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Abstract

Giardia is a gastrointestinal parasite that causes infections in humans worldwide. In 
developing countries, giardiasis is an emerging infection because it plays an important 
role in diarrhea outbreaks linked to water and food consumption affecting the popu-
lation in general. Giardiasis is referred to as zoonosis because its biological etiological 
agent is transmitted to humans through animal reservoirs by oral-fecal route. Detection 
and occurrences of Giardia cysts have been documented in water, food, soil, and air. The 
principal risk factors for developing giardiasis include environmental contamination 
associated with malnutrition and immunosuppression. The small size of cysts and their 
environmental resistance together with the small infection dose to produce the disease 
allow giardia dissemination especially in marginalized populations; however, parasitism 
is present in all countries and at different economic levels. This zoonotic illness contains 
several species of Giardia duodenalis, infecting mammals and humans with eight sero-
types, of which A and B are of public health importance. Quantitative microbiological 
risk assessment (QMRA) is a methodology used for predicting health risk to establish 
regulations for permissible Giardia risk in water and food. This chapter focuses on world-
wide reviews of Giardia incidence in environmental samples including giardiasis preva-
lence, serotypes, risk factors, and finally options for cyst reduction in the environment, 
emphasizing on QMRA.
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1. Introduction

Gastrointestinal diseases have caused up to 871,000 deaths worldwide, which have been 

related to unsafe drinking water, health, and hygiene. Mortality rate is greater in African 

countries where death risk is 4.3 × 10−1 [1, 2]. Such data justify that the main risk factors are 

unsafe water and deficient cleaning linked to malnutrition and immunosuppression, invari-
able characteristics in marginalized communities. The microscopic parasite Giardia is among 

the main pathogens that cause gastrointestinal diseases at world level. In developing coun-

tries, 200 million people have been diagnosed with giardiasis symptoms, which are related to 

inadequate sanitation problems and access to safe drinking water. Giardiasis does not make 

a distinction between humans and animals by fecal-oral transmission using different routes: 
zoonotic, anthropogenic environmental, food, and water [3–5].

The strategy used in this research was assessed by analyzing different literature studies 
related to Giardia risk assessment; the search was performed in databases from October 2000 to 

October 2016, using the following terms: giardiasis risk factors; Giardia cysts in water, air, soil, 

and food; quantitative microbial risk assessment (QMRA); and cyst treatments. No restriction 

was found in language. This chapter focuses on reviewing world incidence of Giardia in water, 

soil, air, and food, including giardiasis prevalence, risk factors, and finally a system to reduce 
cysts in the environment, emphasizing on QMRA.

2. Giardia generalities

Giardia is one of the most primitive eukaryotic protozoa initially described by Leeuwenhoek 

in 1681; its taxonomy was confusing and complicated throughout the first half of the twentieth 
century. The name Giardia lamblia was well-known in the 1970s, but it was consolidated and 

changed to Giardia duodenalis or Giardia intestinalis in the 1990s. It is classified within the class 
Zoomastigophorea in the order Diplomaida and family Hexamitidae. Historically, 41 species 
have been described based on their hosts. To date, eight of these species have been detected 

in mammals: duodenalis, enterica, canis, bovis, muris, cati, simondi, and microti (Table 1) [6–9].

Giardia exists in two forms: an active form called a trophozoite and an inactive form called a 
cyst. The cyst measures 5 × 7 to 10 μm in diameter, containing four nuclei covered by a wall from 

Species* Host

G. intestinalis Humans and mammals

G. agilis Amphibian

G. muris Rodents

G. ardeae Birds

G. psittaci Birds

G. microti Rats and moles

Table 1. Giardia species.

Current Topics in Giardiasis148



0.3 to 0.5 μm in thickness; it is composed of an exterior filament layer formed by glycoproteins 
and an internal membrane layer that makes it very resistant providing an environmentally 

stable life cycle; it helps withstanding long periods in water at temperatures less than 25°C, 

and it even makes it invulnerable to chlorination processes. Trophozoites are pear-shaped and 

are approximately 12–15 mm in length and 5–9 mm in width with a cytoskeleton that includes 

a medium size body, four pairs of flagella, and a ventral disk; they have two nuclei without 
nucleoli in its interior, which are found in front and symmetrically located [10, 11].

The vital cycle of Giardia starts with the ingestion of cysts by the host whether found in food 

or water contaminated with feces of the infection carriers; once consumed, the cyst enters 

in contact with the gastric acid destroying itself and excystation occurs and trophozoites 

are released, which pass through the upper small intestine infecting the duodenum and 

the upper part of the intestine where they are reproduced by binary fission adhering to the 
intestinal epithelium surface and triggering symptomatology. The adaptation mechanism of 

Giardia known as encystment is essential to the parasite for their survival once out of the 

intestine of the host since trophozoites are extremely sensitive to changes in temperature, 

humidity, and the presence of chemical agents. In this process, trophozoites descend through 

the host intestine, and when they find a cholesterol-poor environment, their differentiation to 
cysts is induced and eliminated with feces. It has been reported that infected persons excrete 

from 108 to 109 cysts in only one evacuation and can continue discarding them from 50 days 

and including months later after diarrhea has subsided [10, 12].

For the parasite to survive within the host and avoid the immune response, Giardia shows 

what is known as antigenic variation that allows it to elude the immunologic system and pro-

duce chronic and recurrent infection. Giardiasis symptoms in human beings show variable 

degrees. Acute giardiasis shows acute diarrhea and urticaria or it can show itself asymptom-

atically; the acute form is usually self-limiting lasting for 2–7 days; it is also possible to evolve 

to a subacute or chronic stage lasting from months to years; malabsorption results as the most 

frequent and harmful complication difficult to solve from a therapeutic point of view because 
it causes malnutrition and low weight [13–15].

3. Giardiasis epidemiology

3.1. Giardia in the environment

The necessary dosage for giardiasis to start is from 10 cysts, which have been found in all envi-

ronmental matrices: water, soil, air, and food. In drinking water, up to 24 cysts/L have been 
reported [16]; 87 cysts/L in soil; 0.0087 cysts/L in air [17]; and 40 cysts/L in leafy vegetables [18]. 

Most research has monitored Giardia cysts in water (Table 2). Giardiasis life cycle includes illness 

in several mammal species mediated by the environment, which is why climate factors such as 

humidity and temperature influence in cyst exposure, which are very persistent and their viabil-
ity is preserved more in temperate and humid climates. Giardia cysts can maintain their infec-

tious capacity from 15 days up to 2 months in water; 15 days to 1 month in soil; and from 2 to 

10 days in vegetables; because of their small size and weight, they can be found suspended in air. 

Their resistance in the environment is a natural advantage to invade new hosts and expand their 
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Genotype Hosts

A Humans, cats, dogs, horses, calves, pigs, deers, lemurs, beavers, Guinea pigs, and sloths

B Humans, dogs, monkeys, beavers, rabbits, guinea pigs, muskrats, and chinchilla

C, D Dogs

E Cows, goats, lams, and pigs

F Cats

G Rats

H Marine vertebrates

Table 3. Recognized Giardia genotypes.

progeny, which is why they have been identified as a potential danger to food products that are 
equally contaminated with animal feces or with contaminated water [17, 32]. Fecal runoff and 
vectors increase pathogen dissipation and thus the risk of acquiring the disease [33].

3.2. Genotypes

Giardia has many species characterized, but G. intestinalis, lamblia, or duodenalis is more rec-

ognized as a pathogen for human beings and a wide range of hosts including wild animal 

species. Currently, eight genetic groups from A to H (Table 3) are recognized; nonetheless, 

the species that are harmful for humans are divided into two genotypes: A (or Polish) and B 
(or Belgian), of which B is the most pathogenic in man [34]. Recent studies have revealed that 

genotype E has also been identified in humans [32].

The majority of research studies report that genotypes A and B have been found in clinical 

samples, and their distribution in the world is related to social and economic factors. The mix 

of both genetic groups (A and B) has also been reported in one sample, which suggests mul-

tiple infections [1] and confirms constant exposure to contaminated sources. It is common to 
find assemblages or genotypes A and E in superficial water [27].

Giardia genotypes can appear mixed as in the case of Scotland where both genotypes turn up, of 

which A is more prevalent [35]; the same case happened in Malaysia [36] and in Egypt, where 

A subtype I was the most prevalent [37]. In Latin America, particularly in Mexico, genotype A 

Source Location Percent 

positive*

(oo)cyst

100 L−1*

Reference

Waste water EU, Italy, Ireland, Spain 25–100 3.2 × 103–4.2 × 104 [19–22]

Surface water Belgium, Germany, Ireland, the Netherlands, 

Malaysia, Taiwan, EU, México, China

10–81 0.2–18.6 × 104 [23–27]

Drinking water Bulgaria/Russia, Spain 5–27 0–62 [28, 29]

Ground water Bulgaria/Russia, Brazil, France 8–62.5 6–3.61 × 103 [29–32]

Table 2. Occurrence and density of Giardia cyst in water.
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type II is only present [38]. While in Argentina, genotype A type II showed low seroprevalence, 

genotype B was found in high number of cases that included children and adults [39].

Genotype A is linked to diarrhea [40] and more in human origin than in zoonotic [1]; in dis-

agreement, another study indicated that humans are the greatest source of assemblage B and 

that domestic animals are the greatest hosts of assemblage A [41].

3.3. Outbreaks and risk factors

An outbreak is a spontaneous increase of a disease occurrence. These cases are epidemio-

logically linked with at least one confirmed laboratory case. Numerous giardiasis outbreaks 
transmitted in water have occurred in the USA, Canada, England, France, Australia, Japan, 
and other industrialized nations due to contamination of water and food sources (Table 4). 

The factors that could be attributed to the increase of parasitic disease outbreaks produced by 
water and food are diverse. The increase of international travelers and migrants produces a 

rapid dissemination of the symptoms. Globalization of food sources, food imports as exotic 

fruits and vegetables are now necessary to satisfy consumption demands. Unfortunately, 

transportation conditions as controlled temperature have favored parasite survival in fruits 

and vegetables [50].

Two significant factors that contribute to the risk of contracting giardiasis are age and gender. 
Children from 1 to 5 years of age are more prone to the disease; in addition, infection inci-

dence is greater in men than in women [38]. Divers have a high risk of contracting parasitosis 
even more than swimmers [51].

3.4. Impact in public health

Political, legal, economic, and public health is very committed to having reliable and safe drink-

ing water sources for human consumption. An important concern is having them contami-

nated with pathogenic microorganisms such as G. intestinalis. The World Health Organization 

Source Location Quantity of cases Reference

Water sources New Zealand 14 [42]

Swimming pool Victoria, Australia 30 [43]

Drinking water New Hampshire, EU 31 [44]

Water sources New York, EU 36 [45]

Recreational water California, EU 50 [46]

Water supply Izmir; Turkey 196 [47]

Food/water Scotland 185 [35]

Contaminated water Bergen, Norwegian 2500 [48]

Foodborne/anthropogenic All states in EU 19,140 [49]

Table 4. Giardiasis outbreaks.
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(WHO) estimates that at least 109 cases of gastrointestinal diseases occur per year in one-third 

of the countries in the world, causing mortality of more than 5 × 106 persons at early age. The 

economic costs of diseases are alarming and cause financial losses. For this reason, social insti-
tutions have decided to work in developing better techniques for researching and controlling 
parasites in such a way that water turns out to be a safe liquid. Knowing the relative importance 

of specific transmission routes of intestinal protozoa, including potential sources of environ-

mental contamination, constitutes fundamental aspects that allow understanding the epide-

miology of parasitic diseases. In this manner, corrective measures can be applied to minimize 

prevalence and incidence of these diseases in the population. In developed countries, giardiasis 

is an emerging infection because it plays an important role in diarrhea outbreaks linked to 

water and food consumption that affect the population in general. As to developing countries 
in Asia, Africa, and Latin America, approximately 200 million people experience giardiasis 

symptoms [1, 52].

4. Detection methods in the environment

Detection techniques in environmental samples are diverse. Molecular biology methods are 
used to differentiate genotypes by using hybridization DNA probe DNA and polymerase 
chain reaction (PCR) techniques, starting from diverse fragments of nucleic acids as ribosomal 
RNA, los genes hsp 70, and random amplification of polymorphic DNA fragments (RAPD). 
The advantages of PCR techniques include high sensitivity, rapid analysis of several samples, 
relatively low cost, simultaneous detection of several pathogens, and the capacity to dis-

criminate among several species of strains. These techniques are used mainly to differentiate 
Giardia species and genotypes [40].

The techniques to number Giardia cysts are those that use fluorescent antibodies; they can also 
differentiate viable and nonviable cysts by phase-contrast imaging [53]. Immunofluorescent 
microscopy techniques are used to detect G. intestinalis in water. The methods endorsed by 

the United States Environmental Protection Agency (USEPA) are the Information Collection 
Request (ICR) method protozoans (1999) and the 1623 method (2005). For water samples, this 

method is based on elution and purification of a filter stained with fluorescent monoclonal 
antibodies to then count the structures in a brilliant apple green color in an epifluorescence 
microscope (Figure 1). Many of these methods have already been adapted to recover cysts in 

food [54].

Fluorescent staining as acridine orange, propidium iodide (PI), and 4,6-diamidino-phe-

nylindole (DAPI) are prone to have false positives and have variable stain characteristics 
depending on the viability state of the microorganism; nonetheless, the use of these stains, 

especially DAPI, can be very useful in identification when used together with other micros-

copy techniques such as fluorescence and phase contrast and differential interference con-

trast (DIC) [53].

Immunomagnetic separation (IMS) methods and the 1623 method have been developed to con-

centrate bacteria and protozoan pathogens. These methods use specific antibodies on the surface 
of paramagnetic particles to link target pathogens, followed by a magnet used to separate them 
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from the matrix sample [55]. The assay method of immunoabsorption linked to enzymes (ELISA) 

is more sensitive than the microscopy techniques for (oo)cyst detection [56].

Flux cytometry (FC) is a method by means of fluorescent activators capable of classifying cells 
according to their fluorescence and size. Detection and selective enumeration of Giardia cysts 

that are applied in FC consists of separating and observing the stained particles with immu-

nofluorescent antibodies by the dispersion process. This method can potentially turn out to be 
the most precise in detecting and quantifying cysts [57].

Knowing cyst concentration in environmental samples and the necessary dosage when giar-

diasis starts allows us to estimate pathogen exposure; with this information and using the 

appropriate mathematic model, it is possible to calculate health risk. This methodology called 

quantitative microbial risk assessment (QMRA) is based on a series of steps that convey pre-

dicting daily and annual risks. In developed countries, QMRA has been adapted to assess per-

missible risk limits for Giardia in drinking water samples where the accepted risk worldwide 

is one infection for each 10,000 individuals.

5. Quantitative microbial risk assessment

The Codex Committee on Food Hygiene and the National Advisory Committee on 
Microbiological Criteria for Foods have proposed a framework for conducting QMRA. These 

guidelines also provide methods and approaches used to evaluate potential health effects and 
assess risks from contaminated source media, i.e., soil, air, and water. One of the key ben-

efits of this method is the development of models describing the complex nature of pathogen 
populations in water or food supply [58].

Hazard identification involves pathogen detection in terms of concentration in water, for exam-

ple. Next is exposure assessment where the quantity of water consumed for the people at risk 

is determined. In these two steps, one should take into account the recovery efficiency of the 
method, the characteristics of the people (age, sex, immune state, and customs), and pathogen 

survival. Then, the dose-response curve is calculated with the mathematical models described 

in the literature; finally, the integration of all the parameters provides the risk characterization 
that results in the likelihood of infection risk per day and year per person [59].

Figure 1. Giardia intestinalis cysts stained with fluorescent antibodies.
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Quantitative microbial risk assessment has become a standard; the UK has pronounced a 

mandate that establishes that risk assessment be carried out by local government on many 

water supplies [60]. The US Environmental Protection Agency (EPA) handled permissi-
ble water Giardia risk values of <1:10,000 (10−4) in a yearly exposure [61]. In the UK, the 

Water Supply Regulations 1999, and The New Dutch Drinking Water Decree state that for 
pathogenic microorganisms, health risk should be less than 1 infection/10,000 consumer/
year [62]. These risk regulations are equal to those of EPA. Developed countries are in the 
position to provide guidance, training, information resources, and technical assistance to 

advance supports for water safety. Thus, greater cooperation and collaboration at all levels 

should be effective and ensure that QMRA, as a water safety tool, will be available to all 
countries.

6. Quantitative microbial risk assessment for Giardia in environmental 

samples

The QMRA is an approach that has been widely used around the world to estimate the 

risk of infection by giardiasis in different sources of exposure. Most research studies have 
been performed in water samples, but the method has been applied in food, soil, and air 

samples.

In the last few years, the most relevant studies where QMRA has been used to evaluate giar-

diasis infection risks are the following:

In New Jersey, USA, the risk by accidental water ingestion (50 mL) of the Lower Passaic 
River was assessed resulting in a probability of 1:1 [23]. In Amsterdam, risk probability was 

calculated from 9 × 10−4 to 1.2 × 10−2 in recreational waters [63], while in Eastern Europe a 

giardiasis risk was predicted from 3 × 10−1 for water consumption from a well contaminated 

with sewage water [64]. In Mexico, a risk of 1.09 × 10−2 was estimated by lettuce consump-

tion [65].

In France and England, Giardia risks were assessed due to water consumption from private 

well with values from 5.8 × 10−1 and 5.7 × 10−1, respectively [60]. Risk for swimming in recre-

ational waters of the Great Lakes in the USA was 5 × 10−3 [66]. The risk for rainwater consump-

tion was also calculated in Australia at 3.1 × 10−1 [67].

In Brazil, giardiasis risk for drinking water consumption was estimated at 1.92 × 10−2 [68]. 

In Venezuela, the risk for bathers swimming in seawater was 3.6 × 10−2 [69]. In Switzerland, 
the risk by indirect contact with water from a lagoon contaminated with residual water 

was 3.5 × 10−1 [70], whereas risk by joint exposure to soil and dust transported by air was 

assessed at 1:1 in a rural town in Mexico [17].

In all the previous studies (Figure 2), the risks were greater than those allowed by the 

regulating commissions (1 × 10−4), which is why these studies show that the microorgan-

ism concentration is enough to produce the disease in a percentage of the populations. 
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Figure 2. Risks by giardiasis calculated by quantitative microbial risk assessment in different countries.

Source Location Annual risk Reference

Drinking water Québec, Canada 8.4 × 104 [73]

Reclaimed water California, EU 1.58 × 10−1 [74]

Surface water NJ, EU 1 [23]

Surface water Arizona, EU 4.2 × 10−4 [25]

Urban flooding Netherlands 6 × 10−3 [75]

Treated water Saint Lawrence River, Canada 1.46 × 10−3 [71], [73]

Tank water Queensland, Australia 1.2 × 10−1 [67]

Small water supplies England 9.1 × 10−2 [60]

France 2.6 × 10−2

Well water Sao Paulo, Brazil 9.9 × 10−1 [30]

Drinking water Zhejiang, China 6.25 × 10−6 [76]

Drinking water Sao Paulo, Brazil 1.92 × 10−2 [69]

Tap water Gorges Reservoir, China 1.3 × 10−1 [27]

Reclaimed water Tianjin, China 9.83 × 10−3 [77]

Well water Sonora, Mexico 9.9 × 10−1 [17]

Small private systems Canada 3.3 × 10−2 [5]

Table 5. Annual risks of Giardia infections in different regions in the world.
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Based on this information, it should be solved how to make these sources not harmful for 

humans and implement the necessary treatments for decreasing or eradicating giardiasis 

risk.

Using the concentrations reported in the literature, annual risk by giardiasis was calcu-

lated. To estimate infection probabilities (P
i
), a consumption exposure of 1.46 L was taken 

into account [71], and then the exponential model equation P
i
 = 1−exp(−rN) was used where 

r = 0.0199 [72] (Table 5).

7. Treatments decrease giardiasis risk

7.1. Water

It has been proven that the use of effective removal treatments for Giardia in water decreases 

the risk of acquiring the disease considerably. According to Surface Water Treatment Rule 

(SWTR), a series of requirements for superficial and underwater treatments were developed, 
which specify a removal or minimum inactivation of 3 log for Giardia [61].

The stabilization ponds are biological treatment systems that consist of excavated deposits 

with the sufficient surface and volume to provide the treatment periods; depending on oxy-

gen requirements, the artificial lagoons can be aerobic, facultative, and anaerobic; it has been 
reported that these lagoons eliminate up to 2 logarithmic units of Giardia cysts. Stabilization 

ponds are the most conventional and it does not reach the minimum requirements for cyst 

removal according to the EPA; only does aerobic digestion reach 1.3 log of Giardia removal 

[11]; as to the water treatment with coagulation-flocculation only two logarithmic units of 
removal were achieved [78].

Currently, the best Giardia cyst removal treatments consist of using activated mud together 

with UV disinfection, with which 3.6 logarithmic units of cyst removal are reached [79]. The 

future bets on removing water contaminants by nanotechnological compounds, for example, 

nanocompounds of clay polymers and nanoadsorbents based on carbon and polymerics. 

Besides being effective, these compounds are economic [80].

7.2. Food

After water, the most important infection route with Giardia cysts is by food. The infections 

caused by these parasites are greatly the result of bad hygiene of the person responsible for 

food preparation. Giardia is always found coinfecting with other microorganisms, such as 

Cryptosporidium, Vibrio cholerae, and Rotavirus [81].

The consumption of raw food increases the risk of infection, which is why international 

recommendations exist to provide innocuousness in food preparation. It is especially impor-

tant to (1) practice adequate hand hygiene for protection against this parasite; (2) buy food 
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from reliable providers; (3) maintain food packed or closed; (4) perform pest control fre-

quently; (5) make sure refrigerator temperature is below 5°C; (6) avoid cross-contamination 

by surfaces and recipients; (7) separate cooked from raw food; (8) use purified or boiled 
water especially if food is consumed raw; and (9) make sure food is cooked at high tempera-

tures (≥70°C).

One of the main regulators of food innocuousness is the system ISO 22000, which is a combina-

tion of preliminary programs, such as the hazard analysis and critical control point (HACCP) 
principles, the implementation steps defined by the Codex Alimentarius Commission (CAC) 

and the regulated components of the norm ISO 9001:2000 [82].

8. Impact of climate change on giardiasis epidemiology

Climatic change is actually being considered as a triggering infection risk factor of zoonotic 

diseases because certain temperature conditions may increase the pathogens’ infective capac-

ity. In the case of Giardia cysts, the temperature may be a determining factor in its propagation 

because an increase in temperature may promote transmission although at low temperatures 

the cysts viability remains stable [33]; it may be due to increased intake of contaminated water 

either for drinking or using it for recreational activities [43].

Escobedo et al. [83] in their ecological study verified statistically that giardiasis increases signifi-

cantly during the climate change that occurs with the “El Niño” phenomenon by using nonlin-

ear Poisson models similar to those in QMRA and proving that Giardia infections are sensitive 

to climate. This knowledge can be helpful to identify sources of infection and support in the 

prevention and control of these diseases. Besides temperature, other factors that can increase 

the risk of giardiasis and directly related with climate change are precipitation/humidity and 
wind/dust [84].

9. Conclusions

Giardiasis outbreak studies have been reported worldwide with occurrence of Giardia cysts 

values up to still 100%; however, a continuous environmental examination is expensive, 

and it does not offer the necessary information about giardiasis reduction. QMRA is an 
approach indicated for determining risk infection probability due to pollution with cysts 

in water, food, soil, and air. It permits researching about the probable cause of pollution 

and the adequate treatment process. The high capacity of Giardia to infect (because of the 

large number of oocysts in the environment and the low dose necessary to infect) turns 

it into a serious world health risk. Therefore, it is important to create correct worldwide 

regulations designed for developing safety measurements of water, soil, air, and food 

sources.
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