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Abstract

The gravity method has been widely used for detecting the subsurface density anomaly
and geological structures. The interpretation result based on gravity data can be used for
mineral/oil exploration and regional geological study. The effective and successful appli-
cation of gravity methods depends on the fast forward modeling and stable inversion
tools to image the subsurface density structures. In this chapter, we will review the
applications and developments of gravity method. We starts form the basic theory for
gravity field and the scalar gravity potential and introduce the closed form of the solution
for the gravity field caused by a density anomaly. Different gravity data forward model-
ing and inversion techniques will be introduced in this chapter with their application in
petroleum reconnaissance. Several examples will be presented in this chapter to illustrate
the application of different gravity modeling and inversion techniques.

Keywords: modeling, inversion, density, depth, imaging

1. Introduction

Gravity method is an important geophysical tool for subsurface mapping of the density

distributions. The development of high-accuracy instrumentation and stable observation plat-

form since 1980s has made the large scale airborne gravity survey become possible. The

interpretation result based on gravity data can be used for mineral and oil exploration. For

example, the gravity data has been used to estimate the depth of the sedimentary basin and

detect sub-sea basalt which is usually associated with the oil reservoir.

The gravity modeling has its origin back to Newton’s law of universal gravitation developed

in 1687, which is equivalent to solving a Poisson’s equation for scalar gravity potential. One

can use different approaches to solve this Poisson’s equation, e.g., finite difference or finite

element method. However, the most common approach is to solve it in an integral way using

Green’s function. In the first section of this chapter, we will review the Poisson’s equation and
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its integral solution for a general three-dimensional case. The numerical approaches to evalu-

ate the integrals in the solution of the Poisson’s equation will be discussed. For more realistic

problems, we also provide an approach of gravity modeling to take into account of complex

geometry such as topography.

Conventional gravity inversion is based on discretizing the earth model into a set of rectangu-

lar prisms, and considering each prism has a constant density. Given observed gravity and/or

gravity gradiometry fields, one is interested to recover the density within each cell. Similar as

other geophysical inverse problems, this volumetric inversion of gravity data is an ill-posed

problem which is strongly affected by the non-uniqueness and instability. To solve this ill-

posed a problem, we will first introduce an objective functional which contains two parts, the

misfit functional for least-square fitting of the observed data, and the stabilizer for regularizing

the subsurface density distributions. The solutions for solving the minimization problem of

this objective functional will then be briefly discussed. Generally, the volumetric gravity

inversion produces diffusive images of the subsurface density distribution with very limited

depth resolution (strictly speaking, the gravity method, with observation above the earth’s

surface, does not have any depth resolution for the subsurface density distribution). One may

improve the gravity inversion results by adding more constraints, e.g., logarithmic barrier to

constrain upper and lower limits of the density, focusing stabilizer to produce sharper bound-

aries between the density contrasts, and etc., in the inversion.

A more advanced approach of gravity inversion is to invert for the shape of the anomaly

instead of the three-dimensional volumetric density distribution. In certain applications, such

as sedimentary basin analysis, it is more interesting to estimate the location of the sediment-

basement interface and the shape by assuming that the density distribution of the sediments in

vertical direction is known based on some other a priori information such as well logging. To

solve this specific problem, the geometric inversion method to recover the depth to basement

has been proposed in recent years. These types of methods are mostly based on the

discretization of the sedimentary columns or the sediment-basement interface instead of the

3D subsurface. By adopting this new discretization, the parameters of unknown in the inver-

sion and the model uncertainty can be reduced significantly. In the last section of this chapter,

we will discuss the most updated geometric modeling and inversion method.

2. Three-dimensional gravity modeling

2.1. Basic theory for gravity method

In this section, we will introduce the basic gravity theory and the corresponding solution for

solving the gravity modeling problem. We start from the basic Poisson’s equation for gravity

problem and introduce the solution for gravity field data caused by some mass. For numerical

solution, we show the discretized formulae for calculating the gravity field data. We also

briefly discuss the fast modeling methods which is based on fast Fourier transform (FFT). In

certain application, the gravity problem can be reduced to study the response caused by a
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sediment-basement interface model (or it can be called as the density contrast model). In this

case, the forward modeling problem can be solved using the column discretization or the

surface discretization method based on 3D analog of Cauchy-type integral.

We first consider a simple gravity problem as shown in Figure 1 which contains a domain

filled by some density distribution of ρ(r). It can be shown that the gravity field caused by this

density distribution satisfies the following equation [1–3]:

∇ � g ¼ �4πγρ, ∇� g ¼ 0, (1)

where the parameter γ denotes the gravitational constant. We can see from Eq. (1) that the

gravity field g is curl free which is also referred as a conservative vector field. Take into

consideration of the fact that ∇� (∇U) = 0, one can construct the solution for Eq. (1) by intro-

ducing the scalar gravity potential U such that:

g ¼ ∇U: (2)

As a result, the gravity field satisfies the Poisson’s equation [1, 2]:

∇
2U ¼ �4πγρ: (3)

Figure 1. Illustration for gravity problem.
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2.2. Integral representation of gravity anomaly

For geophysical problem, the observation point is usually outside the mass, in this case, Eq. (3)

can be reduced to the well-known Laplace equation. In this case, the solution for gravity field

outside the source domain can be written as:

g r0ð Þ ¼ γ∭
D

ρ rð Þ
r� r0

r� r0j j3
dv, (4)

where D indicates the domain with anomalous mass. The corresponding Green’s function for

the gravity field caused by a point source can be written as follows:

G r; r0ð Þ ¼
r� r0

r� r0j j3
: (5)

By comparing Eqs. (4) and (5), one can see that the gravity field caused by some mass with

arbitrary shape can be calculated by integral the solution for the point source.

By taking the spatial derivative of Eq. (4), one can find the integral representation of the gravity

gradiometry data which is defined as:

gαβ ¼

gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

2

6

6

4

3

7

7

5

: (6)

It can be proved that such gravity tensor is symmetric and the summation of the diagonal

components equals to zero (this is because scalar gravity potential is Laplacian:

∇2U = gxx + gyy + gzz = 0, outside the source region). As a result, among these nine gravity tensor

components, only five of them are independent.

The integral formula in Eq. (4) and its derived formulae are the common approach for calcu-

lating the gravity anomaly caused by some excess mass. For numerical modeling and inver-

sion of gravity data, it is convenient to write a discretized form of Eq. (4) by dividing the

subsurface mass anomaly into a grid of prism cells:

g r0n
� �

¼ γ
X

Nm

k¼1

gkρkΔxΔyΔz, (7)

where ρk denotes the density value of the kth cell; Δx,Δy,Δz denotes the dimension of the cell

in x, y, z direction; gk is the kernel function which is defined as follows:

gk ¼
rk � r0n

rk � r0n
�

�

�

�

3
: (8)

Numerically, Eq. (8) can be evaluated using the Gaussian quadrature or the simplest central

point integral formula which could be less accurate if the receiver is closer to the cell.
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2.3. Fast Fourier transform (FFT) method for calculating gravity anomaly

In practical application, the modeling domain can be very large which may result in millions of

cells. In this scenario, the calculation of gravity field directly using Eqs. (4) and (7) can be time

and memory consuming.

Geophysicists have attempted, for decades, to apply the fast Fourier transform algorithm to

potential field data modeling and inversion [4]. In the pioneering work of Parker and Olden-

burg [5, 6], it has been shown that the FFT method can be used to calculate the gravity field

caused by a density model contains different non-flat layers. Nagendra et al. [7] have released

a FORTRAN code for gravity modeling which is based on the method of Parker and Olden-

burg [5, 6].

The more advanced method for calculating gravity anomaly caused by complex geometry can

be found in [8]. From the numerical perspective, the whole density anomaly domain is divided

into a series of horizontal layers extends infinitely in x and y direction. For each layer, the

corresponding gravity anomaly is calculated using FFT method and the results for each layer

will be summed together to get the total gravity response. This approach usually requires a

uniform discretization in x and y direction. Interested readers are recommended to get more

detailed work in [8].

2.4. Differential equation for gravity modeling

Another alternative approach to overcome the large memory and computation requirement,

which occurs in the analytical integral representation, is the differential equation method

which includes finite difference, finite element and finite volume methods. These types of

methods solve the Poisson’s equation in Eq. (3) directly with the homogeneous Dirichlet

boundary condition. All these method finally result in the sparse system of equation for the

scalar gravity potential. Farquharson and Mosher [9] implemented a 3D finite difference

algorithm for solving the Poisson’s equation of scalar gravity potential. The numerical study

has shown its high accuracy (relative error is around 1%) comparing to the analytical method

with direct integral over each cell. This method runs slower than the conventional integral

method but it uses much less memory.

The finite element or finite volume method with unstructured mesh (e.g., tetrahedral element

for three-dimensional case), can be used for solving this problem with much less memory

consumption [10]. In this chapter, we will take the finite element method with unstructured

tetrahedral mesh for example. We consider a tetrahedral element shown in Figure 2with node

indexing [11]. We assume that in each tetrahedral element, the scalar gravity potential

is defined in the node. The gravity potential inside the tetrahedral element can be written

as follows:

Ue x; y; zð Þ ¼
X4

j¼1

N
j
e x; y; zð ÞUj

e, (9)

where N
j
e x; y; zð Þ is the linear basis function for the tetrahedral element [11].
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After applying finite element analysis to the Poisson’s equation for scalar gravity potential, one

can find a sparse system of equations as follows:

KU ¼ b, (10)

where K is the finite element stiffness matrix [11], b is the source term which is related with the

density distribution. After applying the proper boundary condition (e.g., the homogeneous

Dirichlet boundary condition), the system of equation in Eq. (10) can be solved either with

iterative method or the modern direct solvers. It has been demonstrated that that finite element

method for gravity modeling can simulate complex geological structures. Furthermore, the

method is advantageous to the conventional integral method in terms of both memory and

computation speed for realistic large scale geological models.

Figure 3 shows an example of how powerful of finite element with unstructured tetrahedral

mesh for simulating complex geological structures. The model represents the Voisey’s Bay

Figure 2. An illustration for tetrahedral element with node indexing.
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massive sulfide deposits located in Labrador, Canada [10]. One can see that the mesh is locally

refined nearby the area with complex geometry. It is difficult to simulate such complex model

using the regular prism grid.

Figure 3. An example of simulating complex geological models (Voisey’s Bay deposit) using finite element method with

tetrahedral mesh. The upper and middle panels show the side and plane views, while the bottom panel shows a vertical

section [10].
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2.5. Advanced method for the modeling of density interface model

In oil and gas exploration, it is more interesting recover the favoring geological structure for

oil/gas accumulation, using gravity method. Usually, the density of the basement rocks is

relatively higher than the sediment density due to the compaction effect during the sedimen-

tation process. In this scenario, the variation of the depth to basement can cause gravity

anomaly on the earth’s surface and can be recorded. Consider that the density of sediments

and basement rocks are well known or well constrained by other geological information, we

can use the observed gravity anomaly to estimate the depth to the crystalline basement. Such

research topic has been investigated for decades [12–18].

Figure 4 shows an illustration of a synthetic sediment-basement interface model where the

sedimentary rock and the basement rock are characterized by different density. The classic

and most straightforward approach for solving such forward modeling problem is based

on discretizing the sedimentary pack into a grid of vertical columns. The gravity field

anomaly caused by each column can be calculated using the integral formula in Eq. (4).

Such expressions can be further reduced in the special case of constant sediment density

which results in a constant density contrast along the sediment-basement interface. In a

special case of density contrast change exponentially or quadratically with depth, there

exists other special formulation for the forward modeling. Interested readers can refer to

[14] for more details.

The elegant theory of integral transform provides another powerful approach for solving the

gravity forward modeling problem using 3D analogy of Cauchy-type integral [1]. We consider

a density contrast model shown in Figure 5. The reference model with two layers are separated

by a horizontal plane P (at z = �H0), which is a density contrast interface. For the idealized

two-layered model, the density above and below the plane P are two different constants. In

real case, the actual density contrast interface Γ is an arbitrary surface. As a result, the domain

DR, which is bounded by plane P and surface Γ can cause some gravity anomaly.

Using the integral transform approach [1], such gravity anomaly can be represented as follows:

g r0ð Þ ¼ �4πγΔρCΓR r0; h x; yð Þdzð Þ, (11)

Figure 4. A typical sediment-basement interface model.

Gravity- Geoscience Applications, Industrial Technology and Quantum Aspect26



where h(x, y) is the relative elevation between the surface Γ and plane P at each horizontal

location, Δρ is the density contrast between these two layer which is also the anomalous

density inside domain DR, C
ΓR(r

0

, h(x, y)dz) is the 3D Cauchy-type integral on the surface of ΓR
for the vector function h(x, y)dz, at the point of r

0

.

Mathematically, the 3D analog of Cauchy-type integral for the vector function ϕ(r) can be

defined as follows [1, 19, 20]:

CS r0;ϕ
� �

¼
�1

4π

ðð

S

n � ϕ
� �

∇
1

r� r0j j
þ n� ϕ
� �

� ∇
1

r� r0j j

� �

, (12)

where S is some closed surface which bounds a 3D domain D, ϕ(r) is some vector function

defined on the surface S. The 3D Cauchy-type integral itself is a vector function which satisfies

the following equation outside the domain D which is bounded by surface S [1, 19, 20]:

Figure 5. Illustration of density contrast model for Cauchy-type integral representation.
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∇ � Cs ¼ 0,∇� Cs ¼ 0: (13)

These important properties make it possible for using the 3D analog of Cauchy-type integral to

construct solutions of gravity problem. Using the scalar representation of 3D Cauchy-type

integral, one can write the solution of gravity field caused by the model shown in Figure 5 as

follows [1, 19, 20]:

gα ¼ �γΔρ

ðð

PR

Δazγη

h x; yð Þ rη � r0η

� �

r� r0j j3
bγdxdy, (14)

where each of α,γ, η can be equal to x, y, z; PR is the projection of ΓR on the horizontal plane P.

The four-index Δ symbol is defined as follows [1, 19, 20]:

Δazγη ¼ δαzδγη þ δαηδzγ � δαγδzη; δαβ ¼
1,α ¼ β

0,α 6¼ β
,

(

(15)

the parameter bγ is defined as follows:

bx ¼
∂h

∂x
, by ¼

∂h

∂y
, bz ¼ �1: (16)

Note that the model described in Figure 5 is exactly a typical sediment-basement interface

model when the horizontal plane P is on the earth’s surface. By taking the spatial derivative of

Eq. (14), one can find the expression of gravity gradiometry data using 3D analog of Cauchy-

type integral transform. Clearly, we can see that the 3D gravity modeling problem can be

reduced to the surface integral over the density contrast surface using the Cauchy-type integral

approach. As a result, the computational cost can be reduced significantly comparing to the

direct integral method. As a matter of fact, this method works for a complex distribution of

density contrast over vertical direction. In this case, it only requires the density contrast

function in vertical direction to be integral [1, 19, 20].

3. Three-dimensional gravity inversion

As we know, the inversion of gravity data is a serious non-unique problem. In a general case,

the model parameter is much larger than the observed data points. There exists infinity

number of models which can fit the gravity data in a least-square sense [2]. Furthermore, the

potential filed data does not have any depth resolution. In order to obtain the most reasonable

solution with correct depth resolution, it is crucial to apply regularization and some a priori

information during the inversion process. In this section, we will briefly discuss some modern

3D inversion techniques for gravity field data. First of all, we will formulate the inverse

problem for the 3D volumetric inversion and introduce some method for minimizing the

objective/parametric functional. Follow this, we will discuss the geometric inversion approach
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for the depth to basement inversion or density contrast interface inversion. Finally, we will

introduce the joint inversion approach.

3.1. Conventional volumetric inversion

One of the most important applications of gravity inversion is to recover the 3D subsurface

density distribution. The conventional approach for solving this problem is based on

discretizing the subsurface into a grid of 3D prism cells. During the inversion, the density

values for each cell will be adjusted in order to fit the observed gravity data. In order to fit

the data with a reasonable density model, one can construct a parametric functional defined

as follows [2]:

P d;mð Þ ¼ WdA mð Þ �Wddð ÞT WdA mð Þ �Wddð Þ þ α Wmm�Wmmapr

� �T
Wmm�Wmmapr

� �

(17)

where d is the vector for observed data, m is the vector for model parameters, mapr represents

the a priori model, A is the forward modeling operator which is linear in this case, Wd is the

data weighting matrix, Wm is the model weighting matrix, and α is the regularization

parameter.

In practical application, a smaller regularization parameter can cause over fitting for the data

and result in some unreasonable model. A larger value of regularization parameter will place

strong penalty and enforce the model parameter be closer to the a priori model with the price

of a bad data fitting. Several methods have been proposed for choosing the optimized regular-

ization parameter. These methods include, but not limited to, the adaptive selection method

and the L-curve method [2, 21].

The model weighting matrix can be calculated based on integral sensitivity method for reason-

able depth resolution [2]. In this case, the second term in the right hand side of Eq. (17) is

equivalent to the minimum norm regularization which usually produce a smooth density

distribution for 3D gravity inversion.

The minimization of the parametric functional in Eq. (17) can be solved using gradient type

method such as steepest ascend method, conjugate gradient method and Newton method. In

the gradient type inversion, one has to obtain the sensitivity matrix. For volumetric gravity

inversion problem, the sensitivity matrix is exactly the same as the forward modeling matrix.

For large scale inversion, the moving sensitivity domain approach is usually used to reduce the

computation cost and memory consumption [22]. Within the framework of this approach, only

the model cells within some distance from the receivers will be considered. If the cells are far

away, the sensitivity is assumed to be zero. As a result, the full sensitivity matrix is reduced to

a sparse matrix.

Usually, the inversion of gravity data in the original linear model space can result in unreason-

able value of density distribution due to the absence of constraints. In reality, we usually know

the estimated density values or their upper and lower boundaries. In this case, it is desirable to

transfer the model parameter m in the original linear model space into the model parameter ~m

in logarithmic space as follows [2, 23]:
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~m ¼ ln
m�m1

m2 �m

	 


, (18)

where m1 and m2 are the lower and upper limits of model parameter m. The inversion is done

in the logarithmic model space of ~m and will be transformed back to the original linear model

space. It can be shown that such transformation can guarantee the inverted model parameter

value for m to be in the range defined by [m1,m2].

However, the gradient type method for the deterministic inversion is characterized by the local

minimum problem, which means that the solution is dependent on the selection of initial

model [24]. If the initial model is not chosen properly or closer to the true model, the inverted

model could be some local minimum instead of the global minimum that we usually expected.

In order to solve this problem, the methods such as Monte Carlo method, genetic algorithm,

simulated annealing method can be used to reach the global minimum [24]. Comparing to the

gradient type method, these methods search the optimized model from the whole model space

for the global minimum. However, these methods are usually time consuming, especially for

full 3D inversion which may contain millions of model parameters.

Instead of the deterministic inversion, the stochastic inversion approach can be applied to the

potential field data [24–26]. Comparing to the deterministic inversion, the stochastic inversion

can also provide uncertainty estimation for the model confidence. Recently, we start to see

more publications in geophysical stochastic inversion for potential field data.

3.2. Density contrast interface inversion

The conventional prism based inversion usually produce diffusive images even though some

techniques such as focusing inversion [27] can be used to enforce a sharp boundary between

different geological units. In petroleum reconnaissance using gravity method, it is of great

importance to estimate the depth to basement. However, from the interpretation of conven-

tional prism based inversion, it is difficult to pick up the correct location of such interface due

to the non-uniqueness of the inversion and the low resolution of inverted density distribution.

In such environment, the density contrast between sedimentary rocks and basement is usually

well known based on other information such as drilling. The gravity anomaly can be attributed

to the variation of the sediment-basement interface. Based on the method introduced in Section

2, this type of models can be simulated using the column discretization or the Cauchy-type

integral approach. In this subsection, we will mainly focus on the inversion of sediment-

basement interface using the 3D Cauchy-type integral approach.

Within the framework of this approach, we formulate the inversion with respect to the depth

to basement and the density contrast value (may not necessary be a constant). Similar to the

prism based inversion, we can formulate the inverse problem using the parametric functional

introduced in Eq. (17). However, the model parameters now become as follows [19]:

m ¼ h; ρ
� �

, (19)

where h is the depth to basement at different horizontal locations, and ρ is the density contrast

value between the sediment and basement. Comparing to the prism based inversion for the
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density distribution, the forward modeling operator A which is related with the 3D analog of

Cauchy-type integral, for density contrast surface inversion is a nonlinear operator since the

gravity data does not have a simple relationship with the depth. Such inversion can be solved

with the gradient type inversion methods. The sensitivity matrix for the depth to basement

and the density contrast values can be calculated by directly differentiate Eq. (14) with respect

to the depth to basement and the density contrast value. In some applications, the density

contrast values are usually well known based on well logging. Under this circumstance, only

the depth to basement value need to be inverted and the non-uniqueness of the inversion can

be reduced significantly.

As an example, we consider a 3D sedimentary interface model with the vertical section shown

in Figure 6. We consider a constant density value for the basement rock. To be realistic, we

assume that the density value for sediment increase exponentially with depth due to compac-

tion. As a result, the density contrast value will decrease exponentially with depth and

approach the basement density which is assumed to be a constant. The synthetic gravity data

is simulated on the earth’s surface and will be used for inversion. For this model, we consider

that the density contrast profile with depth is already known and only invert for the depth to

basement. Figure 7 shows a comparison between the true model and the inverted model using

Figure 6. A vertical section (y = 0) of the sediment-interface model with exponential density contrast in vertical direc-

tion [19].

Figure 7. Inversion result for the synthetic sediment-basement interface model with exponential density contrast [19].
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the Cauchy-type integral approach. One can see that the depth to basement and the shape of

the sedimentary basin is well recovered in the inversion.

During the inversion, we use a flat surface as the initial model and a priori model. Actually,

such inversion method is robust enough and does not depend too much on the selection of

initial model and a priori model. However, one can use some other initial model in order to

speed up the convergence of the inversion. The famous Bouguer slab formula [28] can be used

as an initial model:

h ¼
gBΔρ0

41:89Δρ0 þ agB
(20)

where gB denotes the observed Bouguer gravity anomaly, Δρ0 is the density contrast value on

the earth’s surface and a is the gradient of density contrast in vertical direction. As one may

note, this equation works properly for the constant density contrast or linear density contrast

but it does provide a good approximation of the depth to basement for a general case, e.g.,

exponentially increased density contrast profile with depth.

3.3. New developments in gravity inversion

In this subsection, we will briefly introduce some other new developed techniques for gravity

inversion. These new methods include, but not limited to, the binary inversion, multinary

inversion and the joint inversion approach.

3.3.1. Binary and multinary inversion of gravity data

In some application of gravity imaging such as subsurface tunnel detection, salt structure imag-

ing, the density range of the target and the density of host rock are usually well known or well

constrained [29]. However, the conventional inversion in this case will still produce a diffusive

image with spread density ranges and continuous model space. In reality, the inverted density

value should be clustered nearby the density value of the host rock and the density of the target.

In the case of a model with two distinct density values, the continuous inversion parameters m

in the original model space can be transformed into a new binary space for inversion [30].

Zhdanov and Cox [29] introduced a multinary inversion approach for geological models with

more than two density values for different geological units. Several different functions, such as

Heaviside function and Gaussian function, can be used for multinary transformation [31].

Within the framework of multinary approach, the value of the inverted model parameters is

enforced to be nearby the vicinities of the preselected values.

3.3.2. Joint inversion approach

As we know that each geophysical method and data is only sensitive to specific model

parameter. Due to the inherent non-uniqueness of geophysical data inversion, the recovered
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model parameter from individual inversion can be ambiguous. Such ambiguity can be reduced

by incorporating more a priori information into the inversion.

Different geophysical models can be coupled with each other either directly or structurally. For

example, the density and seismic velocity can be related with each other by empirical equa-

tions. Alternatively, a density model can be related with the velocity model by assuming the

structurally similarity. As a result, it is possible to enforce the coupling between different

model parameters by inverting this different geophysical data set simultaneously. The struc-

turally similarity based joint inversion can be achieved by minimizing the cross gradients

between different model parameters [32–34]. Within the framework of this approach, the

structural similarity, between model parameter m1 and m2, can be measured by the cross

gradient which is defined as follows [32]:

θ x; y; zð Þ ¼ ∇m1 � ∇m2: (21)

Such regularization term will be minimized during the minimization of data misfit functional

for the joint inversion approach.

Zhdanov [31] proposed a new and more flexible joint inversion approach based on Gramian

constraint. Within the framework of this approach, different model parameters are coupled

through the Gramian matrix which can either force the direct relationship between different

model parameters or their spatial gradients. One good property of such joint inversion is that

the algorithm will only enforce such coupling when it does exist and will not introduce

artificial coupling when there is no relationship or coupling between different model parame-

ters [31].

It is straightforward that the joint inversion formulation can be simplified if there exist a shared

model parameter for different geophysical data set. For example, the DC electric method and

the magnetotelluric (MT) method both invert for the electric conductivity. As a result, it is

unnecessary to formulate the joint inversion using the approach that we have just discussed, in

this scenario. Based on this idea, the joint inversion for depth to basement using different

geophysical data can be greatly simplified by considering that the depth to basement is a

shared model parameter for different data set such as gravity and MT data. In the meantime,

each method may also have a private model parameter such as density contrast for gravity

data and conductivity contrast for MT data.

Here we consider a synthetic sediment-basement interface model [19, 35]. The synthetic grav-

ity and MT data are simulated on the earth’s surface for this model. These data will be used to

recover the sediment-basement interface. Furthermore, we assume that the density contrast

value and conductivity contrast value are also unknown. Under this circumstance, the inver-

sion of individual data set is characterized by strong non-uniqueness. By assuming the shared

model parameter of depth to basement, for gravity and MT data, during the joint inversion

approach, the recovered model parameters is much closer to their true value comparing to the

individual data inversion (as one can see in Figure 8).
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4. Summary

In this chapter, we have reviewed the 3D gravity forward modeling and inversion problem.

We start from the Poisson’s equation for scalar gravity potential and introduce the formula of

gravity field in integral form based on the Green’s function which corresponds to the solution

of a point source. We also introduced some other techniques, such as FFT method and differ-

ential equation method, for fast and efficient solving of the gravity forward modeling problem.

In the application of sedimentary basin modeling, we have introduced the column

discretization method and the advanced Cauchy-type integral method. In the second section

of this chapter, we introduced the gravity inversion problem and first start from the conven-

tional prism based inversion. Following this, we introduce another application of gravity

inversion for locating the density contrast interface. We mainly focus on the 3D inversion

Figure 8. A comparison between separate gravity and MT inversion for depth to basement, and the joint inversion result

for a synthetic sediment-basement interface model [19].
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based on Cauchy-type integral for recovering the depth information. Finally, we have intro-

duced some other new recently developed techniques for gravity inversion which includes,

but not limits to, the multinary inversion and joint inversion approach. The interested readers

are recommended to read the relevant publications cited in this chapter, for more details.
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