
Bp

0m�m

� 	
, B1 ≜

0np�m

�1m

� 	
, and

ξ tð Þ≜B1 ycmd,2 tð Þ þ εycmd tð Þ
h i

þ
1np

0m�np

" #
bξ tð Þ, and consider the reference dynamical model
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_xref tð Þ ¼ Aref xref tð Þ þ Bref ycmd tð Þ, xref t0ð Þ ¼
xp,0

Cpxp,0 � ycmd t0ð Þ

" #

, t ≥ t0, (9)

where Aref ¼
Aref ,1 0np�m

0m�np Aref,2

" #

, Aref, 1∈R
np�np is Hurwitz, Aref, 2∈R

m�m is Hurwitz, and

Bref∈R
n�m is such that the pair (Aref,Bref) is controllable.

Theorem 3.1 Consider the nonlinear time-varying dynamical system given by Eqs. (5) and (6), the

augmented dynamical system (8), and the linear time-invariant reference dynamical model (9). Define

e(t)≜ x(t)� xref(t), t ≥ t0, and let

γ t; xp; x
� �

¼ bKT
x tð Þxþ bKT

cmd tð Þycmd tð Þ � bΘ
T
tð ÞΦ xp

� �
, t; xp; x

� �
∈ t0;∞½ Þ �Dp �D, (10)

where

_bKx tð Þ ¼ �Γx x tð ÞeT tð ÞPBþ σ1 BTPe tð Þ


 

bK

x
tð Þ

h i
, bKx t0ð Þ ¼ 0n�m, t ≥ t0, (11)

_bKcmd tð Þ ¼ �Γcmd ycmd tð ÞeT tð ÞPBþ σ2 BTPe tð Þ


 

bK

cmd
tð Þ

h i
, bKcmd t0ð Þ ¼ 0m�m, (12)

_bΘ tð Þ ¼ ΓΘ Φ xp tð Þ
� �

eT tð ÞPB� σ3 BTPe tð Þ


 

bΘ tð Þ

h i
, bΘ t0ð Þ ¼ 0N�m, (13)

the learning gain matrices Γx∈R
n� n, Γcmd∈R

m�m, and ΓΘ∈R
N�N are symmetric positive-

definite, P∈R
n� n is the symmetric positive-definite solution of the Lyapunov equation

0 ¼ AT
refPþ PAref þQ, (14)

Q∈R
n� n is symmetric positive-definite, and σ1, σ2, σ3 > 0. If there exists Kx∈R

n�m and

Kcmd∈R
m�m such that

Aref ¼ Aþ BΛKT
x , (15)

Bref ¼ BΛKT
cmd, (16)

then the nonlinear time-varying dynamical system (8) with u(t) =γ(t, xp(t), x(t)), t ≥ t0, is uni-

formly ultimately bounded and (7) is verified.

Proof: Let ΔKx ≜ bKx � Kx, ΔKcmd ≜ bKcmd � Kcmd, and ΔΘ≜ bΘ �Θ and consider the Lyapunov

function candidate

V e;ΔKx;ΔKcmd;ΔΘð Þ ¼ eTPeþ tr ΔKT
xΓ

T
xΔKx þ ΔKT

cmdΓ
T
cmdΔKcmd þ ΔΘ

T
Γ
T
Θ
ΔΘ

� �
Λ

� �
,

e;ΔKx;ΔKcmd;ΔΘð Þ∈Rn � Rn�m � Rm�m � RN�m, (17)

where tr(�) denotes the trace operator. The error dynamics is given by
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_e tð Þ ¼ Arefe tð Þ þ BΛ ΔKT
xx tð Þ þ ΔKT

cmdycmd tð Þ � ΔΘ
T
Φ xp tð Þ
� �� �

þ ξ tð Þ, e t0ð Þ ¼ 0, t ≥ t0,

(18)

and using the same arguments as in ([17], pp. 324-325), one can prove that

_V e;ΔKx;ΔKcmd;ΔΘð Þ < 0 e;ΔKx;ΔKcmd;ΔΘð Þ∈Ω, (19)

for some compact set Ω⊂R
n�R

n�m�R
m�m�R

N�m. Thus, it follows from Theorem 4.18 of

Khalil [19] that the nonlinear dynamical system given by (18) and (11)–(13) is uniformly

ultimately bounded.

Next, let xref tð Þ ¼ xTref,1 tð Þ; xTref,2 tð Þ
h iT

, t ≥ t0, verify (9), where xref, 1(t)∈R
np and xref, 2(t)∈R

m. It

follows from the uniform ultimate boundedness of (18) that

y tð Þ � ycmd tð Þ � xref,2 tð Þ


 

 ≤bb, t ≥T þ t0, (20)

for some bb > 0 and T ≥ 0, which are independent of t0. Moreover, since Aref is block-diagonal

and Hurwitz, B1 = [0m� np
,�1m]

T, and ycmd(�) is bounded, it follows from (9) that xref, 2(�) is

uniformly bounded ([18], 245), that is, kxref, 2(t)k ≤ b2, t ≥ t0, for some b2 ≥ 0 independent of t0.

Thus, it follows from (20) that (7) is verified with b ¼ bb þ b2. □

It is important to notice that although the matrix Ap, which characterizes the plant’s uncontrolled

linearized dynamics, is unknown and hence, the augmented matrix A is unknown, the structure

of the matrix Ap is usually known. Thus, in problems of practical interest it is generally possible

to verify thematching conditions (15) and (16), although the matrix A is unknown ([17], Ch. 9).

Remark 3.1 If the adaptive gains bKx �ð Þ, bKcmd �ð Þ, and bΘ �ð Þ verify (11)–(13), respectively, with

σ1 =σ2 = σ3 = 0, then the control law (10) reduces to the conventional model reference adaptive

control law for the augmented dynamical system (8) ([17], p. 298). However, conventional

MRAC does not guarantee uniform ultimate boundedness of the closed-loop system in the

presence of the matched uncertainty bξ �ð Þ ([17], pp. 317-319).

4. Modeling assumptions on quadrotors’ dynamics

Let I ¼ O;X;Y;Zf g denote an orthonormal reference frame fixed with the Earth and centered at

some point O, and let J ¼ A; x tð Þ; y tð Þ; z tð Þf g, t ≥ t0, denote an orthonormal reference frame fixed

with the quadrotor and centered at some point A, which is arbitrarily chosen. The axes of the

reference frames I and J form two orthonormal bases of R3 and if a vector a∈R
3 is expressed in I,

then this vector is denoted by aI. Alternatively, if a∈R
3 is expressed in J, then no superscript is

used. In this chapter, we consider the reference frame I as an inertial reference frame; quadrotors

move at subsonic velocities and are usually operated at altitudes considerably lower than 10

kilometers and hence, the error induced by this modeling assumption is negligible ([21], Ch. 5).

The Z axis is chosen so that the quadrotor’s weight is given by FIg ¼ mQgZ, wheremQ > 0 denotes
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the vehicle’s mass and g denotes the gravitational acceleration; the X and Y axes are chosen

arbitrarily. The axis z(�) points down and the axis x(�) is aligned to one of the quadrotor’s arms;

see Figure 1.

The attitude of the reference frame J with respect to the reference frame I is captured by the

roll, pitch, and yaw angles using a 3-2-1 rotation sequence ([22], Ch. 1). In particular, we denote

by ψ : [t0,∞)! [0, 2π) the yaw angle and ϕ,θ : t0;∞½ Þ ! � π
2 ;

π
2

� �
the roll and pitch angles,

respectively. The angular velocity of J with respect to I is denoted by ω : [t0,∞)!R
3 ([22], Def.

1.9). The position of the point A with respect to the origin O of the inertial reference frame I is

denoted by rA : [t0,∞)!R
3 and the velocity of Awith respect to I is denoted by vA : [t0,∞)!R

3.

The position of the quadrotor’s center of mass C with respect to the reference point A is

denoted by rC∈R
3. The matrix of inertia of the quadrotor, excluding its propellers, with

respect to A is denoted by I∈R
3� 3 and the matrix of inertia of each propeller with respect

to A is denoted by IP∈R
3� 3. The spin rate of the ith propeller is denoted by ΩP, i : [t0,∞)!R,

i = 1,…, 4. In this chapter, we model the quadrotor’s frame as a rigid body and propellers as

thin disks. Moreover, we assume that the vehicle’s inertial properties, such as the mass mQ,

the inertia matrix I, and the location of the center of mass rC, are constant, but unknown. The

quadrotor’s estimated mass is denoted by bmQ > 0 and the quadrotor’s estimated matrix of

inertia with respect to A is given by the symmetric, positive-definite matrix bI ∈R
3�3.

ΩP,1

ΩP,2

ΩP,3

ΩP,4

A

x

y

z

φ

θ

ψ

T4

T1

T2

T3
CrC

X

Y

Z

O

rA

mQgZ

Payload

Figure 1. Schematic representation of a quadrotor helicopter.
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5. Quadrotors’ equations of motion

In this section, we present the equations of motion of quadrotors. Specifically, a quadrotor’s

translational kinematic equation is given by ([22], Ex. 1.12)

_rIA tð Þ ¼ R ϕ tð Þ;θ tð Þ;ψ tð Þ
� �

vA tð Þ, rIA t0ð Þ ¼ rIA,0, t ≥ t0, (21)

where

R ϕ;θ;ψ
� �

≜

cosψ � sinψ 0

sinψ cosψ 0

0 0 1

2

6

4

3

7

5

cosθ 0 sinθ

0 1 0

� sinθ 0 cosθ

2

6

4

3

7

5

1 0 0

0 cosϕ � sinϕ

0 sinϕ cosϕ

2

6

4

3

7

5
,

ϕ;θ;ψ
� �

∈ �
π

2
;

π

2

� �

� �
π

2
;

π

2

� �

� 0; 2π½ Þ,

and the rotational kinematic equation is given by ([22], Th. 1.7)

_ϕ tð Þ

_θ tð Þ

_ψ tð Þ

2

6

4

3

7

5
¼ Γ ϕ tð Þ;θ tð Þ

� �

ω tð Þ,

ϕ t0ð Þ

θ t0ð Þ

ψ t0ð Þ

2

6

4

3

7

5
¼

ϕ0

θ0

ψ0

2

6

4

3

7

5
, (22)

where

Γ ϕ;θ
� �

≜

1 sinϕ tanθ cosϕ tanθ

0 cosϕ � sinϕ

0 sinϕ secθ cosϕ secθ

2

6

4

3

7

5
, ϕ;θ

� �

∈ �
π

2
;

π

2

� �

� �
π

2
;

π

2

� �

:

Under the modeling assumptions outlined in Section 4, a quadrotor’s translational dynamic

equation is given by [4]

FT tð Þ þ Fg ϕ tð Þ;θ tð Þ
� �

þ F vA tð Þð Þ ¼

mQ _vA tð Þ þ ω� tð ÞvA tð Þ þ _ω� tð ÞrCþω� tð Þω� tð ÞrC�, vA t0ð Þ ¼ vA,0, t ≥ t0,½
(23)

where FT(t) = [0, 0, u1(t)]
T denotes the thrust force, that is, the force produced by the propellers

that allows a quadrotor to hover,

Fg ϕ;θ
� �

¼ mQg � sinθ; cosθ sinϕ; cosθ cosϕ
� �T

, ϕ;θ
� �

∈ �
π

2
;

π

2

� �

� �
π

2
;

π

2

� �

, (24)

denotes the quadrotor’s weight, and F :R3!R
3 denotes the aerodynamic force acting on the

quadrotor [23]. The rotational dynamic equation of a quadrotor is given by [4]
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MT tð Þ þMg ϕ tð Þ;θ tð Þ
� �

þM ω tð Þð Þ ¼ mQr
�
C _vA tð Þ þ ω� tð ÞvA tð Þ½ � þ I _ω tð Þ þ ω� tð ÞIω tð Þ

þ IP
X

4

i¼1

‍ 0; 0;Ω
̇

P, i tð Þ
h iT

þ ω� tð ÞIP
X

4

i¼1

‍ 0; 0;ΩP, i tð Þ½ �T, ω t0ð Þ ¼ ω0, t≥ t0,

(25)

where MT(t) = [u2(t), u3(t), u4(t)]
T denotes the moment of the forces induced by the propellers,

Mg ϕ;θ
� �

≜ r�CFg ϕ;θ
� �

, ϕ;θ
� �

∈ � π
2 ;

π
2

� �

� � π
2 ;

π
2

� �

, denotes the moment of the quadrotor’s

weight with respect to A, and M :R3!R
3 denotes the moment of the aerodynamic force with

respect to A. The terms IP
P4

i¼1 ‍ 0; 0;Ω
̇

Pi
tð Þ

h iT
, t ≥ t0, and ω� tð ÞIP

P4
i¼1 ‍ 0; 0;ΩPi

tð Þ
� �T

in (25) are

known as inertial counter-torque and gyroscopic effect, respectively. In this chapter, we refer to

(21)–(23) and (25) as the equations of motion of a quadrotor helicopter.

We model the aerodynamic force and the moment of the aerodynamic force as

F vAð Þ ¼ �∥vA∥KFvA, vA ∈R
3, (26)

M ωð Þ ¼ �∥ω∥KMω, ω∈R
3, (27)

where KF,KM∈R
3� 3 are diagonal, positive-definite, and unknown; for details, refer to [23]. The

aerodynamic force (26) is expressed in the reference frame J. The next result allows expressing

F(�) in the reference frame I.

Proposition 5.1 Consider the translational kinematic equation (21) and let (26) capture the aerody-

namic forces acting on a quadrotor. It holds that

FI vAð Þ ¼ � _rIA










R ϕ;θ;ψ
� �

KFR
T ϕ;θ;ψ
� �

_rIA, _rA;ϕ;θ;ψ
� �

∈R
3 � �

π

2
;

π

2

� �

� �
π

2
;

π

2

� �

� 0; 2π½ Þ:

(28)

Proof: It follows from (26) that

FI vAð Þ ¼ �∥vA∥ KFvA½ �I ¼ �∥vA∥R ϕ;θ;ψ
� �

KFvA (29)

for all vA;ϕ;θ;ψ
� �

∈R
3 � � π

2 ;

π
2

� �

� � π
2 ;

π
2

� �

� 0; 2π½ Þ, and it follows from (21) that

FI vAð Þ ¼ �∥vA∥R ϕ;θ;ψ
� �

KFR
�1 ϕ;θ;ψ
� �

_rIA: (30)

Eq. (28) now follows from (30), since R(�, � , �) is an orthogonal matrix and hence, per defini-

tion, R�1(ϕ,θ,ψ) =RT(ϕ,θ,ψ), ϕ;θ;ψ
� �

∈ � π
2 ;

π
2

� �

� � π
2 ;

π
2

� �

� 0; 2π½ Þ, ([22], Def. A.13) and

∥vA∥ ¼ RT ϕ;θ;ψ
� �

_rA










 ¼ ∥ _rA∥ ([24], p. 132). □

Eq. (26) captures the aerodynamic drag acting on a quadrotor in absence of wind. If the wind

velocity vIW : t0;∞½ Þ ! R
3 is not identically equal to zero, then it follows from (28) that the

aerodynamic force is given by
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FI t; vAð Þ ¼ � vIw tð Þ � _r
I

A

















R ϕ;θ;ψ
� �

KFR
T ϕ;θ;ψ
� �

vIw tð Þ � _r
I

A

h i

,

t; _rA;ϕ;θ;ψ
� �

∈ t0;∞½ Þ � R
3 � �

π

2
;

π

2

� �

� �
π

2
;

π

2

� �

� 0; 2π½ Þ:
(31)

It is reasonable to assume that the wind velocity does not affect the moment of the aerody-

namic force (27).

A quadrotor’s control vector is given by u(t) = [u1(t), u2(t), u3(t), u4(t)]
T, t ≥ t0, that is, the third

component of the thrust force FT(�) and the moment of the forces induced by the propellers

MT(�). One can verify that ([1], Ch. 2)

u1 tð Þ

u2 tð Þ

u3 tð Þ

u4 tð Þ

2

6

6

6

4

3

7

7

7

5

¼

1 1 1 1

0 l 0 �l

l 0 �l 0

�cT cT �cT cT

2

6

6

6

4

3

7

7

7

5

T1 tð Þ

T2 tð Þ

T3 tð Þ

T4 tð Þ

2

6

6

6

4

3

7

7

7

5

, t ≥ t0, (32)

where Ti : [t0,∞)!R, i = 1,…, 4, denotes the component of the force produced by the ith pro-

peller along the �z(�) axis of the reference frame J, l > 0 denotes the length of each propeller’s

arm, and cT > 0 denotes each propeller’s drag coefficient.

Remark 5.1 The state vector for the equations of motion of a quadrotor (21)–(23) and (25) is

defined as rTA; vTA;ϕ;θ;ψ;ωT
� �T

∈R
12 and the inertial counter-torque IP

P4
i¼1 ‍ 0; 0;Ω

̇

Pi
tð Þ

h iT

,

t ≥ t0, can be explicitly related through algebraic expressions to neither the state vector x nor

the control input u. Thus, the inertial counter-torque must be considered as a time-varying

term in a quadrotor’s rotational dynamic equations. Furthermore, it is common practice not to

relate the gyroscopic effect ω� tð ÞIP
P4

i¼1 ‍ 0; 0;ΩPi
tð Þ

� �T
, t ≥ t0, with the control input u through

(32) ([1], Ch. 2). Hence, also the gyroscopic effect must be accounted for as a time-varying

term in a quadrotor’s equations of motion. For these reasons, (21)–(23) and (25) are a

nonlinear time-varying dynamical system.

6. Proposed control system for quadrotors

In this section, we outline a control strategy for quadrotors and verify that this strategy does

not defy the vehicle’s limits given by its controllability and underactuation.

6.1. Proposed control strategy

The configuration of a quadrotor, whose frame is modeled as a rigid body, is uniquely identi-

fied by the position in the inertial space of the reference point A, that is, rIA tð Þ ¼ rX tð Þ; rY tð Þ;½

rZ(t)]
T, t ≥ t0, and the Euler angles ϕ(t), θ(t), and ψ(t). Observing the equations of motion of a

quadrotor (21)–(23) and (25), one can show that the four control inputs u1(�),…, u4(�) are unable

to instantaneously and simultaneously accelerate the six independent generalized coordinates
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rX(�), rY(�), rZ(�), ϕ(�), θ(�), and ψ(�), and hence quadrotors are underactuated mechanical sys-

tems ([25], Def. 2.9). However, it follows from (21)–(23) and (25) that the control inputs u1(�),

…, u4(�) are able to instantaneously and simultaneously accelerate the independent generalized

coordinates rZ(�), ϕ(�), θ(�), and ψ(�), which uniquely capture the vehicle’s altitude and orienta-

tion dynamics.

In practical applications, quadrotors are employed to transport detection devices, such as anten-

nas or cameras, that must be taken to some specific location and pointed in some given direction.

For this reason, one usually needs to regulate a quadrotor’s position rIA �ð Þ and yaw angle ψ(�). To

meet this goal despite quadrotors’ underactuation, we apply the following control strategy. Let

[rX, ref (t), rY, ref (t), rZ, ref (t)]
T
∈R

3, t ≥ t0, denote the quadrotor’s reference trajectory, let ψref (t)∈ [0, 2π)

denote the quadrotor’s reference yaw angle, and assume that rX, ref (�), rY, ref (�), rZ, ref (�), and ψref (�),

are continuous with their first two derivatives and bounded with their first derivatives. It follows

from Example 1.4 of [22] that (21) and (23) are equivalent to

€rIA tð Þ ¼

uX tð Þ

uY tð Þ

uZ tð Þ

2

64

3

75þm�1
Q FI vA tð Þ;ω tð Þð Þ � €rIC tð Þ þ μI tð Þ,

rIA t0ð Þ

vIA t0ð Þ

" #

¼
rIA,0

vIA,0

" #

, t ≥ t0, (33)

where [26]

μI tð Þ≜m�1
Q u1 tð Þ R ϕ tð Þ;θ tð Þ;ψ tð Þ

� �
� R ϕref tð Þ;θref tð Þ;ψref tð Þ

� �h i
Z, (34)

ϕref tð Þ≜ sin �1
uX tð Þ sinψref tð Þ � uY tð Þ cosψref tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

q , (35)

θref tð Þ≜ tan �1
uX tð Þ cosψref tð Þ þ uY tð Þ sinψref tð Þ

uZ tð Þ
: (36)

Thus, a feedback control law for the virtual control input [uX(�), uY(�), uZ(�)]
T is designed so that,

after a finite-time transient, rA(�) tracks [rX, ref(�), rY, ref(�), rZ, ref(�)]
T with bounded error. Further-

more, a feedback control law for the control input [u2(�), u3(�),u4(�)]
T is designed so that, after a

finite-time transient, [ϕ(�),θ(�),ψ(�)]T tracks [ϕref(�),θref(�),ψref(�)]
Twith bounded error. Since the

quadrotor’s mass mQ is unknown, we compute the component of the quadrotor’s thrust along

the z(�) axis of the reference frame J as

u1 tð Þ ¼ bmQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

q
, t ≥ t0: (37)

Figure 2 provides a schematic representation of the proposed control strategy.

Eqs. (35) and (36) constrain the nonlinear dynamical system given by (33), (22), and (25) and

enforce its underactuation. Note that (36) is well-defined, since uZ(t) 6¼ 0, t ≥ t0, is a necessary

condition for a quadrotor to fly, and (35) is well-defined since u1(t) 6¼ 0, t ≥ t0, is a necessary

condition to fly and
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uX tð Þ sinψref tð Þ � uY tð Þ cosψref tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2X tð Þ þ u2Y tð Þ

u2X tð Þ þ u2Y tð Þ þ u2Z tð Þ

s

cos ψref tð Þ þ α tð Þ
� �

≤ 1,

where α(t)≜ tan�1(uY(t)/uX(t)). Alternative control strategies, which rely on the assumption

that the roll and pitch angles are small, are provided by Islam et al. [27]; Kotarski et al. [28];

Liu & Hedrick [29].

6.2. Strong accessibility of quadrotors

In this section, we prove that quadrotors are not controllable whenever the z(�) axis is parallel

to the horizontal plane. Specifically, it is well-known that θ tð Þ∈ � π
2 ;

π
2

� �

, t ≥ t0, is a necessary

condition for a 3-2-1 rotation sequence to uniquely identify a quadrotor’s orientation in space

and guarantee finiteness of the yaw rate for finite angular velocities ([22], p. 19). In the

following, we verify for the first time the conditions for quadrotors’ strong accessibility [15],

which is a weaker form of controllability for nonlinear dynamical systems [30–32], and prove

that if ϕ t∗ð Þ ¼ π
2

�

�

�

� for some t∗ ≥ t0, then the quadrotor may not be controllable, that is, there may

not exist a continuous control input that is able to regulate the vehicle’s altitude and orienta-

tion dynamics at t = t∗.

To the authors’ best knowledge, the controllability of quadrotors’ altitude and orientation

dynamics has been studied considering simplified models, which assume that the vehicle’s

pitch and roll angles are small at all times [5, 33]. Moreover, existing results on the control-

lability of quadrotors neglect the fact that, as discussed in Remark 5.1, these vehicles are

time-varying dynamical systems and rely on sufficient conditions for the controllability of

time-invariant dynamical systems [30, 34].

In the following, we recall the notions of reachable set and strong accessibility for the nonlinear

time-varying dynamical system

Position Control

T1, T2, T3, T4
Eq. (31)

Attitude Control

Eqs. (34), (35)
u1

uX , uY , uZ

φref , θref

rX,ref , rY,ref , rZ,ref

ψref

u2, u3, u4

rA

φ, θ, ψ

(20), (21), (22), (24)

Eq. (36)

Eqs.

Control System

Eq. (32)

Eqs. (22), (24)

Figure 2. Proposed control scheme for a quadrotor.
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_x tð Þ ¼ f t; x tð Þð Þ þ G x tð Þð Þu tð Þ, x t0ð Þ ¼ x0, t ≥ t0, (38)

where x(t)∈Rn, t ≥ t0, u(t)∈R
m is continuous, and both f : [t0,∞)�R

n!R
n and G :Rn!R

n�m

are continuously differentiable.

Definition 6.1 ([15]). Consider the nonlinear time-varying dynamical system (38), let M be

a real analytic manifold of dimension n, and let y∈M and t1, t2 ≥ t0. The reachable set R(y, t1,

t2) of (38) from (y, t1) at t2 is the set of all states that can be reached at time t2 by following

the solution of (38) with initial condition y, initial time t1, and some continuous control

input u(�). The nonlinear time-varying dynamical system (38) is strongly accessible at y∈M

at time t1 if R(y, t1, t2) has a non-empty interior in M for every t2 > t1. The nonlinear time-

varying dynamical system (38) is strongly accessible on M if it is strongly accessible at every

y∈M and every t1 ≥ t0.

In practice, Definition 6.1 states that if the nonlinear time-varying dynamical system (38)

is strongly accessible on M, then for every point in the reachable set of (38), there exists a

continuous control input such that the system’s trajectory is contained both in the reach-

able set and the manifold M at all times. The next theorem provides sufficient conditions

for the strong accessibility of the nonlinear dynamical system (38). For the statement of

this result, consider the augmented time-invariant dynamical system

_~x tð Þ ¼ ~f ~x tð Þð Þ þ ~G ~x tð Þð Þu tð Þ, ~x 0ð Þ ¼ xT0 ; t0
� �T

, t ≥ 0, (39)

where ~x ≜ xT; t
� �T

, ~f ~xð Þ≜ f T xð Þ; 1
� �T

, ~G ~xð Þ≜ GT xð Þ; 0n�1

� �T
, and recall that the controllability

matrix of the augmented time-invariant dynamical system (39) is defined as [15]

C ~xð Þ≜ ~g1 ~xð Þ;…; ~gm ~xð Þ; ad~f ~g1 ~xð Þ;…; ad~f ~gm ~xð Þ
h i

, ~x ∈Rn � t0;∞½ Þ, (40)

where ~G ~xð Þ ¼ ~g1 ~xð Þ;…~gm ~xð Þ
� �

.

Theorem 6.1 ([15]). Consider the nonlinear dynamical system (38). If rank C ~xð Þ ¼ n for all

~x ∈M� t0;∞½ Þ, then (38) is strongly accessible.

It follows from (21)–(23) and (25) that a quadrotor’s altitude and orientation are captured by

(38) with n = 8, m = 4, x ¼ rZ;ϕ;θ;ψ; _rZ;ωT
� �T

, f : t0;∞½ Þ �D� R4 ! R
4, D ¼ 0;∞½ Þ � � π

2 ;

π
2

� �

�

� π
2 ;

π
2

� �

� 0; 2π½ Þ � R� R3, and

G xð Þ ¼ m�1
Q

04�1 04�3

cosϕ cosθ 01�3

03�1 mQΓ ϕ;θ
� �

I�1

2

6

4

3

7

5
; (41)

the explicit expression for f(�, �) is omitted for brevity. In this case, the controllability matrix C �ð Þ

of the fully actuated, augmented time-invariant dynamical system (39) is such that
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det C ~xð Þ ¼
cosϕ

m2
Qdet

2 I
, ~x ∈R

8 � t0;∞½ Þ, (42)

and it follows from Theorem 6.1 that ϕ tð Þ∈ � π
2 ;

π
2

� �
, t ≥ t0, is a sufficient condition to guarantee

that a quadrotor’s altitude rZ(t) and orientation [ϕ(t),θ(t),ψ(t)]T can be regulated by some

continuous control input u(t), while _rZ tð Þ; _ϕ tð Þ; _θ tð Þ; _ψ tð Þ
� �T

remain bounded at all times; in

practice, to preserve controllability, a conservative control law for quadrotors must prevent

rotations of an angle of �π/2 about the x(�) axis of the reference frame J. Note that it follows

from (35) that ϕref tð Þ∈ � π
2 ;

π
2

� �
, t ≥ t0, and hence the reference roll angle verifies sufficient

conditions for strong accessibility of quadrotors’ altitude and orientation dynamics.

7. Nonlinear robust control of quadrotors

In this section, we apply the results presented in Sections 3–6 to design control laws so that a

quadrotor can follow a given trajectory with bounded error. Specifically, we design a control

law for u(�) so that a quadrotor can track both the given reference trajectory [rX, ref(t), rY, ref(t),

rZ, ref(t)]
T, t ≥ t0, and the reference yaw angle ψref(t). In practice, we design control laws both for

the virtual control input [uX(t), uY(t), uZ(t)]
T, t ≥ t0, and the moment of the propellers’ thrust

[u2(t), u3(t), u4(t)]
T, so that a quadrotor tracks [rX, ref(t), rY, ref(t), rZ, ref(t)]

T, the reference roll angle

(35), the reference pitch angle (36), and the reference yaw angle ψref(t).

It follows form (33) that if the aerodynamic force is modeled as in (31), then a quadrotor’s

translational kinematic and dynamic equations are given by

_xp,P tð Þ ¼ Ap,Pxp,P tð Þ þ Bp,PΛP

uX tð Þ

uY tð Þ

uZ tð Þ

2

64

3

75þΘ
T
PΦ xp,P tð Þ

� �
0

B@

1

CAþ bξP tð Þ,

xp,P t0ð Þ ¼ rTA,0; vIA,0

� �T
� 	T

, t ≥ t0, (43)

_yP tð Þ ¼ εCp,Pxp,P tð Þ � εyP tð Þ, yP t0ð Þ ¼ Cp,Pxp,P t0ð Þ, (44)

where xp,P tð Þ ¼ rIA tð Þ
� �T

; _rIA tð Þ
� �Th iT

, t ≥ t0, Ap,P ¼
03�3 13

03�3 03�3

� 	
, Bp,P ¼

03�3

13

� 	
, ΛP ¼ m�1

Q 13,

Cp, P = [13, 03� 3], bξP tð Þ∈R
6, 13; 03�3½ �bξP tð Þ ¼ 03�3, and

03�3; 13½ �bξP tð Þ ¼ m�1
Q vIW tð Þ � _r

I

A tð Þ








Bp,PR ϕ tð Þ;θ tð Þ;ψ tð Þ
� �

�KFR
T ϕ tð Þ;θ tð Þ;ψ tð Þ
� �

vIW tð Þ � _r
I

A tð Þ
h i

þ μI tð Þ � €rIC tð Þ: (45)
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Although Θ
T
PΦ xp,P �ð Þ

� �
follows neither from (33) nor (28), this nonlinear term has been intro-

duced to account for failures of the control system; in this section, we assume that

Φ zð Þ ¼ tanh z, z∈R
n, (46)

which is globally Lipschitz continuous. Since any quadrotor’s velocity and acceleration are

bounded, it follows from (45) that also the unmatched uncertainty bξP �ð Þ is bounded. Eq. (44)

captures the plant sensor’s dynamics ([20], Ch. 2).

It follows from (22) and (25) that a quadrotor’s rotational dynamics is captured by

_ϕ tð Þ

_θ tð Þ

_ψ tð Þ

_ω tð Þ

2

66664

3

77775
¼ f ϕ tð Þ;θ tð Þ;ψ tð Þ;ω tð Þ

� �
þ

03�3

bI
�1

" # u2 tð Þ

u3 tð Þ

u4 tð Þ

2

64

3

75þ bξA tð Þ,

ϕ t0ð Þ;θ t0ð Þ;ψ t0ð Þ;ωT t0ð Þ
� �T

¼ ϕ0;θ0;ψ0;ω
T
0

� �T
, t ≥ t0, (47)

where f ϕ;θ;ψ;ω
� �

¼ ωT
Γ
T ϕ;θ
� �

; �bI
�1
ω�bIω

� �T
� 	T

, bξA tð Þ∈R
6, 13; 03�3½ �bξA tð Þ ¼ 03,

03�3; 13½ �bξA tð Þ ¼ I�1r�C Fg ϕ tð Þ;θ tð Þ
� �

�mQ€r
I

A
tð Þ

h i
þ I�1M ω tð Þð Þ þ bI

�1
ω� tð ÞbI � I�1ω� tð ÞI

h i
ω tð Þþ

I �bI
� �

u2 tð Þ; u3 tð Þ; u4 tð Þ½ �T � I�1IP
X4

i¼1

‍

0

0

Ω
̇

P, i tð Þ

2

64

3

75� I�1ω� tð ÞIP
X4

i¼1

‍

0

0

ΩP, i tð Þ

2

64

3

75; (48)

Fg(�, �) is given by (24), rA(�) verifies (43), andM(�) is given by (27). Let xp,A ¼ ϕ;

_ϕ;θ;

_θ;ψ;
_ψ

� �T
,

η xp,A
� �

¼ _ϕ;

_θ;
_ψ

� �T
, β xp,A

� �
¼ L2f ϕ; L2f θ; L2f ψ;

h iT
, and v∈R

3; the explicit expression of β(�) is

omitted for brevity. By proceeding as in Example 6.3 of [35], one can prove that the nonlinear

dynamical system (47) is feedback linearizable ([31], Ch. 5). Specifically, (47) with

u2; u3; u4½ �T ¼ bIΓ�1 ϕ;θ
� �

η xp,A
� �

� β xp,A
� �

þ v
� �

,

xp,A; v
� �

∈ �
π

2
;

π

2

� �
� R� �

π

2
;

π

2

� �
� R� 0; 2π½ Þ � R� R

3, (49)

is equivalent to

_xp,A tð Þ ¼ Ap,Axp,A tð Þ þ Bp,AΛA v tð Þ þΘ
T
AΦ xp,A tð Þ

� �� �
þ bξA tð Þ,

xp,A t0ð Þ ¼ ϕ0;
_ϕ0;θ0;

_θ0;ψ0;
_ψ0

� �T
, t ≥ t0, (50)
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_yA tð Þ ¼ εCp,Axp,A tð Þ � εyA tð Þ, yA t0ð Þ ¼ Cp,Axp,A t0ð Þ, (51)

where

Ap,A ¼

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 1

2

666666664

3

777777775

, Bp,A ¼

0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

2

666666664

3

777777775

, Cp,A ¼

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

2

666666664

3

777777775

T

, (52)

_ϕ0;
_θ0;

_ψ0

� �T
¼ Γ ϕ0;θ0

� �
ω0, Λ∈R

3� 3 is diagonal positive-definite, and Φ(�) given by (46).

Although ΛA = 13 [35], we assume that ΛA is unknown and accounts for failures of the propulsion

system and erroneous modeling assumptions. Similarly, the term Θ
T
AΦ xp,A �ð Þ

� �
has been intro-

duced to capture matched uncertainties. Since any quadrotor’s angular velocity, angular acceler-

ation, and propeller’s spin rate are bounded, it follows from (48) that also the unmatched

uncertainty bξA �ð Þ is bounded. Eq. (51) captures the plant sensor’s dynamics ([20], Ch. 2).

The next theorem provides feedback control laws both for [uX(�), uY(�), uZ(�)]
T and [u2(�), u3(�),

u4(�)]
T so that the measured output signal yP(�) tracks the reference signal

ycmd,P tð Þ ¼ rX, ref tð Þ; rY, ref tð Þ; rZ, ref tð Þ½ �T, t ≥ t0, (53)

and the measured output signal yA(�) tracks the reference signal

ycmd,A tð Þ ¼ ϕref tð Þ;θref tð Þ;ψref tð Þ
� �T

, (54)

where ϕref(�) and θref(�) are given by (35) and (36), respectively, with some bounded error despite

model uncertainties, external disturbances, and failures of the propulsion system. For the state-

ment of this result, consider both the nonlinear dynamical system given by (43) and (44) and the

nonlinear dynamical system given by (50) and (51), and note that these systems are equivalent to

(5) and (6) with xp ¼ xTp,P; xTp,A

h iT
, Dp ¼ R

3 � R3 � � π
2 ;

π
2

� �
� R� � π

2 ;

π
2

� �
� R� 0; 2π½ Þ � R,

u = [uX,uY,uZ, v
T]T, ycmd ¼ yTcmd,P; yTcmd,A

h iT
, ycmd,2 ¼ yTcmd,2,P; yTcmd,2,A

h iT
, np = 12, m = 6,

bξ ¼ bξ
T

P;

bξT
A

h iT
, and

Ap ¼
Ap,P 06�6

06�6 Ap,A

" #

, Bp ¼
Bp,P 06�3

06�3 Bp,A

" #

, Cp ¼
Cp,P 03�6

03�6 Cp,A

" #

,

Λ ¼
ΛP 03�3

03�3 ΛA

� 	
, Θ ¼

ΘP 06�3

06�3 ΘA

� 	
, Φ xp

� �
¼

Φ xp,P
� �

Φ xp,A
� �

" #

:
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Theorem 7.1 Consider the nonlinear dynamical system given by (43) and (44), the nonlinear dynamical

system given by (50) and (51), the reference signals (53) and (54), the augmented dynamical system (8),

the reference dynamical model (9), the feedback control law γ(�, � , �) given by (10), and the adaptation laws

(11)–(13). If there exist Kx∈R
18� 6 and Kcmd∈R

6� 6 such that (15) and (16) and satisfied, then (8) with

u =γ(t, xp, x) is uniformly ultimately bounded. Furthermore, there exist b > 0 and c > 0 independent of t0,

and for every a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥yP(t0)�

ycmd,P(t0) ∥ ≤ a and ∥yA(t0)� ycmd,A(t0) ∥ ≤ a, then

∥yP tð Þ � ycmd,P tð Þ∥ ≤ b, t ≥ t0 þ T, (55)

∥yA tð Þ � ycmd,A tð Þ∥ ≤ b: (56)

Lastly, the thrust force generated by the quadrotor’s propellers is such that

u1 tð Þ ¼ bmQ γP t; xp tð Þ; x tð Þ
� �

 

, t ≥ t0, (57)

and the moment of the thrust force generated by the quadrotor’s propellers is given by

u2 tð Þ

u3 tð Þ

u4 tð Þ

2

64

3

75 ¼ bIΓ�1 ϕ tð Þ;θ tð Þ
� �

η xp,A tð Þ
� �

� β xp,A tð Þ
� �

þ γA t; xp tð Þ; x tð Þ
� �� �

, (58)

where γ t; xp; x
� �

¼ γT
P t; xp; x
� �

;γT
A t; xp; x
� �� �T

, (t, xp, x)∈ [t0,∞)�R
12�R18, γP(t, xp, x)∈R

3, and

γA(t, xp, x)∈R
3.

Proof: Uniform ultimate boundedness of (8) with u =γ(t, xp, x) is a direct consequence of Theo-

rem 3.1. Thus, both the nonlinear dynamical system given by (43) and (44) with [uX,uY,

uZ]
T =γP(t, xp, x), t; xp; x

� �
∈ t0;∞½ Þ �Dp �D, and the nonlinear dynamical system given by

(50) and (51) with [u2, u3, u4]
T =γA(t, xp, x) are uniformly ultimately bounded. Consequently, it

follows from Definition 2.2 that there exist b > 0 and c > 0 independent of t0, and for every

a∈ (0, c), there exists a finite-time T =T(a, c) ≥ 0, independent of t0, such that if ∥yP(t0)� ycmd,

P(t0) ∥ ≤ a and ∥yA(t0)� ycmd,A(t0) ∥ ≤ a, then (55) and (56) are satisfied. Lastly, (57) directly

follows from (37), and (58) directly follows from (49).

8. Illustrative numerical example

In this section, we provide a numerical example to illustrate both the applicability and the

advantages of the theoretical results presented in this chapter. Specifically, we design a

nonlinear robust control algorithm that allows a quadrotor helicopter to follow a circular

trajectory, although the vehicle’s inertial properties are unknown, one of the motors is sud-

denly turned off, the payload is dropped over the course of the mission, and the wind blows at

strong velocity.
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Consider a quadrotor of mass mQ = 1 kg and matrix of inertia I = 13 kg m2, let the propellers be

characterized by the matrix of inertia Ip ¼

0:025 0 0

0 0:025 0

0 0 0:05

2

64

3

75kg m2, and let that the sen-

sor’s dynamics be characterized by ε = 10. We assume that the vehicle’s mass and matrix of

inertia are unknown and estimated to be bmQ ¼ 1:25 kg and bI ¼ 0:8 � 13 kg m2, respectively.

Moreover, we assume that the aerodynamic force (31) and the aerodynamic moment (27) are

characterized by KF =KM = 0.01 � 13, which we assume unknown, and the wind velocity is given

by vI

W tð Þ ¼ 16; 0; 0½ �T m=s, t ≥ t0; it is worthwhile to note that this wind speed is considered as

excessive for quadrotors equipped with conventional autopilots.

Figure 3 shows the quadrotor’s trajectory obtained applying the control laws (57) and (58) to

track a circular path of radius 0.3 m at an altitude of 0.75 m despite the fact that the quadrotor’s

payload of 0.5 kg is dropped at t ≥ 40 s and one of the motors is turned off at t = 90 s. These

results have been obtained by setting σ1=σ2=σ3=2, Γcmd=100 � 16, and Γx and ΓΘ as block-

diagonal matrices, whose non-zero blocks are Γx, (1, 1) =1000 � 19, Γx, (2, 2) = 2000 � 19, ΓΘ, (1, 1) =200 � 19,

abd Γ
Θ, (2, 2)

= 1600 � 19.

Figure 3. Reference trajectory and trajectory followed by the quadrotor implementing the proposed control algorithm.

The vehicle is disturbed by some wind constantly blowing at 16 m/s.
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Figure 4 shows both the quadrotor’s altitude as function of time and the altitude of an

identical quadrotor implementing an autopilot based on the classical PD framework [36] and

flying in absence of wind. It is clear how the quadrotor implementing our control algorithm is

able to fly at the desired altitude despite the fact that the payload is dropped at t = 40 s and a

motor is turned off at t = 90 s. The quadrotor implementing the PD algorithm is unable to reach

the desired altitude because of the large error in the vehicle’s mass’ estimate. Moreover, this

quadrotor reaches a considerably higher altitude after the payload is dropped and crashes

after one of the propellers is turned off.

The first plot in Figure 5 shows the control inputs (57) and (58). The second plot in Figure 5

shows the control inputs computed using a conventional MRAC framework [6] for a

quadrotor tracking the same circular path despite a wind blowing at 6 m/s; numerical simula-

tions show that quadrotors implementing the conventional MRAC framework are unable to

fly in the presence of wind gusts faster than 6 m/s. It is clear that our autopilot requires a

control effort that is smaller than the effort required by a conventional MRAC-based autopilot

to fly in weaker wind.
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Figure 4. Altitude of a quadrotor implementing the proposed control algorithm and altitude of an identical quadrotor

implementing an autopilot based on the classical PD control.
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9. Conclusion

In this chapter, we presented a robust MRAC architecture, which we employed to design

autopilots for quadrotor helicopters. The proposed autopilot is the first to account for the fact

that quadrotors are nonlinear time-varying dynamical systems, the exact location of the vehi-

cle’s center of mass is usually unknown, and the aircraft reference frame is centered at some

point that does not necessarily coincide with the vehicle’s barycenter. Moreover, our autopilot

does not rely on the assumption that the Euler angles are small at all times and accounts both

for the inertial counter-torque and the gyroscopic effect.

The applicability of our theoretical results has been illustrated by a numerical example and it is

clearly shown how the proposed autopilot is able to track a given reference trajectory despite the

fact that the payload is dropped during the mission, one of the motors is turned off, and the

wind blows at the prohibitive velocity of 16 m/s. It is also shown that quadrotors implementing

autopilots based on the classical PD framework crash if one of the propellers stops functioning.

Lastly, it is shown that our autopilot requires a control effort that is smaller than the effort

required by conventional MRAC-based autopilots to fly in less strong wind.
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