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Abstract

A deep and analytical understanding of the enzyme kinetics has attracted a great attention
of scientists from biology, medicine, chemistry, and pharmacy. Mathematical models of
enzyme kinetics offer several advances for this deep and analytical understanding due to
their in compensable potential in predicting kinetic processes and anticipating appropriate
interventions when required. This chapter concerns mathematical modeling analysis and
simulation of enzyme kinetics. Experimental data and available knowledge on enzyme
mechanics are used in constituting a mathematical model. The models are either in the
form of linear or nonlinear ordinary differential equations or partial differential equations.
These equations are composed of kinetic parameters such as kinetic rate constants, initial
rates, and concentrations of enzymes. The nonlinear nature of enzymatic reactions and a
large number of parameters have caused major issues with regard to efficient simulation
of those reactions. In this work, an enzymatic system that includes Michaelis-Menten and
Ping Pong kinetics is modeled in the form of differential equations. These equations are
solved numerically in which the system parameters are estimated. The numerical results
are compared with the results from an existing work in literature.

Keywords: mathematical modeling, enzyme kinetics, chemical kinetics, nonlinear
reaction-diffusion equation, amperometric, cyclic voltammetry, chronoamperometric

1. Introduction

Enzyme kinetics is a challenging research field nowadays incorporating modern applied mathe-

matics into biotechnology, engineering science, and pharmacy. Moreover, in medical studies,

scientists work on humanmetabolism to improve the capabilities of some metabolites or enzymes

in metabolic pathways. In industrial applications, kinetics methods are also widely used to
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develop certain methods for improving functionality of some molecules in a cell. Many problems

in theoretical and experimental biology/chemistry involve the solution of the steady-state reaction

diffusion equation with nonlinear chemical kinetics. Such problems also arise in the formulation

of substrate and product material balances for enzymes immobilized within particles [1, 2], in the

description of substrate transport into microbial cells [3–5], in membrane transport, in the transfer

of oxygen to respiring tissue [6, 7], and in the analysis of any artificial kidney system [8].

To impose the functionality of some molecules in a cell, a mathematical model of such meta-

bolic systems must be constructed and simulated. Most of the dynamical systems can be

approximated by various types of differential and integral equations involving finite number

of variables and parameters. Thus, the future behavior of the system can be predicted if model

kinetics parameters and initial states of the variables are available. In particular, ordinary and

partial differential equations (ODEs and PDEs) are popular in modeling of the metabolic

pathways or enzyme kinetics.

Releasing enzyme-substrate reactions under single-molecule kinetics was reported by Shlomi

et al. [9]. An integral equation method with Michaelis-Menten kinetics to solve nonlinear diffu-

sion problems in spherical coordinates was stated by Tosaka and Miyale [10]. Maalmi et al. [11]

reported numerical and semianalytical solutions of nonlinear equations, which covered diffusiv-

ity, size, bulk concentration of reactant, binding constant of Michaelis-Menten kinetics, and site

reactivity values. Merchant [12] stated the M-M decay reaction terms and the Gray-Scott scheme

along with the semianalytical method to nonlinear reaction-diffusion systems. Indira and

Rajendran [13] described a homotopy perturbation method to obtain substrate and product

concentrations within the enzymatic layers. Removal of substrate fromMichaelis-Menten kinetics

governed the extravascular partition in which the analytical solution for the steady-state condi-

tion was investigated by Bucolo and Tripathi [14]. Dang Do and Greenfield [15] utilized the finite

integral transform method to elucidate the problem based on the nonlinear reaction diffusion

coupled with the chemical kinetics of a general shape solid. Chapwanya et al. [16] conveyed an

epidemiological model with the Michaelis-Menten contact rate formulation to investigate varia-

tions in the enzyme kinetics with a simple susceptible infected recovered (SIR) model. Napper

[17] proposed the Michaelis-Menten kinetics model to investigate the oxygen transport to heart

tissue. Regalbuto et al. [18] presented an analytical methodology for obtaining solutions based on

the maximum principle to nonlinear reaction-diffusion boundary value problems.

Rajendran and Saravanakumar [19] discussed mediated bioelectrocatalysis in order to build

bioreactors, bio fuel cells, and biosensors.

Due to the difficulties in solving nonlinear differential equations in enzyme kinetics, some

recent advanced analytical and numerical simulation techniques are used to solve the prob-

lems in chemical kinetics. Thus, in this review, all analytical and numerical works in enzyme

kinetics are summarized.

2. Reaction diffusion systems

Reaction diffusion system is a mathematical model based on how the concentration of sub-

stances/products is disseminated over space changes under the influence of diffusion and a local
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chemical reaction. The substances are transformed into each other in local chemical reaction,

whereas the substances are spread out over a surface in space in diffusion. Reaction-diffusion

(RD) systems arise in many branches of physics, chemistry, biology, ecology, etc. Reviews of the

theory and applications of reaction-diffusion systems can be found in books and numerous

articles (see, for example [20–23]). These arise in a large variety of application areas, such as flow

in porous media [24], heat conduction in plasma [25], combustion problems [26], liquid evapo-

ration [27], and of more recent interest, image processing [28]. A great effort is being made in the

development of the mathematical theory of nonlinear diffusion equations and to obtain exact

solutions for special cases. Their significance not only relies on the huge number of their appli-

cations but also on the fact that they provide with a rather general class of linear and nonlinear

differential operators. In mathematical analysis, it has shown to be a milestone for the develop-

ment of applied, abstract, and numerical analysis as well as for algebra, geometry, and topology.

3. Nonlinear phenomena

The modern theory of the nonlinear reaction diffusion process is an important field in today’s

science. The nonlinear system and coherent structures represent an interdisciplinary area with

many nonlinear applications in various fields. Those applications can be divided into six disci-

plines: chemistry (autocatalytic chemical and enzyme reactions), physics (nonlinear optics and

electric circuits, plasmas and states of solid, condensed atomic gases, hydrodynamics, galaxy

dynamics and cosmology, fluid dynamics, and celestial mechanics), general relativity, biology

(biofuel cell, bioreactor and biosensor, atmosphere and oceans, and animal dispersal), random

media, and modern telecommunications. A great variety of phenomena in physics, chemistry, or

biology can be described by nonlinear ODE/PDEs and particularly by reaction-diffusion equa-

tions. For these reasons, the theory of the analytical solutions of the reaction-diffusion equations

is considered.

In reaction diffusion systems, nonlinear phenomena play a crucial role in applied mathematics

and chemistry. Exact (closed-form) solution of nonlinear reaction diffusion equations plays an

important role in the proper understanding of qualitative features of many phenomena and

processes in various areas of natural science. The main result obtained from reaction and

diffusion systems is that nonlinear phenomena include diversity of stationary and spatio-

temporary dissipative patterns, oscillations, different types of waves, excitability, biostability,

etc. But it is difficult for us to obtain the exact solution for these problems. The investigation of

exact solution of nonlinear equation is interesting and important. In general, this results in the

need to solve linear and nonlinear reaction diffusion equations with complex boundary condi-

tions. The enzyme kinetics in biochemical systems have usually been modeled by differential

equations, which are based only on reaction without spatial dependence of the various con-

centrations. The dimensionless nonlinear reaction diffusion equations are described below:

∂S

∂τ
¼ ∇

2S� f R; τ; S;Pð Þ (1)

∂P

∂τ
¼ ∇

2Pþ g R; τ; S;Pð Þ (2)
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where S and P represent the dimensionless concentrations of substrate and product, τ repre-

sents the dimensionless time, and R is the dimensionless radial co-ordinate of the particle. The

first term on the right-hand side of the above equation accounts for active species (substrate or

product) diffusion, whereas the second term f(R, τ, S,P) and g(R, τ,S,P) represents the homo-

geneous reaction term (nonlinear term), generally polynomial in the concentrations and time.

4. Common geometries and nonlinear reaction

Most commonly used electrodes/microelectrodes consist of a conducting metal/glassy carbon

or semiconducting surface embedded in an insulating wall. When the conducting surface is a

rectangle or disc of a few millimeters, this is known as a “planar” electrode. Diffusion to this

surface is effectively planar (the effects of the edges are negligible), hence the nonlinear one-

dimensional reaction diffusion equation is given by:

∂ C½ �

∂t
¼ D

∂
2 C½ �

∂x2
þ f C½ �ð Þ (3)

Two other electrode geometries where diffusion occurs in only one spatial dimension are the

hemispherical and hemicylindrical electrodes. The nonlinear two-dimensional (hemispherical

or spherical) reaction diffusion equation is:

∂ C½ �

∂t
¼ D

∂2 C½ �

∂x2
þ
2

r

∂ C½ �

∂r

� �

þ f C½ �ð Þ (4)

and for the latter is:

∂ C½ �

∂t
¼ D

∂
2 C½ �

∂x2
þ
1

r

∂ C½ �

∂r

� �

þ f C½ �ð Þ (5)

The hemisphere can be achieved experimentally via a small drop of mercury positioned over a

smaller conducting disc. A soft polymer, rubber, or other similar materials are usually

employed to fabricate a hemicylinder. The electrodes are usually employed in theoretical

studies due to the low dimensionality of the mass-transport equation. Additional terms such

as diffusion and nonlinear reaction allow the equation to be solved analytically. Furthermore,

the electrodes are not accurately or easily fabricated for practical geometries.

The corresponding nonlinear reaction-diffusion issues in enzyme kinetics are focused on the

mathematical resolution. Table 1 shows the response of particular electrodes with special

emphasis on earlier theoretical works in the field.

Example 1: Michaelis-Menten kinetics and microcylinder electrodes

The model is written for an enzyme reaction to generate an electro-active product (e.g.,

hydrogen peroxide from an oxidase enzyme) that reacts at an immobilization matrix, which
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Author Reference Experimental

technique

Enzymatic scheme Modeling method

Analytical solutions

G. Rahamathunissa

et al.

Journal of theoretical and Computational

Chemistry, 7(1)(2008)113–138

Amperometric
Sþ C!

KM
SC½ � ! PC

0
h i

!
kc
Pþ CC

0

!
k
0

E
C

Danckwort’s expression

R. Senthamarai et al. Electrochemical Acta 53(2008)3566–3578 Chronoamperometric A + e!B

Bþ Z!
k
Aþ product

Analytical

G. Rahamathunissa

L. Rajendran

Journal Mathematical Chemistry 44(2008)849–

801

Amperometric Eþ S$
KM

ES!
K2
Eþ P Variation iteration method

(VIM)

A. Meena et al. Journal Mathematical Chemistry, 48(2010)179–

186

Amperometric Eþ S!
K1

K�1

ES ! Eþ P He’s variation iteration

method

A. Eswari, L. Rajendran Journal of Electroanalytical Chemistry 641(2010)

35–44

Amperometric Sþ E1$
K1

K2

E1S½ �!
Kcat

Pþ E2
Homotopy perturbation

method (HPM)

P. Manimozhi et al. Sensors and Actuators B 147(2010)290–297 Amperometric Eþ S!
k1

k�1

ES!
kc
Eþ P

ES + S$ES3

Variational iteration and

homotopy perturbation

method (VIM & HPM)

S. Logambal, L.

Rajendran

Electrochemical Acta 55(2010)5230–5238 Amperometric
Aþ E2!

KA
Bþ E1

E1 þ S!
KE
E2 þ P

Homotopy perturbation

method (HPM)

A. Meena, L. Rajendran Journal of Electroanalytical Chemistry, 6411

(2010)50–59

Amperometric and

Potentiometric

E + S$[ES]!E +P Homotopy perturbation

method (HPM)

S. Anitha, L. Rajendran Journal of Physical Chemistry 114(2010)7030–

7037

Amperometric
B!
DE
Bþ S!

K
Aþ Z ! A ! B

Reduction of order

method

P. Manimozhi, L.

Rajendran

Journal of Electroanalytical Chemistry 647(2010)

87–92

Amperometric
Sþ E$

Ka

Kα

ES

ES !
Kcat

S
0

þ E

Analytical

A. Eswari, L. Rajendran Journal of Electroanalytical Chemistry 648(2010)

36–46

Amperometric Sþ E1$
K1

K�1

E1S½ � ! Pþ E2
Homotopy perturbation

method (HPM)

A. Eswari, L. Rajendran Russian Journal of Electroanalytical Chemistry

47(2011)195–204

Cyclic voltammetry EAþ e $ B

CB!
k1
Products

Laplace Transformation

A. Eswari, L. Rajendran Russian Journal of Electroanalytical Chemistry

47(2011)205–212

Cyclic voltammetry EAþ e $ B

C2 Bþ B!
k1
Products

Homotopy perturbation

method (HPM)
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Author Reference Experimental

technique

Enzymatic scheme Modeling method

A. Eswari, L. Rajendran Journal of Electroanalytical Chemistry 651(2011)

173–184

Chronoamperometric Oþ ne� $ R

Rþ Z!
k
Oþ Products

Homotopy perturbation

method (HPM)

G. Rahamathunissa

et al.

Journal of Mathematical Chemistry 9(2011)457–

474

Chronoamperometric Sþ E$
kM

ES!
k2
Eþ P VIM

S. Logambal, L.

Rajendran

Journal of Membrane Sciences 373(2011)20–28 Amperometric EOX þ S$
k�1

kM
ES!

k2
Ered þ P

Ered þO2!
k3
EOX þH2O2

Homotopy perturbation

method (HPM)

S. Anitha et al. Electrochimica Acta 56(2011)3345–3352 Amperometric
Sþ E1$

KM E1S½ �!
kcat
Pþ E2A ! B

Homotopy perturbation

method (HPM)

K. Indra, L. Rajendran Electrochimica Acta 56(2011)6411–6419 Chronoamperometric S1 þO2 !
PPO

P2 þH2O V1

P2 þ 2e� þ 2Hþ$
k0

kr
S2 E

0

S2 þ
1

2
O2 !

PPO
P2 þH2O V2

Homotopy perturbation

method (HPM)

S. Thiagarajan et al. Journal of Mathematical Chemistry DOI:

10.1007/s10919-011-9854-z

Chronoamperometric
SþMox$

kM
SMox!

kcat
PþMred

Homotopy perturbation

method (HPM)

M. Uma Maheswari, L.

Rajendran

Journal of Mathematical Chemistry DOI:

10.1007/s10919-011-9853-0

Chronoamperometric Eþ S$
K1

k�1ES!
k2
Eþ P Homotopy perturbation

method (HPM)

P. Rijiravanich et al. Electroanalytical Chemistry 589(2006)249 Amperometric O2 þ 2catechol ! 2o� quinoneþ 2H2O

o� quinoneþ 2Hþ þ 2e� ! catechol

Theory and experiment

A. Eswari, L. Rajendran Journal of Electroanalytical Chemistry 660(2011)

200–208

Amperometric O2 þ 2catechol ! 2o� quinoneþ 2H2O

o� quinoneþ 2Hþ þ 2e� ! catechol

VIM

G. Varatharajan, L.

Rajendran

Applied Mathematics 2(2011)1140–1147 Amperometric
Sþ E$

K1

k�1
C!
kcat
Pþ E

E!
k3
Ei

Homotopy perturbation

method (HPM)

K. Venugopal et al. Journal of Biomedical Science and Engineering 4

(2011)631–641

Chronoamperometric O2 þ 2catechol ! 2o� quinoneþ 2H2O

o� quinoneþ 2Hþ þ 2e� ! catechol

Homotopy perturbation

method (HPM)

K. Indra, L. Rajendran Journal of Mathematical Chemistry DOI:

10.1007/s10910-011-9968-3

Chronoamperometric A $ Bþ C

B� e� ! products

Homotopy perturbation

method (HPM)

V. Margret Ponrani, L.

Rajendran

Journal of Mathematical Chemistry DOI:

10.1007/s10910-011-9973-6

Amperometric Gþ E$
k�1

K1

X!
k�2

k2
Fþ E Homotopy perturbation

method (HPM)
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Author Reference Experimental

technique

Enzymatic scheme Modeling method

S. Sevukaperumal et al. Applied Mathematics 3(2012)373–381 Chronoamperometric GlucoseþO2 !
Glucoseoxidase

gluconicacidþH2O2

H2O2 !
Catalase

H2O2 þ
1

2
O2

Homotopy analysis

method (HPM)

Numerical solution

R. Baronas et al. Biosensors and Bioelectronics 19(2004)915–922 Amperometric S ! P!
E
S Finite-difference technique

R. Baronas Electrochimica Acta 240(2017)399–407 Amperometric

biosensor
Sþ E$k1

k�1
ES ! Pþ E

S!
E
P

Numerical simulation and

analytical solution

V. Ašerisa et al. Journal of Electroanalytical Chemistry 685(2012)

63–71

Amperometricparallel

substrates conversion
S1!

E1 1

2
P1

S1 þ S2!
E2
P2

Digital simulation-finite-

difference technique

V. Flexer et al. Bioelectrochemistry 74(2008)201–209 Cyclic voltammetry
Sþ EOX $

k1
k�1

ES!
kcat
Pþ Ered

Numerical simulation

R. Baronas et al. Chemometrics and Intelligent Laboratory

Systems 126(2013)108–116

Amperometric
Eþ Sik1i $ ESi!

k2i
Eþ Pi , i ¼ 1,…, k

Numerical

R. Baronas Nonlinear Analysis: Modeling and Control 9(3)

(2004)203–218

Amperometric S!
E
P Digital simulation-finite-

difference technique.

R. Baronas et al. Sensors 12(2012)9146–9160 Amperometric EOX þ S!
k1
Ered þ P

Ered!
k2
EOX þ ne e

�

Finite-difference

R. Baronas et al. J. Mathematical Chemistry 32 (2)(2002)225–237 Amperometric S!
E
P Numerical simulation

R. Baronas et al. Mathematical Modeling of Biosensors, Springer

Series on chemical sensors and biosensors (2009)

Amperometric All enzyme reactions Analytical and numerical

methods

L. Rajendran Biosensor: Modeling and Simulation of

Diffusion-Limited Process, Chemical Sensors:

Simulation and Modeling,

GhenadiiKorotcenkov (Ed.), Electrochemical

Sensors, Vol. 5, Momentum Press, LLC, New

York (2013)

Amperometric All enzyme reactions Analytical, HPM&HAM,

VIM,ADM, etc.

Table 1. Contributions to the theoretical modeling of enzymatic electrodes.
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is metallically conducting sites/particles. The reaction within the film under the Michaelis-

Menten kinetics may be written as follows:

Sþ E1⇔
k1

k�1

E1S½ ������!
kcat

Pþ E2 (6)

The consumption rate of S is given by k1cScE� k�1cES, where ci denotes the concentration of

species i. The rate is equivalent to (kcat/KM) cScE, where KM is the Michaelis constant, defined as

KM = (k�1 + kcat)/k1. The consumption rate of S in the film is compensated by diffusion. If the

solution is stirred uniformly, so that S is constantly supplied to the film, the mass balance for S

can be written in cylindrical coordinates:

DS

r

d

dr
r
dcS

dr

� �

�
kcatcEcS

cS þ KM

¼ 0 (7)

where cS is the concentration profile of substrate, cE is the concentration profile of enzyme, DS

is its diffusion coefficient, and KM is the Michaelis constant. The rate of consumption will be

v(r) = k cH, where k is the rate constant for the hydrogen peroxide reaction and cH is the

peroxide concentration. Then, the equation of continuum for hydrogen peroxide is generally

expressed in the steady-state by

DH

r

d

dr
r
dcH

dr

� �

þ
kcatcEcS

cS þ KM

� v rð Þ ¼ 0 (8)

At the electrode surface (r0) and at the film surface (r1), the boundary conditions are [29]:

r ¼ r0 :

dcS

dr
¼ 0, cH ¼ 0

r ¼ r1 : cS ¼ c∗S, cH ¼ 0

(9)

where c∗S is the bulk concentration of S scaled by the partition coefficient of the film. The

current is provided by the consumption rate at each site. Thus, the total current at an electrode

of length L is expressed by [29]

I=nF ¼ 2πL

ðr1

r0

rv dr (10)

The analytical results of the problem are discussed by Eswari and Rajendran [30].

Example 2: enzyme catalysis reaction

The reactions without spatial dependence on various concentrations have modeled the

enzyme kinetics in biochemical systems. Nonlinear systems of ordinary differential equations

are solely based on that. Michaelis and Menten were pioneers in explaining the enzyme

reaction model. In addition, they also reported the free enzyme binding to the reactant, which
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produced an enzyme-reactant complex. Eq. (11) illustrates the Michaelis-Menten kinetics, in

which the enzyme-substrate complex is formed after the enzyme is combined with the sub-

strate.

Eþ S$
k1

k�1

ES!
k2
Eþ P (11)

As can be seen from Eq. (11), the product P is released by the binding of substrate Swith enzyme

E. The product released is not reversible; however, the substrate binding is reversible. The

reactants’ concentrations in Eq. (11) are represented by the following letters:

s ¼ S½ �, e ¼ E½ �, c ¼ SE½ �, p ¼ P½ � (12)

The law of mass action leads to the system of following nonlinear reaction equations [31],

ds

dt
¼ �k1esþ k�1c (13a)

de

dt
¼ �k1esþ k�1 þ k2ð Þc (13b)

dc

dt
¼ k1es� k�1 þ k2ð Þc (13c)

dp

dt
¼ k2c (13d)

where k1 is the forward rate of ES complex formation and k�1 is the backward rate constant.

The above problem is discussed theoretically by Meena et al. [32].

Example 3: Michaelis-Menten mechanism for co-substrate and substrate

Figure 1 illustrates Michaelis-Menten reaction kinetics scheme for co-substrate and substrate.

Limoges et al. [33] reported for a redox enzymatic homogenous system along with one-

dimensional mass transport equation a concise discussion and derivation.

When the enzyme is being solubilized, the electrochemical signal that is produced during the

reaction is governed by the following set of nonlinear partial differential equations.

∂ Q½ �

∂t
¼ DP

∂2 Q½ �

∂x2
�

C0
E

1
k1 S½ � þ

1
k1,2

þ 1
k2,2

þ 1
k2 Q½ �

(14)

∂ S½ �

∂t
¼ DS

∂2 S½ �

∂x2
�

C0
E

1
k1 S½ � þ

1
k1,2

þ 1
k2,2

þ 1
k2 Q½ �

(15)

where DP ,DS are the diffusion coefficients of co-substrate and substrate, respectively; Q , S are

the concentrations of co-substrate and substrate, respectively; x is the distance from the

Mathematical Modeling and Simulation of Nonlinear Process in Enzyme Kinetics
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electrode surface; C0
S is the bulk concentration of substrate; C0

E is the total concentration of

enzyme; k1, k2 , 2, and k2 are the reaction rate constants; and t is the time. The initial and

boundary conditions for Eqs. (14) and (15) are given by:

t ¼ 0, x ≥ 0, andx ¼ ∞, x ≥ 0, Q½ � ¼ 0, S½ � ¼ C0
S (16)

x ¼ 0, t ≥ 0 : Q½ � ¼
C0
P

1þ exp F
RT

E� E0
PQ

� �h i ,
∂ S½ �

∂x
¼ 0 (17)

x ¼ ∞, ∂ Q½ �=∂x ¼ 0 (18)

The analytical expressions corresponding to the concentration of co-substrate for steady and

nonsteady state conditions have been obtained by solving the above nonlinear equation using

a new approach to homotopy perturbation method (HPM). Analytical expressions of the

plateau current are also presented for steady and nonsteady state conditions:

i ¼ FSDP

∂ Q½ �

∂x

� �

x¼0

(19)

where E is the electrode potential, E0
PQ is the standard potential of the P/Q couple, F is the

Faraday constant, and S is the surface area of the electrode. The above problem is discussed

theoretically by Rasi et al. [34].

5. Analytical solutions

To study many of the physical phenomena, the exact solutions of nonlinear partial or ordinary

differential equations play an important role. In order to understand the mechanism of com-

plicated dynamical processes and physical phenomena modeled by nonlinear differential

equations, the existence of approximate analytical and exact solutions is very important. In

Figure 1. Reaction scheme for substrate and co-substrate.
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addition, nonlinear differential equations can also assist to investigate the stability of these

solutions as well as checking the simulation analysis. Nonlinear partial differential equations

govern a significant variety of phenomena including physical, chemical, and biological. The

development of techniques aimed at exact solutions of nonlinear differential equations with

nonsteady and steady state [35] has been one of the most exciting advances of nonlinear

science and theoretical physics/chemistry. An important role in nonlinear science is played by

exact solutions of differential equations. Furthermore, this can be especially observed in

nonlinear physical chemistry science. This can be attributed to the provision of physical

information as well as more insight into the physical aspects of the problem, which could lead

to further applications. Over the past few decades, different methods have been reported to

solve analytical solutions such as Tanh-sech [36], extended tanh [37], Jacobi elliptic function

expansion [39], hyperbolic function [38], F-expansion [40], and the First integral [41]. To solve

different types of nonlinear systems of PDEs, the sine-cosine method [42] has been employed.

A variety of powerful analytical methods such as homotopy perturbation method [43–45],

homotopy analysis method [46, 47], Adomian decomposition method [48, 49], wavelet trans-

form method [50], etc. are applied to solve the nonlinear problems (e.g., Eqs. (8) and (13)–(15))

in chemical kinetics [51].

6. Numerical solutions

Many differential equations cannot be solved analytically. For practical purpose, however,

such as in physical engineering sciences, a numerical approximation to the solution is often

sufficient. The numerical method is mainly to solve complex problem physically or geometri-

cally. It is also used to validate the experimental results. Some of the nonlinear equations in

chemical kinetics were solved using numerical methods [52–56].

7. Summary

Most mathematical models of enzyme kinetics are based on reaction diffusion equations or

rate equations containing nonlinear terms related to the kinetics of the enzyme reaction.

Powerful and accurate analytical (HPM, HAM, ADM, etc.) and numerical mathematical

methods have been employed for their resolution under steady and nonsteady state condi-

tions. The theoretical results provide very useful insight into the effects on the performance of

the thickness and structure of the enzymatic film, the loading of the different species, the

diffusivity of the mediator, etc. Also, the theoretical modeling and simulation of these systems

enable us to characterize the enzymatic reactions (i.e., rate constant, turnover rate, and

Michaelis-Menten constants).

In spite of the above-mentioned benefits, there are only limited theoretical studies addressing

kinetics of enzyme reaction and most of them include a number of simplifying assumptions

mainly related to the mass and charge transport inside and outside the biocatalyst film, the

enzymatic kinetic scheme, and the electrode morphology. Experimental validation of proposed
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models is even more seldom. Therefore, more effort in the future research is needed in this

direction in order to develop more detailed models and accurate simulations that can assist the

rational development and optimization of enzyme electrodes.
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