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Abstract

In this study, cobalt oxide Co3O4 nanostructured material is synthesized by hydrother-
mal method by using different concentration of cobalt acetate salt at unique hydrother-
mal reaction time for five different hydrothermal reaction temperatures 105, 120, 140,
160, and 180�C. The obtained nanoparticles are annealed at 300�C for 5 h. Co3O4

nanostructures are determined by means of scanning electron microscopy (SEM), X-ray
diffraction (XRD), and UV-vis spectroscopy. The hydrothermally produced samples
were reannealed at 550�C, and morphological and structural properties were investi-
gated deeply again. The effect of annealing temperature on morphologies and crystal-
line structure of cobalt oxide nanoparticle (NP) was also investigated. Nanopyramids
and nanorods are two main morphologically obtained structures from the hydrothermal
experiment. Nematic liquid crystal mixture E7 is doped with Co3O4 nanorod. Phase
transition and threshold voltage of pure and Co3O4 NP-doped E7 LC are examined
successfully. It reveals that for Co3O4 NP-doped E7 phase transition temperature and
threshold voltage increased very slightly.

Keywords: cobalt oxide, hydrothermal synthesis, band gap, threshold voltage, thermal
property

1. Introduction

“There is Plenty of Room at the Bottom” a titled lecture in 1959 was given by Richard

Feynman, and this has opened a new era in the field of nanotechnology [1, 2], which can be
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defined as the engineering of functional systems at the molecular level [3]. Nanoscience and

nanotechnology have been growing rapidly due to the fact that nanomaterials are synthesized

with new strategies and those synthesized materials are characterized and manipulated with

new tools [4]. Nanostructures can be classified into three different categories according to their

size and shapes: zero dimensional (0D), one dimensional (1D), and two dimensional (2D) [5, 6].

Nanodots-nanospheres, nanowires-nanorods, and nanosheets-nanoplates are some examples

of different shapes and size nanomaterials for this classification. Nanomaterials, unlike to

conventional materials, can be physically and chemically manipulated and used in different

areas [7, 8] including biology and medicine [9–11], water treatment [12], electronics [13, 14],

and optics [15–17].

Magnetic fields more or less impact a certain subclass of NP, which is called as magnetic

nanoparticles (MNPs) [18, 19]. MNPs have their own special properties, such as superpara-

magnetism [20], high mass transference [21], and high field irreversibility [22]. The second most

popular MNP, considering to application areas, is cobalt oxide (Co3O4) since these nanoparticles

are used in various fields from micro-electronics to drug delivery [7]. Co3O4 is one of the

significant transition metal oxides, and the direct optical band gap of bulk Co3O4 is 2.19 eV.

Dispersion of nanomaterials into liquid crystals (LCs) has been a topic of great interest in

recent years. There are many distinguished researchers investigating liquid crystals, and some

of whose works are focused on doping nanomaterials into liquid crystals [23–29]. Gold, silver,

zinc oxide, carbon, and quantum dots nanoparticles are some of the examples of guest

nanoparticles. Co3O4 nanomaterials doped nematic liquid crystals (NLC) have only been

investigated for spherical morphological Co3O4 nanoparticles to our knowledge [30].

Researchers have focused on synthesizing Co3O4 nanoparticles not only with diverse mor-

phology but also with different methods since any change in production methods, particle

size, shape, and structure of Co3O4 nanomaterials could lead producing new nanomaterials for

potential applications with unique properties. Up to now, Co3O4 nanoparticles with various

morphologies such as nanospheres [31, 32], nanorods [33–36], nanowalls [37], nanoneedles

[38], nanobelts [39], nanowires [40], nanoflowers [41], nanotubes [42, 43], nanofibers [44],

nanodiscs [45], and nanochains [46] have been synthesized with different approaches, includ-

ing urea precipitation [47], chemical vapor deposition [48], sol-gel [49], microwave-assisted

process [50], wet chemical approach [51], and hydrothermal method [39, 52–54]. Hydrother-

mal methods are widely used to produce various different Co3O4 nanomaterials. Easily scaling

up to industrial demand, requiring low temperature, no need for calcination, being inexpen-

sive, and having a fairly uniform particle size and morphology are some of the advantages of

this nanoparticle production method [55]. The term hydrothermal is used when water is used

as a solvent, and solvothermal is used when organics are used as solvent [56]. In literature, the

effect of hydrothermal reaction times and reaction temperature on morphologies of Co3O4

nanoparticles was examined [57–59].

In this study, new morphologies of Co3O4 have been synthesized by hydrothermal method

using Cobalt(II) chloride hexahydrate precursor at different unique temperatures and hydro-

thermal reaction times. The influence of hydrothermal temperatures on crystal structures and

particle morphologies was examined deeply. Five different hydrothermal temperature points

were selected between 105 and 180�C, and the effect of annealing temperatures was also
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investigated. The obtained particles were firstly annealed at 300�C for 5 h and then reannealed

500�C. The prepared Co3O4 NPs were characterized by XRD, SEM, and UV-vis. Moreover, we

selected Co3O4 NPs obtained at 120�C hydrothermal reaction temperature to investigate how

nanorod morphological Co3O4 NPs affect nematic liquid crystal phase transition and threshold

voltages.

2. Materials and methods

2.1. Synthesis of Co3O4 NPs

All chemicals were used without further purification. A schematic diagram of the synthesis

step is given in Figure 1. For the synthesis of the samples, 4.3983 g Cobalt(II) chloride hexahydrate

Figure 1. Schematic diagram for the synthesis procedure of Co3O4.
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and 0.12 g Urea (CH4N2O) solution were mixed with 50 ml distilled water. The prepared

solution was placed in the autoclave, and it waited in the furnace at 105, 120, 140, 160, and

180�C for 6 h. It was precipitated and washed several times with distilled water and dried at

60�C for 10 h. The obtained particles were annealed for 5 h at 300�C. Moreover, all obtained

samples were also annealed at 500�C for 1 h to compare the effects of different annealing

temperatures on XRD and SEM results of obtained Co3O4 samples.

2.2. Liquid crystal experiment

The LC used was commercially available eutectic mixture E7 (SYNTHON Chemicals, Ger-

many). The nematic to isotropic transition temperature for pure E7 is measured by using

polarizing optical microscope integrated with hot stage, and it is found 58.6�C. The liquid

crystal cells were made by indium-tin oxide-coated optical glass plates with a planar align-

ment layers. The thicknesses of cells were about 8 μm and an effective area of 1 cm2. The cells

were purchased from Instec, Inc. Hydrothermally produced Co3O4 sample at 120�C was

selected to mixed in host E7 since the morphology of this sample contains nanorods. E7

nematic LC mixture and Co3O4 nanoparticles were dissolved in isopropanol followed by the

ultrasonic bath. The mixture was left for 48 h in the furnace at 50�C to fully evaporate

isopropanol. 0.05% doped sample was filled to LC cell at 60�C by capillarity action [25].

2.3. Characterization

The hydrothermally obtained Co3O4 samples’ crystalline structures were investigated by a

Philips X’ Pert Pro X-ray diffractometer (XRD) with Cu-Kα radiation. The morphologies of

the samples were examined by scanning electron microscope (Zeiss EVO 10LS). The optical

Figure 2. Synthesis of Co3O4 samples and basic setup of LC light transmittance experiment.
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property samples were obtained by a Shimadzu UV-1800 ultraviolet visible spectroscopy (UV-

vis) in the range of 200–900 nm using distilled water as a reference solvent. The samples were

dispersed into distilled water solvent and ultrasonicated before the measurement. The textures

of E7 and E7-doped sample were taken using polarizing optical microscope (Eclipse E200,

Nikon, Japan) equipped with the digital camera. Temperature was controlled with heating

stage (LTS 120, LinkamScientific Instruments, Ltd., England) with a temperature accuracy of

� 0.1�C controlled with PE95 LinkPad. Optical transmittance experiment designed and

performed by laser, polarizer, analyzer, and photodiode and experimental scheme is described

in detail in the literature [60]. Experimental detail about synthesis of Co3O4 samples and basic

setup of liquid crystal optical transmittance experimental is given in Figure 2.

3. Results and discussion

X-ray diffraction pattern of Co3O4 samples annealed at 300�C for 6 h is given in Figure 3. The

diffraction peaks of hydrothermally produced cubic structured sample at 120�C are suitable

with the values in the standard card (PDF-2, reference code: 01-074-1656) and the Co3O4

particles produced at 180�C are partly suitable to this reference code as shown in Figure 3.

The others produced Co3O4 particles’ apparent crystal structure patents were not observed. It

is supposed that this was originated from hydroxide structures and chemical contaminant.

Figure 3. XRD graph of Co3O4 samples annealed at 300�C.
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The obtained Co3O4 particles reannealed at 550�C for an hour and crystal structure of

reannealed samples were investigated again. The effect of annealing temperature on the

crystalline structure of obtained particles is shown in Figure 4. In this figure, XRD peaks of

Co3O4 particles become clear, and all samples give at least some of the reference peaks of

Co3O4. Hydroxide structures disappeared with reannealing at 550�C, and XRD peaks of Co3O4

particles are seen more clearly than samples annealed at 300�C.

The morphologies of particles that are produced using hydrothermal method at various tem-

peratures and annealed at 300�C for 5 h are seen in Figure 5. In this figure, hydroxide and

chemical waste structures are observed. Especially in Figure 5b, nanorod structures are seen.

Nanosheet structures as layers are seen in Figure 5d. However, remarkable structures have not

been observed for the samples produced at 105, 140, and 180�C, which are corresponding to

Figure 5a, c, and e.

To observe the effect of annealing temperature, SEM pictures belonging to particles annealed

within 550�C for 1 h are given in Figure 6. It was observed that the hydroxide compounds and

chemical wastes decreased with the effect of the annealing. In Figure 6a and d, octahedral

microparticles have been observed clearly, and in Figure 6b, nano�/microrods have been

shown. Figure 6c shows the octahedral particles in nano level. In Figure 6e, agglomerated

nanoparticles are dominantly seen.

Figure 4. XRD graph of Co3O4 samples annealed at 550�C.
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The optical bad gap (Eg) for the direct transition was obtained using Tauc plot. Optical absorp-

tion graph of sampled annealed at 300�C is given in Figure 7, left column and optical absorp-

tion of sampled reannealed at 550�C is given in Figure 7, right column. The direct band gap of

300�C annealed Co3O4 NP changing between 3.1 and 3.5; on the other hand, reannealed

sampled band gaps were very close to 3.5 eV as interpreted in Figure 7. The measurement

results of direct band gaps of reannealed nanoparticles were suitable with the literature [61, 62].

Figure 5. Morphologies of 300�C annealed samples produced at (a) 105�C, (b) 120�C, (c) 140�C, (d) 160�C, and (e) 180�C.

Figure 6. Morphologies of 550�C annealed samples produced at (a) 105�C, (b) 120�C, (c) 140�C, (d) 160�C, and (e) 180�C.
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Polarizing optical microscope was used to investigate texture of pure and 0.05% nanoparticle-

doped E7. The different magnification textures of pure E7 are given in Figure 8. The smallest

magnification ratio of pure E7 is given in Figure 8a, and the most detailed texture of this LC is

shown in Figure 8d.

Phase transitions of 0.05% cobalt oxide nanoparticle-doped E7 LC are illustrated in Figure 9a.

The first drop of isotropic liquid appeared at 57.1�C, TN, and the last drop nematic disappeared

Figure 7. UV-vis spectra and band gaps of hydrothermally obtained particles annealed at 300 and 550�C.
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at 60.6�C, TI. The average temperature of nematic-isotropic transition of doped sample is

calculated by using equation TNI = 0.5(TN + TI) [63], and found 58.85�C. The phase transition

difference of pure E7 and NP-doped E7 is found as ΔTNI = 0.2�C. Figure 9b and c shows the

optical picture of E7 LC without and with cross polarizers, respectively. The texture of pure

and doped LC under 1 V applied voltage is given in Figure 9d and e.

Transmission versus voltage graph of pure and Co3O4 NP-doped LC is illustrated in Figure 10.

The wavelength of used laser light in transmission experiment was 650 nm. The prepared LC

cells are placed between cross polarizers, and the angle between cross polarizers and LC cell is

adjusted to 45�, and the output signal was detected by a photodiode detector. Transmission

voltage behavior of pure and doped sample is not very different from each other, which

Figure 8. Optical polarizing image of E7 nematic LC, (a) 40� magnification, (b) 100� magnification, (c) 200� magnifica-

tion, and (d) 400� magnification.

Figure 9. Texture of pure and NP-doped E7, (a) phase transition, (b) without cross polarizer, (c) with cross polarizer, and

(d) E7 at 1 V, (e) 0.05% NP-doped E7 at 1 V.
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implies that threshold voltage values are close to each other. The calculated threshold voltage

for pure E7 and 0.05% Co3O4 NP-doped E7 are 0.8 V and 0.9 V sequentially.

4. Conclusion

In summary, Co3O4 nanostructures were synthesized using the hydrothermal method with

unique hydrothermal reaction time at different temperatures. The crystalline structures, mor-

phologies, and optical absorptions were investigated in detail with XRD, SEM, and UV-vis

spectroscopy for two different annealed temperatures. The obtained samples were firstly

investigated after being annealed at 300�C for 5 h, and the results of SEM and XRD separately

indicated that cobalt hydroxide did not decompose fully to form cobalt oxide nanocrystalline.

The samples were reannealed at 500�C for an hour to investigate deeply. The hydroxide

compounds and chemical wastes are removed, and XRD peaks of Co3O4 particles become

clear. Obtained morphologies of cobalt oxide nanostructures also changed with calcination.

The particles, with a nanorod morphology, produced at 120�C hydrothermal reaction temper-

ature and annealed at 500�C were selected to doped nematic LC mixture E7. Phase transition

Figure 10. Transmission vs. voltage graph for pure and NP-doped E7.
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and the threshold voltage of pure and Co3O4 NP-doped E7 LC were examined successfully. It
reveals that for Co3O4 NP-doped E7 phase transition temperature and threshold voltage
increased very slightly.
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