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Abstract

Skin cancer is the most commonly diagnosed malignancy in the United States and world-
wide. While melanoma is the deadliest form of skin cancer, non-melanoma skin can-
cers, which include basal cell carcinoma and squamous cell carcinoma, are responsible 
for significant morbidity in millions of Americans each year. While numerous attempts 
have been made to reduce skin cancer risk factors related to ultraviolet radiation expo-
sure, skin cancer incidence continues to rise. Improved understanding of the molecu-
lar pathways underlying skin cancer pathogenesis has led to the investigation of new 
approaches to skin cancer prevention. In particular, the search for ultraviolet radiation 
associated biomarkers of skin cancer has become a rapidly expanding and promising 
area of research. Advances in genetic sequencing have facilitated the discovery of novel 
biomarkers, which have the potential to profoundly improve patient care. Here we will 
review the molecular genetics of skin cancer and analyze the existing literature of pro-
posed biomarkers for potential use in skin cancer diagnosis and prevention.

Keywords: ultraviolet radiation, UV biomarkers, basal cell carcinoma, squamous cell 
carcinoma, actinic keratosis, UV signature

1. Introduction

Skin cancer is the most common type of cancer in the United States and is estimated to affect 
one in every five Americans [1, 2]. Skin cancer can be classified as either non-melanoma skin 
cancer (NMSC), which includes basal cell carcinoma (BCC) and squamous cell carcinoma 

(SCC), or melanoma skin cancer. The costs associated with the treatment of skin cancer are 

substantial and has placed a significant burden on the healthcare system. In the United States, 
it is estimated that the combined medical expenditures for the treatment of all skin cancers 

cost approximately $8.1 billion dollars per year [3].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Unlike many other malignancies, skin cancer is largely preventable in the majority of cases. 

Ultraviolet radiation (UVR) is strongly associated with cutaneous malignancies and is a pri-

mary environmental risk factor for the development of all types of skin cancer [4]. While 

numerous public health initiatives have increased skin cancer awareness, guidelines devel-

oped to mitigate the risks associated with UV exposure are not regularly practiced by many 

Americans and sunburn rates remain high [5]. Furthermore, recreational and indoor tanning 

still remains popular among certain groups within the population, which leads to excess UVR 

exposure [6]. Although most associate sunburns with UV overexposure, few recognize that 
the increase in melanin production from tanning is triggered by direct UVR damage to skin 

cells [7]. Repeated exposure to intense UVR in the form of sunburn or tanning can result 

in cumulative damage within skin cells, leading to cell dysregulation. These sun damaged, 

cancer-prone cells may exist in the skin for years or even decades before becoming visibly 

apparent in the form of cancerous or precancerous lesions.

Various strategies to encourage sun protective practices and interventions to modify sun 

related behaviors have had limited success. Low compliance with UV protection guidelines, 

particularly among young adults, has been attributed to various factors including inconve-

nience of sunscreen application and societal attitudes toward tanned skin as a sign of beauty 
[5, 8, 9]. In addition, the long delay from the time of UV exposure to carcinogenesis lowers 

risk perception of UVR as being dangerous [10]. Although primary prevention of skin cancer 
is ideal and remains core to decreasing disease incidence, patient risk stratification following 
UV exposure is critical for both early detection of skin cancer and prevention of worsening 

disease.

Biomarker discovery has come to play an increasingly important role in both disease diagno-

sis and prevention. The application of biomarker-based tests has led to revolutionary changes 

in medical screening, diagnosis, and targeted therapies for a variety of cancers [11]. While the 

use of biomarkers has become incorporated into the standard of care for numerous malignan-

cies, the application of biomarker studies within NMSC has not yet been clearly established. 

By identifying UV biomarkers of NMSC, patients can be risk stratified to ensure routine skin 
cancer screening and pointed efforts can be made to encourage timely lifestyle changes.

Here we review the relevant literature regarding skin cancer pathogenesis, molecular genet-

ics, and potential biomarkers for use in NMSC. In addition, we will critically analyze the 

strengths and limitations of various types of biomarkers and detection methods. Due to the 

significant differences that exist at the molecular level between the development of melanoma 
and NMSC, an in-depth discussion of related literature in melanoma research is beyond the 

scope of this review. As such, this discussion will focus on biomarker discovery and its appli-
cability to NMSC diagnosis and prevention.

2. Non-melanoma skin cancers

Each year in the United States over 5.4 million cases of NMSC are treated in more than  

3.3 million people [2]. Actinic keratosis (AK), the most common precancerous lesion, affects 
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more than 58 million Americans and represents the large number of individuals at risk for the 
future development of NMSC [12]. While genetic factors such as skin type and family history 

contribute to an individual’s risk of development of skin cancer, UVR exposure and age are 

the leading risk factors in skin cancer pathogenesis. It is estimated that approximately 90% of 

NMSCs are associated with excessive exposure to UVR and incidence increases with age [13, 

14]. Other general risk factors include chronic arsenic exposure, radiation therapy, photosen-

sitizing drugs, certain genetic disorders, and prolonged immunosuppression [15].

2.1. Basal cell carcinoma

Basal cell carcinoma is the most common cutaneous malignancy and represents approxi-

mately 80% of all NMSCs [16]. BCCs arise secondary to malignant transformation of cells 

in the basal layer of the epidermis and its appendages. While BCCs can be aggressive and 

destructive to surrounding tissue, it has low metastatic potential: estimated at only 0.0029–

0.55% [17]. The majority of BCCs arise sporadically and only a small number of cases are 

inherited, which typically arise within the setting of syndromic disorders such as nevoid 
basal cell carcinoma syndrome. It is estimated that approximately 70% of BCCs occur 

on the face and 35% of patients with one BCC will go on to develop another BCC within  

5 years [18]. Based on histologic examination, BCC can be classified as nodular, infiltrative, 
 micronodular, superficial, sclerosing, or morpheaform subtypes. Analysis of the histologic 
growth pattern and cell differentiation is critical as it provides a means to further categorize 
the lesion as a high or low risk BCC [19]. Infiltrative, sclerosing, morpheaform, and micronod-

ular BCCs are considered high-risk subtypes given the higher likelihood of subclinical spread 

and more frequent local recurrence [20]. However, patient treatment and prognostication are 

frequently complicated by the fact that more than 30% of BCCs have a mixed pathology that 

combines both less aggressive and more aggressive subtypes within the same lesion [21].

2.2. Squamous cell carcinoma

Cutaneous squamous cell carcinoma arises due to malignant proliferation of epidermal kera-

tinocytes and is the second most common type of skin cancer. In a 2013 meta-analysis, the 

number of new SCCs (exclusive of SCC in situ) in the United States was estimated to be 

between 186,157 and 419,543 cases [22]. While a number of genetic disorders are associated 

with increased risk of both BCC and SCC, many hereditary syndromes are skewed toward 

development of cutaneous SCC (Table 1) [23]. Actinic keratosis, which results from the pro-

liferation of atypical epidermal keratinocytes, is strongly associated with UV exposure and 

is considered a precancerous lesion of SCC [24]. Although some have suggested that AKs are 
also precursors of BCCs, this association is less clear [25]. Most AKs will not progress to SCCs 
and many will either regress or persist as AKs [26]. While the likelihood of an individual 

AK progressing to SCC is low, the presence of AKs is a marker of chronic sun damage and 
indicates an increased risk of NMSC [27, 28]. In general, SCC is considered highly curable 

and metastasizes in less than 1–5% of cases [29, 30]. Whereas specific subtypes of BCC are 
associated with higher or lower risk, there is less consensus as to which features best charac-

terize the aggressiveness of cutaneous SCC. Acantholytic, adenosquamous, and desmoplastic 
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subtypes are recognized as high risk variants; however, traditionally low risk variants may 

achieve high risk status based on tumor features including size, location, and lesion depth, 

which have been independently correlated with SCC risk [31].

3. Role of ultraviolet radiation in the development of NMSC

The link between UVR exposure and NMSC is well established [32]. Sun light exists on the 

electromagnetic spectrum and is divided into ultraviolet, visible, and infrared light based on 

wavelength. UVR is further broken down into three subtypes: type A (UVA), type B (UVB), 
and type C (UVC), which, again, are distinguished from one another by wavelength [32]. Of 

the UVR that reaches earth, 97.5% is comprised of UVA (315–400 nm) and 2.5% is UVB (280–
315 nm) [33]. UVC is entirely absorbed by the atmosphere; however, UVC (200–290 nm) is 

emitted by man-made sources such as welding torches and mercury lamps. Thus, by and large, 

UVA and UVB are the most clinically relevant sources of UVR as it pertains to skin cancer [34].

While the daily dosage of UVB is significantly less when compared to UVA, UVB is consid-

ered far more dangerous. Based on the optical properties of skin, UVB is strongly absorbed 

within the stratum corneum and epidermis, therefore exerting a stronger effect on epider-

mal keratinocytes [34]. UVB is directly absorbed by proteins and nucleic acids and is respon-

sible for the majority of sunburns. Melanin, found in the basal layer of the epidermis, is an 

important chromophore within the skin and primarily acts to absorb UVR. Upon stimulation 

by UVR, melanocytes undergo melanogenesis, which results in the increased production of 

melanin pigments that cause the skin to visibly tan [35]. Due to this property, melanin’s pho-

toprotective nature is believed to protect skin cells from UVB radiation damage. Furthermore, 

this reasoning has been used as evidence to support the observation that the incidence of skin 

cancer is much lower in individuals with higher levels of melanin at baseline (i.e. darker skin 

phenotypes) [36]. However, when effects of UVR exposure outpace the synthesis of melanin 
or its capacity to absorb harmful rays, skin damage will clinically appear as a sunburn.

Fanconi anemia

Xeroderma pigmentosum

Ferguson-Smith syndrome

Rothmund-Thomson syndrome

Oculocutaneous albinism

Epidermolysis bullosa

Epidermodysplasia verruciformis

Dyskeratosis congenita

Bloom syndrome

Werner syndrome

Table 1. Hereditary syndromes predominantly associated with increased risk of cutaneous SCC.
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The wavelength of UVB radiation primarily corresponds to the absorption spectrum of 

DNA. Upon skin exposure to UVB radiation, electromagnetic energy is absorbed by biologic 
molecules and transformed into chemical energy [34]. When UV photons are absorbed by 

DNA molecules, electrons are excited to a high energy state, which can result in formation 
of photoproducts [37]. The two major DNA lesions induced by UVB radiation are the forma-

tion of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts 

(6-4PPs). These lesions are ultimately caused by the misbonding of two pyrimidines, either 

thymine or cytosine, within the same DNA strand. Both lesions can lead to genetic mutations 
including C→T and CC→TT transitions; however, CPDs are considered more carcinogenic 

because they are more prevalent and less efficiently repaired than 6-4PPs [34]. If left unrepaired, 

these dimers become mutagenic, which highlights the equally important role of the DNA repair 
system in skin carcinogenesis. Pyrimidine dimers are normally removed by nucleotide excision 

repair (NER) enzymes. In patients with xeroderma pigmentosum (XP), a disease characterized 

by defective NER enzymes, individuals exhibit a decreased ability to repair DNA mutations, 
especially those caused by UVR. In individuals with XP, this clinically manifests as the develop-

ment of NMSC and melanoma skin cancers at a young age [38]. In building on the knowledge 

learned from patients with XP, studies have subsequently sought to uncover novel defects in 

NER enzymes within the general population. It has been suggested that polymorphisms within 

NER enzymes increase susceptibility to the development of NMSC [39]. While polymorphic 

variants of DNA repair genes may contribute to an individual’s risk of developing NMSC fol-
lowing UV exposure, it is unclear at this time to the extent by which one is affected.

In contrast to UVB, the exact role of UVA in skin carcinogenesis is far more nebulous. Although 
UVA is partially absorbed by the epidermis, it also penetrates to the dermis where collagen 
fibers function to scatter light [34]. Until relatively recently, UVA has long been considered 
to play a minor role in the development of skin cancer as photons of UVA are not within 
the absorbable wavelength of DNA [34]. However, molecular studies have since illuminated 

the potentially significant function of UVA in photocarcinogenesis. Recently, research has 
shown that UVA causes indirect DNA damage via the generation of reactive oxygen species, 
and DNA-protein crosslinks, as well as direct DNA damage by formation of CPDs or single-
strand DNA breaks [40, 41]. While the role of UVA radiation in the formation of skin cancer 
is not yet clarified, epidemiologic studies also seem to support its harmful effects. Indoor tan-

ning beds, which primarily emit UVA radiation, have been linked to the increased incidence 
of skin cancer among users [42, 43]. It has been reported that just one indoor tanning session 

can increase a user’s risk of developing SCC by 67% and BCC by 29% [44]. There is thus com-

pelling evidence to elevate the role of UVA in the formation of skin cancer by perhaps alterna-

tive pathways that lead to carcinogenesis.

4. Molecular mechanisms underlying skin carcinogenesis

Our understanding of cancer biology and the molecular pathology underlying malignant 

transformation has grown considerably within the past several decades. In particular, the 

advent of high-throughput sequencing technologies has enabled the detection of various 

mutational signatures. Dysregulation of proto-oncogenes and tumor suppressor genes, which 
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are critical for controlling cellular growth, is the mechanistic basis of cancer development [45]. 

Gain of function mutations convert proto-oncogenes into oncogenes, which lead to unregu-

lated cell growth [46]. Likewise, mutations in tumor suppressor genes, which normally inhibit 

cell growth, also lead to uncontrolled cellular proliferation due to loss of negative control [47].

Past studies on UV radiation in skin carcinogenesis have identified at least three pathways 
involved in skin cancer development (Figure 1): genetic mutations, epigenetic changes and 

alterations in gene expression. While these three pathways can act alone to cause cancer, they 

often interact with each other to trigger cancer development.

4.1. Gene mutations

UVR is recognized to induce a specific pattern of genetic mutations, namely C→T and 

CC→TT substitutions. To date, this specific mutation is found to be specifically enriched in 
skin cancers [48]. Since UVR, in particular UVB, is known to induce these types of mutations, 

C→T transitions are now widely referred to as ‘UV signatures’ [49]. Our understanding of these 

specific mutations as being UV dependent has enabled deduction of UV induced genetic muta-

tions by backward inference and pattern recognition. While there have been many pathways 
implicated in skin carcinogenesis, there is strong evidence to support the impact of selected 

genetic mutations as being crucial for malignant transformation and tumorigenesis within 

clonal populations.

4.1.1. P-53 and skin cancer

Often described as the ‘guardian of the genome,’ the tumor suppressor protein p53 is  arguably 

one of the most important regulatory proteins for its role in maintaining cellular integrity. 

Figure 1. Schematic illustration of major molecular mechanisms underlying UV-induced skin photocarcinogenesis.

Human Skin Cancers - Pathways, Mechanisms, Targets and Treatments180



p53 is a transcription factor that is responsible for controlling genes involved in cell cycle 

regulation, apoptosis, and DNA repair [50]. In skin cancer, many mutations in p53 are char-

acterized by the C→T and CC→TT transitions, which are characteristic of the UV mutational 

signature. It is estimated that mutations in p53 occur in 58% of SCCs and 33% of BCCs [51, 

52]. Mutations in p53 are found in many malignancies, which suggest its involvement in abe-

rrant signaling pathways and subsequent DNA damage. However, in skin cancer, each p53 
allele often carries different mutations at different locations along the gene. This is opposed to 
other cancers in which the p53 mutations occur within conserved regions [53]. Although p53 
mutations in skin cancer do not consistently occur at the same locus, mutations do not occur 

randomly. Rather, these UV signature mutations accumulate in ‘hot spots,’ which, importantly, 

are different from regions of p53 that are mutated in internal malignancies [54]. This suggests 

that the proclivity for these mutations to occur within specific loci is perpetuated by a selective 
advantage. p53 mutations are believed to confer resistance to apoptosis in response to UVR, 

thereby leading to positive selection of p53 mutant cells and clonal expansion [55].

4.1.2. Basal cell carcinoma and PTCH mutation

Patched (PTCH) is a transmembrane receptor protein that suppresses the hedgehog (HH) sig-

naling pathway. While SCCs are believed to originate in the interfollicular epidermis, histo-

logic evidence suggests that BCCs preferentially arise within stem cells of the hair follicle [56]. 

HH signaling through PTCH is critical for maintenance of skin stem cell populations, regula-

tion of hair follicle, and sebaceous gland development. Binding of HH protein to the PTCH 

receptor inhibits the activation of smoothened (SMO) protein to dampen the expression of the 

HH pathway. Inactivating mutations in the PTCH gene or gain of function mutations in SMO 

can lead to constitutive expression of the HH pathway [57]. Aberrations in the HH signaling 
pathway are now recognized as major contributors in BCC tumorigenesis. Mutations in the 

PTCH gene were initially detected in patients suffering from basal cell nevus syndrome [58]. 

It was later discovered that a significant proportion of sporadic BCCs and BCCs arising in 
patients with XP also carried mutations in PTCH [59, 60]. High levels of mutant PTCH tran-

scripts have been found in BCCs but not in normal skin or other types of tumors, making this 

a relatively specific genetic mutation observed in BCC [61]. The molecular link between PTCH 

mutations and BCC formation is regarded as a major scientific discovery; however, the exact 
mechanism by which over expression of the HH pathway leads to unrestricted proliferation 

of skin basal cells is not known.

4.1.3. Complexity of mutational patterns in squamous cell carcinoma

While mutations in the HH signaling pathway appears to be the most important genetic 

change leading to BCC oncogenesis, the search for a pathway of similar significance in SCC 
development is ongoing. Whole exome sequencing has revealed a very high mutational bur-

den in cutaneous SCC with an average of one mutation per 30,000 base pairs [62]. Efforts 
to identify key driver mutations in SCC have thus been hindered by the high background 

mutation rate. Furthermore, when compared to BCCs, delineation of the mechanisms under-

lying SCC formation is somewhat more complex. While BCCs are largely believed to arise ‘de 

novo,’ SCCs can arise from clinically apparent precursor lesions, namely actinic keratoses [63].  
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Histologically characterized by atypical keratinocytes, AKs give rise to approximately 65% 
of SCCs [25]. In addition to clinical observation, this notion has been further supported by 

genomic analysis. While AKs and SCCs exhibit similar karyotypes, AKs demonstrate less 
genotypic complexity, suggestive of an earlier stage of tumor development [64]. While the 

genetic relationship between AKs and SCCs has not yet been clearly defined, it appears that 
AKs and SCCs exist on a continuum in which certain mutations drive progression from 
premalignant to malignant forms [65]. Thus, mutations in both AKs and SCCs have been 
explored for their potential roles as drivers of carcinogenesis.

Increasing evidence suggests that the underlying pathogenesis of cutaneous SCC involves 

mutations in several genes and pathways. Besides p53, published research has mainly focused 

on a handful of key mutations frequently found in cutaneous SCC including NOTCH, RAS, 
EGFR, TGFΒ, NF-KΒ, and most recently, KNSTRN [66]. KNSTRN gene, one of the newest 
genetic mutations reported in SCC, encodes a kinetochore associated protein that modulates 

anaphase onset and chromosome segregation during mitosis. Recurrent UV signature point 

mutations in KNSTRN at codon 24 (p.Ser24Phe) have been observed in 19% of SCCs and 13% 
of AKs [67]. Functionally, this specific mutation in KNSTRN results in disruption of chroma-

tid cohesion in normal cells, which can lead to aneuploidy and chromosomal aberrations. 

Since KNSTRN mutations occur rarely in other malignancies, this may represent a previously 
unrecognized oncogene in skin tumorigenesis; however, studies to clarify its clinical applica-

bility are needed.

4.2. Epigenetic alterations

Apart from the mutagenic effects of UVR on the genome, the role of epigenetic changes 
induced by UVR in skin cancer remains underappreciated. Epigenetics refers to heritable 

changes in gene expression that are not due to alterations within the DNA sequence itself. 
This includes changes in DNA methylation, histone modification, and miRNAs. The human 
genome encodes a subset of genes that function in epigenetic modifications of the genome 
and thus regulate the activities of other genes. While the list of such epigenetic regulators 

continues to grow, DNA methyltransferases (DNMTs) and histone modifying enzymes are 
among the best studied epigenetic regulators [68]. DNA methylation is a process catalyzed 
DNMTs by which a methyl group is added to the 5′ carbon of a cytosine ring of DNA. These 
modified cytosine residues are often adjacent to guanine bases, resulting in the formation of 
a CpG dinucleotide. These CpGs are often concentrated in short CpG-rich DNA segments, 
known as CpG islands, the majority of which are found in the promoter region of genes 

[68]. Methylation events in promoter regions can have profound effects via the secondary 
effects on transcription.

Both DNA hypomethylation and hypermethylation have been implicated in tumorigen-

esis of skin cancers. In particular, DNA hypermethylation in CpG islands is an important 
mechanism by which tumor suppressor genes are silenced. This in turn leads to downstream 

effects on gene expression that may eventually lead to a neoplastic phenotype [69]. Like 

other human malignancies, the development of skin cancer involves a complex interplay 

between environmental factors and alterations in gene expression within skin cells. While the  
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development of skin cancer is multifactorial, epigenetic alterations are believed to be among 

the earliest detectable changes in UVR exposed skin [70]. Over exposure of the skin to UVR 

leads to oxidative stress, inflammation, and DNA damage, factors that are known to sig-

nificantly alter epigenetic pathways. In particular, chronic inflammation has been shown to 
accelerate the formation of DNA methylation changes [71]. Thus, environment-induced aber-

rant expression of epigenetic regulators can trigger widespread epigenetic changes that may 

subsequently disturb a variety of downstream target genes, potentially increasing the risk of 

cancer development.

Despite the increasing recognition that abnormal DNA methylation is a crucial factor in skin 
carcinogenesis, histone modifications serve as another dynamic epigenetic pathway that is 
frequently altered in cancer. Histone modifying enzymes can be divided into multiple fami-

lies [72, 73]. Among these, proteins involved in histone acetylation and deacetylation have 
been shown to play important roles in both normal development and disease states. Limited 

data suggest that silencing of tumor suppressor genes in UV-induced skin leads to photo-

carcinogenesis and aberrant epigenetic modifications including alterations in DNA methyla-

tion and histone acetylation at specific loci [74, 75]. UV-induced differential gene expression 
has also been linked to changes in global H3 lysine 27 acetylation (H3K27ac), an epigenetic 
marker of active promoter and enhancer regions. Using ChIP-seq analysis, one study revealed 

that UVR induced genome-wide loss of H3K27ac, as well as regional gains in H3K27ac levels. 
Upon further analysis, UV-induced differential H3K27ac acetylation was functionally corre-

lated with differential gene expression was observed [76]. The genome wide loss of H3K27ac 
may be attributable to the suppression of histone acetyltransferases activities, whereas the 
regional gain of H3K27ac may occur secondary to the binding of UV-responsive transcription 
factors, such as JUN/FOS or TP53, which subsequently recruit HATs to their target regions 
[76, 77]. Though the epigenetic mechanisms underlying the effects of UVR in promoting skin 
cancer warrant more extensive studies, the use of histone biomarkers for clinical diagnosis 

and/or prognosis is an interesting approach that is also being investigated for use in other 

malignancies [78, 79].

There is a growing body of evidence to suggest that non-coding RNA (ncRNA) is involved 
in the development of many malignancies, including skin cancer [80]. ncRNAs are RNA 
transcripts transcribed from DNA that are not translated into protein and classified based 
on size: small non-coding RNA (<200 nucleotides) and long non-coding RNA (>200 nucleo-

tides). While there are various different subtypes of ncRNA, microRNA (miRNA), a sub-

type of small non-coding RNA, is perhaps the most widely studied. miRNAs are single 
stranded ncRNA molecules that modulate gene expression by binding to the 3′ untranslated 
region of target mRNA. This ultimately causes mRNA instability and eventual degradation, 
leading to subsequent alterations in cell differentiation, metabolism, apoptosis, and signal 
transduction [81]. Studies have demonstrated that UV irradiation of human keratinocytes 

modulates the expression of numerous miRNAs. In addition to a common miRNA response, 
UVA and UVB were also shown to induce wavelength specific miRNA expression signatures 
[82]. Although interpretation of changes in UV-responsive miRNA expression is complex, 
miRNA mediated gene silencing likely has important downstream effects, which contribute 
to the development of skin cancer.
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While less studied than short non-coding RNA, long non-coding RNA (lncRNA) has recently 
become an area of significant interest within cancer research. It is now known that lncRNA 
can effect gene expression through interactions with transcription factors and can interact 
with miRNAs to regulate mRNA stability [83, 84]. Though thousands of lncRNA transcripts 
have been identified, the majority remain uncharacterized with unknown functions [85]. 

Nonetheless, a growing number of lncRNAs are being investigated for their role in cancer 
growth, tumor initiation, and metastasis.

5. Current measures of ultraviolet radiation exposure and skin damage

The current indicator of skin sun damage relies on the use of minimal erythema dose (MED), 

which refers to the amount of UVR that produces visible skin redness within 24 hours fol-

lowing exposure [86]. As an indicator of UV damage, MED is insensitive and inadequate 
because UV-induced molecular damage may occur at sub-MED UV doses [87, 88]. Other 

markers of UV exposure include clinical findings such as solar lentigines and solar elastosis. 
While these lesions are completely benign, they do have a positive association with NMSC, 

mainly due to the fact that they arise secondary to photodamage [89]. Although clinical 
findings of photodamage provide prognostic value, these lesions are neither sensitive nor 
specific as markers of skin cancer risk as many individuals with solar elastosis and lentigi-
nes will never develop skin cancer [89].

While the association between UVR and skin cancer is well established, quantitative assess-

ment of skin UV exposure and its effect on skin cancer development remains unknown. In a 
small case control study of 58 patients with cutaneous SCC, the risk was greatest in patients 

who had more than 30,000 hours of cumulative lifetime sun exposure [90]. This is in contrast 

to BCCs where studies suggest that intense, intermittent sun exposure resulting in sunburns 
may be more important for the development of BCC [91]. Quantifying the amount of sun 

exposed hours necessary to induce NMSC is technically challenging and is not practical for 

implementation as a risk measure at the population level.

6. Biomarkers as a novel tool in monitoring ultraviolet skin damage to 

improve skin cancer prevention

Biomarkers are defined as measurable cellular, biochemical or molecular alternations in bio-

logical media such as blood or tissue. Several FDA-approved multi-gene panel tests are now 
approved for risk prediction and diagnosis of various cancers; however, no similar biomarker 

tests exist for patient risk stratification of NMSC [92]. At present, there are no skin cancer 
screening guidelines in the United States. Despite this, physicians are routinely confronted 

with the decision of who should receive total body skin exams and at what time interval. The 

United States Preventive Task Force (USPSTF) has repeatedly stated that in the absence of 

randomized controlled clinical trials, there is insufficient evidence to recommend skin cancer  
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screening in the general population [93]. While the majority of the USPSTF skin cancer screen-

ing report focuses on melanoma, one of the main arguments made against screening for NMSC 

is that there is limited evidence regarding the diagnostic accuracy of primary care physicians 

to correctly identify BCCs and SCCs. Given the lack of rigorous dermatology training in most 

medical school and primary care residencies, this argument is not necessarily unfounded [94]. 

Although there are several other arguments to be made against the USPSTF recommenda-

tions and reasoning, the lack of clear skin cancer screening guidelines is problematic.

It is unlikely the USPSTF will obtain a satisfactory level of evidence in the near future to 

recommend skin cancer screening in the United States given the large number of patients 

required to adequately power a clinical trial [95]. It thus behooves physicians and scientists 

to search for alternative measures as a means to quantify skin cancer risk. The presence of an 

objective UV biomarker test could facilitate patient triage by identifying high risk individu-

als for dermatology referral. Identification of susceptible patients in the primary care setting 
via the use of an accessible genetic screening test would thus provide physicians with an 

evidence based method to make informed decisions regarding which patients should receive 

regular skin cancer screening.

The development of a UV biomarker panel has the potential to have a profound impact on 

patient care. Breakthroughs in next generation sequencing technology have provided a pow-

erful tool for identifying biomarkers of a given physiological status or exposure [96]. Many 

studies have attempted to identify biomarkers that correlate UV exposure and skin damage 
with variable success; however, no consensus UV biomarkers have been established to date. 

Various types of biomarkers have been investigated including DNA, RNA, and protein.

7. Candidate biomarkers for assessing UV damage: strengths and 

weaknesses

7.1. DNA markers

Given the potent mutagenic effect of UVR and its role in skin carcinogenesis, skin cancer 
research in the past several decades has primarily focused on mapping cancer-related muta-

tions. Such efforts have been greatly enhanced by recent advances in whole-genome and 
whole-exome sequencing studies, which have identified recurrent genomic aberrations that 
underlie the development of BCC and SCC [97]. As such, these particular gene mutations 
have been suggested for use as markers of skin cancer risk. Unfortunately, numerous issues 

have been encountered with this approach.

Based on our current understanding of cancer development, tumor growth is initiated by the 

presence of driver mutations, which lead to clonal expansion of mutant cells. This increases 

the total number of cells that are at risk to develop further mutations and malignant transfor-

mation [98]. Given the high prevalence of p53 mutations observed in NMSC, this had previ-

ously been suggested as a potential genetic marker of patient risk. Upon further investigation, 

it was found that mutant clones with p53 UV signature mutations were found in high numbers  
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within clinically normal skin [99]. As another example, both copies of NOTCH1 are frequently 
inactivated in SCCs via point mutations and copy number alterations. While studies have 

demonstrated that up to 60% of SCCs have mutations in NOTCH1, approximately 20% of 

clinically normal skin cells also carry this mutation [100]. These instances suggest that DNA 
mutation alone is insufficient to drive skin carcinogenesis. Although this may signal that a 
significant number of keratinocytes are predisposed to developing skin cancer, the specific 
combination of events leading to malignant transformation is not well understood.

One of the more promising DNA-based UV biomarkers involves the use of mitochondrial 
DNA (mtDNA) as a biomarker of cumulative UVR exposure and oxidative stress [101]. Given 

that mitochondria lack classical NER pathways, UV signature mutations that form within 

mtDNA have limited capacity for repair [102]. Thus, the entirety of UV induced damage can 

be observed and correlated quantitatively with UV exposure. Since mutations in nuclear DNA 
(nDNA) are capable of repair via NER enzymes, the UV mutational burden in nDNA is less 
representative of lifetime UV exposure. Furthermore, individual variability in NER enzyme 

activity makes the assessment of nDNA mutations more complicated as repair rates are not 
uniform [39]. The use of mtDNA as a marker of UV damage is appealing; however, the most 
important question: whether there is a relationship between mtDNA mutations and actual 
disease: remains to be answered. Additional studies are required to establish a functional cor-

relation between mtDNA mutation and skin cancer development.

7.2. RNA markers

Fundamental to the central dogma of molecular biology, RNA is a necessary intermediary 
between DNA and protein. The exploration of mRNA-based UV biomarkers is an exciting 
area of research that has been facilitated by recent advancements in next-generation sequenc-

ing technology [96]. While RNA only exists for a finite period of time before being degraded, it 
is easy to detect and quantify at very low levels [103]. There are currently numerous methods 

available by which RNA expression can be analyzed in a reliable and reproducible fashion. 
Compared to DNA biomarkers, RNA biomarkers provide a snapshot of temporal and spatial 
changes in regulatory pathways, which cannot be observed with singular DNA changes.

The increasing power of high throughput sequencing has allowed for detection of changes in 

both protein-coding RNA (i.e. mRNA) and non-coding RNA (i.e. small nuclear RNA, micro 
RNA, small nucleolar RNA, lncRNA) expression with high sensitivity and specificity [104]. 

Non-protein coding RNAs are well known to play regulatory roles in gene expression via 
post-transcriptional modification and there is a growing body of evidence that implicates 
non-coding RNA as key regulators of tumor pathways [105, 106]. Studies have demonstrated 

that specific UV induced miRNAs are differentially expressed in NMSCs (Table 2). While 

altered miRNA expression has been found within malignant tumors themselves, various can-

cers also demonstrate specific miRNA aberrations within serum and plasma [107]. Therefore, 

analysis of circulating miRNA expression levels can be potentially employed for use in a non-
invasive biomarker test for NMSC. Plasma profiling for early detection of NMSC has been 
explored in one recent study, which showed significant changes in expression of miRNA-19a, 
miRNA-25, miRNA-30a, miRNA-145, miRNA-186 [108]. While these are interesting findings, 
extensive validation of the clinical utility of these miRNAs as NMSC biomarkers is required.
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LncRNA is also being explored for its utility as a biomarker for cancer diagnosis and ther-

apy. Following genome wide association studies, it is now known that 88% of trait associated 

single nucleotide polymorphisms (SNPs) are located in intergenic regions [109]. Since the 

majority of lncRNAs are transcribed from these regions, it has been suggested that SNPs of 
lncRNA may represent differential disease risk. While studies are limited, the potential role 
of circulating lncRNA for use as a biomedical tool is exciting. Dysregulation of lncRNAs has 

microRNA Expression NMSC association Reference

miR-203 Downregulated BCC [133]

Let-7a Downregulated BCC [124]

miR-21 Upregulated BCC, SCC [124–129]

miR-29c Downregulated BCC [130]

miR-130a Upregulated BCC [126, 130]

miR-124 Downregulated SCC 131]

miR-203 Downregulated SCC [132]

miR-184 Upregulated SCC [132]

miR-30a Downregulated SCC [126]

miR-387 Downregulated SCC [126]

miR-135b Upregulated SCC [126]

miR-424 Upregulated SCC [126]

miR-766 Upregulated SCC [126]

miR-145 Downregulated SCC [126]

miR-140-3p Downregulated SCC [126]

miR-26a Downregulated SCC [126]

miR-31 Upregulated SCC [127, 134]

miR-205 Upregulated SCC [135]

miR-365 Upregulated SCC [136, 137]

miR-1 Downregulated SCC [138, 139]

miR-34a Downregulated SCC [140]

miR-124/214 Downregulated SCC [131]

miR-125b Downregulated SCC [127]

miR-193b/265a Downregulated SCC [141]

miR-199a Downregulated SCC [142]

miR-361-5p Downregulated SCC [143]

miR-483-3p Downregulated SCC [144]

Table 2. Aberrantly expressed microRNAs in NMSC tumors.
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been reported in a number of malignancies including colon, prostate, breast, and liver cancer 

where they act as tumor suppressors and oncogenes [110]. Similar to miRNAs, lncRNA can 
easily be detected by PCR in bodily fluids. Studies demonstrating the detection of lncRNA 
PCA3 in urine and lncRNA HULC in blood have been suggested as novel modes of cancer 
screening and diagnosis for prostate cancer and hepatocellular carcinoma respectively [111–

113]. With regard to skin cancer, the aberrant expression of lncRNA appears to be function-

ally important in skin carcinogenesis. In one study, lncRNA lincRNA-p21—a transcriptional 
target of p53 and HIF-1α—was found to be highly inducible by UVB radiation and crucial for 
p-53 mediated apoptosis of damaged keratinocytes [114]. The interaction between the vitamin 

D receptor and lncRNA also appears to play an important role in maintaining cellular homeo-

stasis prevention of skin tumor formation [115]. In another study, differential expression 
analysis revealed 1516 lncRNAs were upregulated and 2586 lncRNAs were downregulated 
in cutaneous SCCs when compared to normal controls [116]. A similar study demonstrated 
analogous findings in BCCs that showed upregulation of 1851 lncRNAs and downregulation 
of 2165 lncRNAs when compared to normal skin [117]. While the prognostic, diagnostic, and 

therapeutic application of lncRNAs within skin cancer is not yet developed, their potential 
role in the molecular pathogenesis of NMSC warrants further analysis.

In addition to non-coding RNA, mRNA has been explored extensively for its use as a bio-

marker in numerous studies [118–123]. Similar to miRNA, multiple mRNA transcripts have 
been found to be differentially regulated in response to UV radiation. Despite the large num-

ber of differentially expressed genes identified so far, there is no consensus in terms of which 
genes are the most sensitive and specific markers of NMSC. Due to frequent inter-individual 
variations in the expression of many genes, it is unlikely that a singular mRNA will be suf-
ficient as a reliable biomarker. There is thus a growing consensus that multi-gene biomarker 
panels will be required for the development of a robust and reliable screening test.

Analysis of combined transcriptomic data from previous studies has been complicated by 
large variations in experimental design including cell type, UV exposure, dose, and time 

points of analysis [118–123, 145, 146] (Table 3). Therefore, development of a validated consen-

sus UV biomarker panel has not yet been achieved. However, a recent transcriptomic profiling 
study has begun to shed light on the viability of UV biomarker panel for clinical application 

[147]. In this study, rigorous bioinformatics and statistical analyses were performed to iden-

tify UV-responsive genes that are conserved among different donors, in response to various 
UVR doses, and at different time points after UV exposure. Through this comprehensive tran-

scriptomic analysis, 401 conserved UV-responsive genes were identified out of approximately 
4000 U-induced differentially expressed genes detected following each specific UVR condi-
tion. Through RNA-seq analysis, this study also generated a SCC-specific signature based 
on differential gene expression analysis of five pairs of human SCC tumor tissue and adja-

cent normal skin tissue. Moreover, there is a significant similarity between the conserved UV 
responsive genes and the SCC signatures genes. The conserved UV-responsive gene set has 

little similarity to gene sets dysregulated in other human cancers, highlighting their speci-
ficity for skin cancer gene expression signatures [147]. Additional validation studies will be 
needed to select which of these conserved UV-responsive genes may be used to develop a 

consensus UV biomarker panel.
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7.3. Protein markers

The majority of genes function through their protein products. Therefore, it is generally 

accepted that gene activity and function are positively correlated with their protein expression 

level. Characteristics of protein expression such as variation in quantity, timing of synthesis, 

and interaction with other proteins has been studied as a means to correlate molecular mech-

anisms with clinical pathology. Although there are benefits to directly measure changes in 
protein expression, the use of protein biomarkers has several significant challenges. The main 
limitation with the use of protein markers lies within currently available detection methods. 

Protein biomarker panels can be expensive because each protein requires a specific antibody 
for detection. Secondly, it remains technically challenging and laborious to standardize the 

quality and specificity of antibodies in their research and clinical applications. Synthetically 
produced protein antibodies often exhibit great variability between manufacturers, increasing 

the likelihood of inconsistent results [148]. Moreover, there is a significant number of proteins 
whose activity depends on specific forms of posttranslational modifications, thus making it 
more complex in interpreting their clinical relevance solely based on their expression levels 

[149]. For these reasons, no studies have focused on the role of aberrantly expressed proteins in 

NMSC. Unless improvements in technology are able to overcome the aforementioned issues, 

the use of protein biomarkers for patient risk stratification of NMSC is unlikely to be practical.

Author UV type & dose  

(mJ/cm2)

Transcriptional analysis: 

time post UVR (hours)

Cell type Platform

Rieger and 

Chu [118]

1 (UVC) 4 Lymphoblastoid cell lines U95A-v2 chips

Dazard et al. 

[119]

20–80 (UVB) 0, 0.5, 3, 6, 12, 24 NHEK vs. SCC U95A-v2 chips

Takao et al. 

[120]

10 (UVB) 6 NHEK HuGene FL 

chips (6800)

Dawes et al. 

[121]

1000 (UVB)—rat
3 MED 

(UVB)—human

48 Human vs. rat epidermal 

cells

RNA-Seq

de la Fuente 

et al. [122]

300 (UVB) + 3700 

(UVA)
6 NHM, MHEK, NHDC Whole genome 

chips

Yang et al. 

[123]

25 (UVB) 24 NHM U133+-v2 chips

Koch-Paiz 
et al. [145]

5 (UVA) + 12.5 
(UVB) + 1.2 (UVC)

6, 12 Differentiated mammary 
epithelium

7684 probes 

cDNA array

Enk et al. 

[146]

150–250 (UVB) 2, 24, 72 NHEK U95A-v2 chips

Abbreviations: NHEK, normal human epidermal keratinocytes; NHM, normal human melanocytes; NHDC, normal 
human dendritic cells.

Table 3. Comparison of study design and methods of previous gene expression profiling studies analyzing differential 
expression of UV induced mRNA.
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8. Conclusions

Skin cancer is the most commonly diagnosed cancer in the U.S. and has become a major 

and growing public health problem. Despite numerous public health initiatives to promote 

sun safety, many Americans do not adhere to recommended guidelines to protect themselves 
from UV exposure. Given the long lag between UV induced skin damage and clinically appar-

ent skin cancer, this reduces the perceived risk of UVR and does not encourage timely behav-

ior modification.

Our understanding of the pathogenesis of skin cancer at the molecular level has dramatically 

expanded within the past several years. Although there is still much to be learned about the 
underlying mechanisms of skin cancer pathobiology, advances in genetic sequencing have 

provided great insight into the ways in which effective tests may be developed for patient risk 
stratification of NMSC. This has since paved the way for pursuit of novel applications of this 
information, which have the potential to profoundly improve patient care.

Clinical biomarker discovery has led to revolutionary changes in medical screening, diag-

nosis, and target based therapies for a variety of cancers. In the era of precision medicine, 

individualized patient care is becoming increasingly important in all fields of medicine. While 
UVR has long been known to be a key risk factor for skin cancer development, increasing 

evidence has demonstrated that its role in carcinogenesis is likely multifactorial and involves 

multiple biologic pathways. Despite this, identification of cellular dysregulation in key regu-

latory pathways has provided insight into potential biomarkers of disease.

Various types of biomarkers including DNA, RNA, and protein have been suggested for use 
in diagnostic and prognostic testing for various malignancies. Identification of individual 
biomarkers that produce consistent and reliable information on UV damage has posed a sig-

nificant clinical challenge. We believe that a successful clinical test consisting of a panel of 
UV signature genes will provide the most sensitive and specific means for patient risk strati-
fication of UV skin damage. Within NMSC research, RNA-based UV biomarkers currently 
exhibit the most promise for future clinical application given the multiple, reliable, and cost-

effective modalities for RNA detection.

The current lack of skin cancer screening guidelines in the United States has resulted in a 

non-standardized approach to skin cancer screening and physician risk assessment. Thus, a 

UV biomarker-based screening test could provide an objective and evidence based method 

to determine which patients should receive regular skin cancer screening facilitate the iden-

tification of high risk individuals for dermatology referral and regular skin cancer screening. 
By encouraging early risk assessment, we believe that a biomarker-based diagnostic test will 

greatly improve skin cancer prevention and reduce skin cancer incidence.

Furthermore, translation of UV biomarker expression patterns into a risk score would hope-

fully offer quantitative and convincing evidence to alert susceptible individuals and encour-

age UV protective behaviors. Finally, development of a reliable UV biomarker panel could be 

used for other purposes such as testing the UV-protective effects of sunscreens. We believe this 
area of research deserves continued attention as the development of UV biomarker based tests 
has the potential to completely transform the preventative paradigm pertaining to skin cancer.
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