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Abstract

In this chapter, we review nonlinear models for vector time series data and develop new
nonparametric estimation and inference for them. Vector time series data exist widely in
practice. In financial markets, multiple time series are usually correlated. When analyz-
ing several interdependent time series, in general one should consider them as a single
vector time series fitted by multivariate models, which provides a useful tool for
modeling interdependencies among multiple time series and for simultaneously ana-
lyzing feedback and Granger causality effects. Since nonlinear features are widely
observed in time series, we consider nonlinear methodology for modeling nonlinear
vector time series data, which allows flexibility in the model structure and avoids the
curse of dimensionality.

Keywords: cointegration, VAR, multivariate threshold autoregressive model,
nonparametric smoothing, generalized likelihood ratio

1. Introduction

Multiple time series are of considerable interest in an array of domains, such as finance,

economics, engineering and so on. The data are collected in time order and consist of several

related variables of interest, for instance, the data of stock price indexes and the status data of

important instruments such as shuttles. It is of much practical significance to model this kind

of data well. Moreover, a lot of commonly seen multiple time series are correlated, which

makes it reasonable to regard them as a single vector and to fit them using multivariate

models. Multivariate models perform well in exploring the interdependencies among multiple

time series and capturing the dynamic structure.

Plenty of contributions have been made in the field of parametric models for multivariate time

series. For instance, Sims proposed vector autoregressive (VAR) models in 1980 [1], Engle and

Kroner considered multivariate generalized autoregressive conditional heteroscedastic (GARCH)

models in 1995 [2], and Tsay developed the multivariate threshold models in 1998 [3]. Compared
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to parametric models, nonparametric models require less assumption about the model struc-

ture and are more flexible. Combined with the fact that nonlinearity widely exists in time

series, it is ideal to model the multiple time series using nonparametric models. However, not

much of achievements have been made about this. This is partly due to the complexity of

nonparametric smoothing as well as the curse of dimensionality. With these objectives in mind,

Jiang proposed the multivariate functional-coefficient model in 2014 [4], which provides a

useful tool for modeling vector time series data.

In this chapter, we first review some vector time series models, next extend them to include an

error-correction term by incorporating cointegration among integrated variables, then develop

a single index model for choosing the smoothing variable and a variable selection method for

the multivariate functional-coefficient models, and finally study multivariate time-varying

coefficient models and related hypothesis testing problems.

The remainder of this chapter is organized as follows. In Section 2 we review vector auto-

regressive (VAR) models. In Section 3, we consider multivariate functional-coefficient regres-

sion models and their extensions, where a model selection rule is also proposed. In Section 4

we introduce multivariate time-varying coefficient models and propose a generalized likeli-

hood ratio test. In Section 5 we make a conclusion and discuss some interesting research topics

to be completed.

2. Review of VAR models

The vector autoregressive model is a generalization of the univariate autoregressive model for

forecasting a vector of time series. This model was pioneered by Sims in Ref. [1] and it has

acquired a prominent role in analyzing macroeconomic time series. Prior to 1980, large-scale

statistical dynamic simultaneous equations model (DSEMs) was widely used in empirical

macroeconomics, which often contained dozens or even hundreds of equations. As the eco-

nomic environment has grown more complicated, the traditional simultaneous models have

grown. Sims believed that since these models do not dichotomize variables into “endogenous”

and “exogenous,” the exclusion restrictions used to identify the simultaneous equations

models make little sense. Thus, he advocated the vector autoregressive model (VAR) to model

the interrelationships among a set of macroeconomic variables. In the structure of VAR

models, each variable is a linear function of past lags of itself and past lags of the other

variables. Sims demonstrated that VARs provide a flexible and tractable framework for ana-

lyzing economic time series. While hardly relying on economic theorems, VAR models have

proven efficient in capturing the dynamics of multivariate systems as well as forecasting [1].

Specifically, a vector autoregressive model of order p [VAR(p)] has the following general form:

yt ¼ cþ A1yt�1 þ…Apyt�p þ et (1)

where yt = (y1t, … , yKt)
0

is a set of K time series variables, c is a K� 1 vector of constant, Ai’s are

K�K coefficient matrices, and et are error terms. Usually, et are assumed to be zero-mean
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independent white noise with time-invariant and positive-definite covariance matrix Σ. For

example, a VAR (1) model with two time series components can be written as:

y1t
y2t

� �

¼
c1

c2

� �

þ
A11 A12

A21 A22

� �

y1, t�1

y2, t�1

 !

þ
e1, t

e2, t

� �

or the equation set

y1t ¼ c1 þ A11y1, t�1 þ A12y2, t�1 þ e1, t

y2t ¼ c2 þ A21y1, t�1 þ A22y2, t�1 þ e2, t

Using lag-operator L, Eq. (1) can be written as the following form:

yt ¼ cþ A1Lþ A2L
2 þ…þ ApL

p
� �

yt þ et (2)

Let A(z) = I�A1z�A2z
2� …Apz

p, where z is a complex number. Then the VAR process is

stable if

det A zð Þð Þ 6¼ 0for zj j ≤ 1: (3)

In other words, the determinant of the matrix polynomial has no roots in and on the complex

unit circle. If the stability conditions are satisfied and the process can be extended to the infinite

past, then the VAR process is stationary.

For model (1), since the right-hand side consists of only predetermined variables and the error

terms are assumed to be independent white noise with time-invariant covariance, each equa-

tion can be estimated by ordinary least squares (OLS). Zellner proved that the OLS estimator

coincides with the generalized LS (GLS) estimator [5].

The celebrated model (1) is easy to fit, and its autoregressive structure allows one to study

the feedback effects and the Granger causality. However, model (1) employs only the lagged

values of yt for forecast and ignores other potentially important variables’ effect. In addition,

as time evolved, the coefficients remain constant, which may contrast the real situations

where the dynamic structure of the relationship among different time series involves with

time.

3. Multivariate functional-coefficient regression models and extensions

We briefly reviewed VAR models in the previous section. This parametric method has been

significantly developed and widely applied to econometric dynamics as well as other domains.

An alternative to modeling vector time series is the nonparametric method, which requires

much fewer assumptions on the model structure and may shed light on the later parametric

fitting. To illustrate the basic idea of this approach, let us begin with the multivariate threshold

autoregressive model [3].
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3.1. Multivariate threshold autoregressive model

The multivariate threshold autoregressive model is a generalization of the univariate threshold

autoregressive model [6]. The idea is to partition one-dimensional variable into s regimes and

impose an AR model with exogenous variables in each regime. Consider a k� dimensional

time series yt = (y1t, … , ykt)
0

and a v-dimensional exogenous variable xt = (x1t, … , xvt)
0

, for t = 1,…,

n. Let �∞ = r0 < r1 < ⋯ < rs =∞. The multivariate threshold model with threshold variable zt and

delay d has the following form:

yt ¼ cj þ
Xn

i¼1

φi
jð Þyt�i þ

Xq

i¼1

βi
jð Þxt�i þ εi

jð Þ if rj�1 < zt�d ≤ rj j ¼ 1;…; sð Þ, (4)

where p and q are nonnegative integers and εt
jð Þ ¼ Σj

1
2at, with Σj

1
2 being a positive-definite

matrix and atf g a sequence of serially uncorrelated random vectors with mean zero and

covariance matrix Ιk. The threshold variable zt is assumed to be stationary and has a continu-

ous distribution.

Model (4) is piecewise linear in the threshold space of zt� d, but it is nonlinear when s > 1 [3].

This model has proven to be useful in practice. Nevertheless, the assumption embedded in this

model weakens the practicability, that is, the coefficients are assumed to be constants in the

threshold space of zt� d in model (4). This assumption is questionable since the economic

conditions tend to change slowly over time and the coefficient functions may vary smoothly.

Motivated by this, Jiang proposed the multivariate functional-coefficient model, in which the

coefficients are functions of threshold variable zt� d instead of constants [4].

3.2. Multivariate functional-coefficient models

The multivariate functional-coefficient model has the following form:

yt ¼ c zt�dð Þ þ
Xp

i¼1

φi zt�dð Þyt�i þ
Xq

i¼1

βi zt�dð Þxt�i þ εt, (5)

where cð�Þ is a k� 1 functional vector, φi(�) are k� k functional matrices, and βi(�) are k� v

functional matrices. The innovation satisfies εt ¼ σt
∗at, where σt

∗ is a positive-definite matrix

and atf g as in Eq. (4). Assume that σt
∗ is measurable with respect to the σ-field generated by

the historical information F t� 1 = {(wj,zj� d) : j ≤ t}, where wj = (xj� 1, … , xj� q, yj� 1, … , yj� p). For

model (5), we are interested in estimating the regression part. Once it is estimated, one may

consider making simultaneous inference about parameters and using the residuals to study the

structure of the volatility matrix. This model is a generalization of vector autoregressive

models [1], threshold models [3] and functional-coefficient models [7–10]. Even for one-

dimensional settings with k = 1, model (5) includes important predictive regression models in

econometrics, such as the linear predictive models with nonstationary predictors [11–13] and

functional-coefficient models for nonstationary time series data [14]. Model (5) can also be

used to investigate the Granger Causality [15–17] and the feedback effect in engineering and

finance [18, 19].
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For model (5), a weighted local least squares estimation method was provided in [4]. Let

Xt = vec(1, yt� 1, … , yt� p, xt� 1, … , xt� p) and Φ(z) = (c(z),φ1(z), ⋯ ,φp(z), β1(z), … , βq(z)). Then

model (5) becomes

yt ¼ Φ zt�dð ÞXt þ εt, (6)

where Φ(�) is a k�m matrix-valued function and Xt is an m� 1 vector with m = 1 + pk + qv. For

any zt� d in the neighborhood of z, by the Taylor expansion, we have

Φ zt�dð Þ ≈Φ zð Þ þΦ0 zð Þ zt�d � zð Þ � Aþ B zt�d � zð Þ:

Let S and V be 2� 2 matrices whose (i, j)th elements are μi + j� 2 =
Ð

ui + j� 2K(u)du and

νi + j� 2 =
Ð

ui + j� 2K2(u)du, respectively, and let s = (μ2,μ3)
0
. Given any invertible working vari-

ance matrix σt
2 of σt

∗2, the estimator ~A;
~B

� �

is achieved by minimizing

X

n

t¼s0þ1

∥σt
�1 yt � AXt � BXt zt�d � zð Þ
� 	

∥2Khn zt�d � zð Þ,

where ∥ � ∥ denotes the Euclidean norm, s
0
=max(p, d, q), and Khn(x) = hn

�1K(x/hn) for kernel

function K(�) with bandwidth hn controlling the amount of smoothing. Let Khn
(i)(zt� d� z) =

hn
�i(zt� d� z)Khn(z�d� z) and ~Sni ¼

P

n

t¼s0þ1

XtXt
T

� �

⊗ σt
�2Khn

ið Þ zt�d � zð Þ for i = 0 , 1 , 2. Then the

weighted estimators ~A;
~BÞ

�

admit the closed form:

vecð~AÞ

vecðhn~BÞ

 !

¼
~Sn0

~Sn1

~Sn1
~Sn2

 !�1

X

n

t¼s0þ1

Xt ⊗ σt
�2

� �

ytKhn zt�d � zð Þ

X

n

t¼s0þ1

Xt ⊗ σt
�2

� �

ytKhn
1ð Þ zt�d � zð Þ

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

Under certain conditions, the weighted estimators are asymptotically normal (see [4]).

Recall that, in model (5), σt
∗ is a positive-definite matrix measurable with respect to the sigma-

algebra generated by historical information. If there is a parametric structure of σt
∗, for exam-

ple, the generalized autoregressive conditional heteroscedastic (GARCH) errors [4], then it

helps to improve the efficiency of the weighted estimation. Example 3 in [4] exemplifies this

point. Our intuition is that, if a parametric structure of σt
∗ is correctly specified, then the

weighted estimation mimics the oracle estimation in the sense that σt
∗ is known. This intuition

can be verified theoretically since σt
∗ can be estimated at rate of

ffiffiffi

n
p

which is faster than what

we can do for the regression function in model (5).

3.3. Extension of multivariate functional-coefficient models

Due to the fact that many economic factors are not stationary, classic regression analysis

requiring the stationarity condition suffers from a great limitation. Cointegration analysis has
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become a formidable toolkit in analyzing non-stationary economic time series. The concept of

cointegration goes back to Granger [20] and initiated a literal research boom. Engle & Granger

proposed the well-known Engel-Granger test to examine whether there is a cointegrating

relationship among a set of first-order integrated variables [21].

Motivated by Granger and Engel & Granger, Jiang proposed an error-correction version of

model (5) by incorporating the cointegrating relationship of first-order integrated variables [4].

This allows us to cope with the nonstationarity of vector time series and to improve the

accuracy of forecasting.

Let st denote a k� 1 vector of first-order integrated variables and let yt = st� st� 1. Assume that

there is a co-integrating relationship for st; that is, there exists a unique k� r(0 < r < k) determin-

istic matrix θ of rank r and a stationary process ut such that θTst = ut. Then an error-correction

form of model (5) is

yt ¼ c zt�dð Þ þ γ zt�dð Þut�1 þ
Xp

i¼1

φi zt�dð Þyt�i þ
Xq

i¼1

βi zt�dð Þxt�i þ εt, (7)

where γ(zt� d) is a k� r coefficient matrix. This model simplifies to the Granger representation

theorem if the coefficient functions are constant and there are no exogenous variables [4].

Due to the widespread presence of cointegrating variables in finance and economics, model (7)

should improve the practicability of model (5). However, model (7) requires specification of

variable zt. This can be relaxed by using the idea of single index models. Recall that model (5)

can be represented in succinct form (6). The similar operations can be applied to model (7).

Now set zt =γ
TXt and let data decide the value of γ. Then model (7) can be extended as

yt ¼ Φ γTXt�d

� �
Xt þ εt, (8)

where γ is a directional vector such that its first nonzero entry is positive. Model (8) is more

flexible than model (7), it is key to estimate γ. We introduce the profile lease squares method to

estimate model (8). The estimation procedure consists of several steps:

Step 1. Given an initial value of γ, one obtains the weighted estimator bΦ �;γð Þ of coefficient
function in the same way as for model (6).

Step 2. Find the value bγ to minimize

Xn

t¼s0þ1

∥yt � bΦ γTXt�d;γ
� �

Xt∥
2
: (9)

Step 3. Update the value of γ by bγ, and repeat Step 1 and Step 2 many times until convergence.

The coefficient function Φ(�) is estimated by bΦ �; bγð Þ.

It can be shown that bΦ �; bγð Þ shares the same asymptotic normality as the Oracle weighted

estimator in the sense that it knows the true value of γ, since bγ is
ffiffiffi
n

p
-consistent.
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3.4. Variable selection of multivariate functional-coefficient models

In this section, we consider variable selection of model (6). Increasing the lags p and q will

necessarily reduce the sum of squared errors. However, doing so will increase the burden of

coefficient estimation and may also lead to overfitting. Hence, for the multivariate functional-

coefficient model, order selection is of much importance.

Two widely used model selection criteria are Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC). However, these stepwise methods yield heavy burden on compu-

tation and furthermore bring difficulty in establishing asymptotics for the estimation of

selected models. The problems become more severe for high-dimensional data. Various regu-

larization methods have been proposed to deal with these problems. Among them, a popular

approach, called LASSO, proposed by Tibshirani, performs variable selection and parameter

estimation simultaneously. See Ref. [22]. For univariate varying-coefficient regression models

with i.i.d. data, Wang and Xia [23] developed a shrinkage estimation method by combining the

idea of group LASSO [24] and kernel smoothing. In the following we develop a shrinkage

estimation method for multivariate functional-coefficient model (6):

yt ¼ Φ zt�dð ÞXt þ εt,

where the functional-coefficient matrix Φ(z) = (c(z),φ1(z), … ,φp(z), β1(z), … , βq(z)). Since each

column of Φ(�) corresponds to the effect of a component of Xt, for variable selection of Xt we

should penalize each column of Φ(�) as a whole. This leads to minimizing

Qλ Φð Þ ¼
X

n

i¼s0þ1

X

n

t¼s0þ1

∥yt �Φ zi�dð ÞXt∥
2K h�1 zt�d � zi�dð Þ

� �

þ
X

pþqþ1

j¼1

λj∥Φj∥, (10)

where Φj = (Φj(zs0 + 1� d), … ,Φj(zn� d)) with Φj(�) being the jth column of Φ(�), λj’s are tuning

parameters, and for any matrix Awe use ∥A∥ to denote the Hilbert-Schmidt norm of matrix. It

is interesting to establish model selection consistency and the oracle property of the shrinkage

estimation.

4. Multivariate time-varying coefficient models

Parallel to functional-coefficient model (5), it is natural to consider its alternative with time-

varying coefficients [25]:

yt ¼ c t=Tð Þ þ
X

p

i¼1

φi t=Tð Þyt�i þ
X

q

i¼1

βi t=Tð Þxt�i þ εt, t ¼ 1,…, T, (11)

where yt is a k� 1 vector, xt is a v� 1 vector, c �ð Þis a k� 1 vector, ϕi(�) are k� k smooth matrices and

βi(�) are k� v smooth matrices. The innovation satisfies the same conditions as model (5). It is

known that as time involves the economic conditions change slowly and smoothly. Model (11)

reflects this smoothing change by allowing the coefficients being smoothing functions of time.
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Let

Φ t=Tð Þ ¼ c t=Tð Þ;φ1 t=Tð Þ;…;φp t=Tð Þ; β1 t=Tð Þ;…; βq t=Tð Þ
� �

:

Using similar arguments to model (6), we can rewrite model (11) as

yt ¼ Φ t=Tð ÞXt þ εt, t ¼ 1,…, T, (12)

whereΦ(�) is a k�mmatrix and Xt is the same as in model (6). By the Taylor expansion, for any

t in the neighborhood of t0∈ (0,T), we have

Φ t=Tð Þ ≈Φ t0=Tð Þ þΦ0 t0=Tð Þ t� t0ð Þ=Tð Þ � PþQ t� t0ð Þ=Tð Þ:

Running the local linear smoother for model (12), we minimize

XT

t¼sþ1

∥yt � PXt �QXt t� t0ð Þ=Tð Þ∥2Kh t� t0ð Þ (13)

over P and Q, where s =max(p, q) and Kh(x) = h
�1K(x/hT). Then it is straightforward to obtain an

explicit form of the minimizer, bP; bQ
� �

, for the above optimization problem,

vec bP
� �

vec hbQ
� �

0

B@

1

CA ¼
ST0 ST1

ST1 ST2

� ��1

XT

t¼sþ1

Xt ⊗ Ikð ÞytKh t� t0ð Þ

XT

t¼sþ1

Xt ⊗ Ikð ÞytKh
1ð Þ t� t0ð Þ

0

BBBBB@

1

CCCCCA

,

(14)

where STi ¼
PT

t¼sþ1

XtXt
0ð Þ⊗ IkKh

ið Þ t� t0ð Þ and Kh
(i)(t� t0) = (Th)

�i(t� t0)
iKh(t� t0), for i = 0 , 1 , 2.

Define M =E[(XtXt
T)⊗ Ik] and N =E[(XtXt

T)⊗ (σt
∗)2]. Let μi =

Ð
uiK(u)du, vi =

Ð
uiK2(u)du,

U ¼
μ0 μ1

μ1 μ2

� �
, V ¼

v0 v1

v1 v2

� �

Using similar arguments to [4], we can show that this estimator is asymptotically normal with

mean zero and variance Σ, where Σ = (U�1VU�1)⊗ (M�1NM�1).

4.1. Generalized likelihood ratio tests

The multivariate time-varying coefficient regression model is flexible and powerful to estimate

the dynamic changes of coefficients. After fitting a given dataset, some important questions

arise, for example, whether the coefficient functions are actually constant or of some particular

forms? This leads to statistical hypothesis testing. To answer these questions, we develop
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generalized likelihood ratio statistics to test corresponding hypothesis testing problems about

the coefficient functions [26].

For the multivariate time-varying coefficient model (12), assume Σ0
�1/2

εt has mean zero and

covariance matrix Ik with Σ0 being a symmetric positive-definite constant matrix.

Consider the following hypothesis testing problem

H0 : Φ t=Tð Þ∈Θ0 t=Tð Þ $ Ha : Φ t=Tð Þ∉Θ0 t=Tð Þ, (15)

where Θ0(t/T) is some known constant matrix Φ0 or a set of functionalmatrices. Let bΦ t=Tð Þ
denote the nonparametric estimator ofΦ, and let bΦ0 t=Tð Þ denote the true or estimated value of

coefficients under the null hypothesis. Following Fan et al. [26] and Fan and Jiang [27], we

define a generalized likelihood ratio statistic for testing problem (15):

λT ¼ T

2
log

RSS0 � RSSa
RSSa

� �
, (16)

where RSS0 ¼
PT

t¼1 yt � bΦ0 t=Tð ÞXt

� �T
Σ
�1 yt � bΦ0 t=Tð ÞXt

� �T
, and RSSa ¼

PT
t¼1 yt � bΦ t=Tð Þ

�

XtÞTΣ�1 yt � bΦ t=Tð ÞXt

� �
with Σ being a known constant covariance matrix from a working

model. It is meaningful to study the asymptotic distributions of the test statistic under the null

and alternatives.

In the following example, we consider the case when Θ0(.) is a known constant. For any u = t/

T∈ (0, 1), if we rewrite matrix Φ(u) as a vector, Δ(u)� vec(Φ1(u), … ,Φm(u)), and denote

Δ0(u)� vec(Φ01
∗(u), … ,Φ0M

∗(u)), then the power of the test is evaluated against alternatives:

Ha : Δ uð Þ ¼ Δ0 uð Þ þ 1ffiffiffiffiffiffi
Th

p G uð Þ, (17)

where G(u) = (g1(u), … , gm(u))
T is a vector of functions.

Example 1. To investigate the performance of the proposed generalized likelihood ratio test,

600 replications for each of sample sizes T = 200, T = 400 and T = 800 from the multivariate time-

varying coefficient model were generated:

yt ¼ Φ t=Tð ÞXt þ εt, t ¼ 1,…, T

where k = 2, v = p = q = 1, Δ = vec(0.5, 0.0074, 0.08, 0.65, 0.25, 0.75)T. We set the initial values x1 = 0

and y1 = (0.15, 0.2). Accordingly, Xt = vec(y1 , t� 1, y2 , t� 1, xt� 1) for t = 2 , … ,T. Three distributions

of the error term are considered: bivariate normal, bivariate log-normal, and bivariate t(5), each

with variance matrix Σ ¼
1 0:5

0:5 1

� �
. According to alternative (17), the power of the test is

evaluated for a sequence of alternatives index by θ:
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Figure 1. The power curves for Example 1. Significance level is 5%.
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Hθ : Δθ ¼ 0:5; 0:0075; 0:08; 0:65; 0:25; 0:75ð ÞT þ θffiffiffiffiffiffi
Th

p G t=Tð Þ, (18)

where G t=Tð Þ ¼ sin
ffiffiffi
2

p
π=T

� �
;�0:09 cos πt=Tð Þ; 0:16 sin

ffiffiffi
3

p
π=T

� �
; 0:8 sin

ffiffiffi
2

p
π=T

� �
; 0:3 sin t=Tð Þ;

��

cos
ffiffiffiffiffiffiffi
1:5

p
πt=T

� �
ÞT and θ = 0 , 0.2 , 0.4 , 0.6 , 0.8 , 1. The power function is estimated by the relative

rejection frequency of H0 in the above replicates.

The significance level is set to be 5%, and the critical values in simulations are calculated

similarly by using the conditional bootstrap method in Ref. [26] for each given θ value. Detail

of this method is as follows:

Step 1. Compute the estimators of the coefficient bΦ t=Tð Þ under both the null and the alterna-

tive by setting the optimal bandwidth as the estimated value bhopt.

Step 2. Compute the test statistic λT(H0) and the residuals {et} from the alternative model.

Step 3. For each given Xt, draw a bootstrap residual et
∗ from the centered empirical distribu-

tion of et and compute yt
∗ ¼ bΦ t=Tð ÞXt þ et

∗. This forms a conditional bootstrap sample

Xt; yt
∗

� �T

t¼1
.

Step 4. Compute the test statistic λT
∗(H0) using the bootstrap sample constructed in Step 3.

Step 5. Repeat Step 3 and Step 4 to get a sample of the test statistic λT
∗(H0). The critical values

at significance level α are calculated by the 100(1�α)th percentile of the sample.

Figure 1 displays the power curves in difference scenarios. We can tell from Figure 1 that the

patterns of power curves look like half of an inverted normal density. All the curves rise

monotonically from a height equal to the significance level of 5% until eventually it reaches

its maximum height of around 90%. It is evident from Figure 1 that the test is powerful for all

three different distributions of error terms. Moreover, the test becomes more powerful as

sample size increases. These indicate that the proposed test keeps the size and is powerful for

distinguishing the difference between the null and the alternative.

5. Conclusions

In this chapter, we have reviewed some parametric and nonparametric methods for modeling

nonlinear vector time series data, which include the VAR model, the multivariate threshold

autoregressive model, and the multivariate functional-coefficient regression model. These

models have great significance in econometrical and statistical theory and application. Based

on the weighted local least square estimation, we have proposed a variable selection method

for the functional-coefficient model. This model selection procedure is applicable to the pro-

posed multivariate single index models and multivariate time-varying coefficient models. We

have also extended the generalized likelihood ratio test to the time-varying coefficient model
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and demonstrated its performance through simulation. The proposed methodology is very

useful for modeling nonlinear dynamic structures inherited in financial data. However, there

are many problems remain unsolved for our procedure, such as the limiting theory about the

proposed methodology. Future work includes, but not limited to, extending our models to

nonstationary settings and exploring their performance in different applications.
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