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Abstract

In this chapter, we review nonlinear models for vector time series data and develop new
nonparametric estimation and inference for them. Vector time series data exist widely in
practice. In financial markets, multiple time series are usually correlated. When analyz-
ing several interdependent time series, in general one should consider them as a single
vector time series fitted by multivariate models, which provides a useful tool for
modeling interdependencies among multiple time series and for simultaneously ana-
lyzing feedback and Granger causality effects. Since nonlinear features are widely
observed in time series, we consider nonlinear methodology for modeling nonlinear
vector time series data, which allows flexibility in the model structure and avoids the
curse of dimensionality.

Keywords: cointegration, VAR, multivariate threshold autoregressive model,
nonparametric smoothing, generalized likelihood ratio

1. Introduction

Multiple time series are of considerable interest in an array of domains, such as finance,
economics, engineering and so on. The data are collected in time order and consist of several
related variables of interest, for instance, the data of stock price indexes and the status data of
important instruments such as shuttles. It is of much practical significance to model this kind
of data well. Moreover, a lot of commonly seen multiple time series are correlated, which
makes it reasonable to regard them as a single vector and to fit them using multivariate
models. Multivariate models perform well in exploring the interdependencies among multiple
time series and capturing the dynamic structure.

Plenty of contributions have been made in the field of parametric models for multivariate time
series. For instance, Sims proposed vector autoregressive (VAR) models in 1980 [1], Engle and
Kroner considered multivariate generalized autoregressive conditional heteroscedastic (GARCH)
models in 1995 [2], and Tsay developed the multivariate threshold models in 1998 [3]. Compared
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to parametric models, nonparametric models require less assumption about the model struc-
ture and are more flexible. Combined with the fact that nonlinearity widely exists in time
series, it is ideal to model the multiple time series using nonparametric models. However, not
much of achievements have been made about this. This is partly due to the complexity of
nonparametric smoothing as well as the curse of dimensionality. With these objectives in mind,
Jiang proposed the multivariate functional-coefficient model in 2014 [4], which provides a
useful tool for modeling vector time series data.

In this chapter, we first review some vector time series models, next extend them to include an
error-correction term by incorporating cointegration among integrated variables, then develop
a single index model for choosing the smoothing variable and a variable selection method for
the multivariate functional-coefficient models, and finally study multivariate time-varying
coefficient models and related hypothesis testing problems.

The remainder of this chapter is organized as follows. In Section 2 we review vector auto-
regressive (VAR) models. In Section 3, we consider multivariate functional-coefficient regres-
sion models and their extensions, where a model selection rule is also proposed. In Section 4
we introduce multivariate time-varying coefficient models and propose a generalized likeli-
hood ratio test. In Section 5 we make a conclusion and discuss some interesting research topics
to be completed.

2. Review of VAR models

The vector autoregressive model is a generalization of the univariate autoregressive model for
forecasting a vector of time series. This model was pioneered by Sims in Ref. [1] and it has
acquired a prominent role in analyzing macroeconomic time series. Prior to 1980, large-scale
statistical dynamic simultaneous equations model (DSEMs) was widely used in empirical
macroeconomics, which often contained dozens or even hundreds of equations. As the eco-
nomic environment has grown more complicated, the traditional simultaneous models have
grown. Sims believed that since these models do not dichotomize variables into “endogenous”
and “exogenous,” the exclusion restrictions used to identify the simultaneous equations
models make little sense. Thus, he advocated the vector autoregressive model (VAR) to model
the interrelationships among a set of macroeconomic variables. In the structure of VAR
models, each variable is a linear function of past lags of itself and past lags of the other
variables. Sims demonstrated that VARs provide a flexible and tractable framework for ana-
lyzing economic time series. While hardly relying on economic theorems, VAR models have
proven efficient in capturing the dynamics of multivariate systems as well as forecasting [1].
Specifically, a vector autoregressive model of order p [VAR(p)] has the following general form:

Yyp=ct+ Ayt Ay, Te @

where y;=(y11 ..., Yk:) is a set of K time series variables, cis a K x 1 vector of constant, A;’s are
K x K coefficient matrices, and ¢; are error terms. Usually, ¢; are assumed to be zero-mean
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independent white noise with time-invariant and positive-definite covariance matrix X.. For
example, a VAR (1) model with two time series components can be written as:

()= (@) G ) () + ()
Yo 2 A1 Az ) \ Yo eyt
or the equation set

Yy =¢c1+ All]/L -1 T AlZyz, -1 et
Yoy = C2 + Azlyl, 1 T A22yz, -1 T et

Using lag-operator L, Eq. (1) can be written as the following form:

y,=c+ (AIL+AL* + ...+ A L")y, + e @)

Let A(z)=1— Az — Ayz* — ...AyZ", where z is a complex number. Then the VAR process is
stable if

det(A(z)) # Ofor|z|<1. 3)

In other words, the determinant of the matrix polynomial has no roots in and on the complex
unit circle. If the stability conditions are satisfied and the process can be extended to the infinite
past, then the VAR process is stationary.

For model (1), since the right-hand side consists of only predetermined variables and the error
terms are assumed to be independent white noise with time-invariant covariance, each equa-
tion can be estimated by ordinary least squares (OLS). Zellner proved that the OLS estimator
coincides with the generalized LS (GLS) estimator [5].

The celebrated model (1) is easy to fit, and its autoregressive structure allows one to study
the feedback effects and the Granger causality. However, model (1) employs only the lagged
values of y, for forecast and ignores other potentially important variables” effect. In addition,
as time evolved, the coefficients remain constant, which may contrast the real situations
where the dynamic structure of the relationship among different time series involves with
time.

3. Multivariate functional-coefficient regression models and extensions

We briefly reviewed VAR models in the previous section. This parametric method has been
significantly developed and widely applied to econometric dynamics as well as other domains.
An alternative to modeling vector time series is the nonparametric method, which requires
much fewer assumptions on the model structure and may shed light on the later parametric
fitting. To illustrate the basic idea of this approach, let us begin with the multivariate threshold
autoregressive model [3].
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3.1. Multivariate threshold autoregressive model

The multivariate threshold autoregressive model is a generalization of the univariate threshold
autoregressive model [6]. The idea is to partition one-dimensional variable into s regimes and
impose an AR model with exogenous variables in each regime. Consider a k— dimensional
time series ;= (Y14, .-, ykt)/ and a v-dimensional exogenous variable x;= (x4, ..., xvt)/, fort=1,...,
n. Let — oo =75<r; < --- <ry=c0, The multivariate threshold model with threshold variable z;, and
delay 4 has the following form:

Y, =i+ Zqﬁi@yt,i + Zﬁi(’)xt,i + &V ifrj 1 <za<ri(j=1,...,5), 4)
i=1 i=1

where p and q are nonnegative integers and &) = Zj%at, with Z]-% being a positive-definite
matrix and {a;} a sequence of serially uncorrelated random vectors with mean zero and
covariance matrix [. The threshold variable z; is assumed to be stationary and has a continu-
ous distribution.

Model (4) is piecewise linear in the threshold space of z; 4 but it is nonlinear when s>1 [3].
This model has proven to be useful in practice. Nevertheless, the assumption embedded in this
model weakens the practicability, that is, the coefficients are assumed to be constants in the
threshold space of z; _,; in model (4). This assumption is questionable since the economic
conditions tend to change slowly over time and the coefficient functions may vary smoothly.
Motivated by this, Jiang proposed the multivariate functional-coefficient model, in which the
coefficients are functions of threshold variable z; _ ; instead of constants [4].

3.2. Multivariate functional-coefficient models

The multivariate functional-coefficient model has the following form:

p

g
yp=czea) + Y 0zay  + Y Biza)x i+ &, (5)

i=1 i=1

where ¢(-) is a k x 1 functional vector, ¢;(-) are k x k functional matrices, and f,(-) are k x v
functional matrices. The innovation satisfies ¢; = 0,*a;, where ¢;" is a positive-definite matrix
and {a;} as in Eq. (4). Assume that ¢," is measurable with respect to the o-field generated by
the historical information 7, _1={(w;z; _ 1) :j<t}, where wj=(xj_1, ..., Xj 4 Yj—1, ---, Yj—p). For
model (5), we are interested in estimating the regression part. Once it is estimated, one may
consider making simultaneous inference about parameters and using the residuals to study the
structure of the volatility matrix. This model is a generalization of vector autoregressive
models [1], threshold models [3] and functional-coefficient models [7-10]. Even for one-
dimensional settings with k = 1, model (5) includes important predictive regression models in
econometrics, such as the linear predictive models with nonstationary predictors [11-13] and
functional-coefficient models for nonstationary time series data [14]. Model (5) can also be
used to investigate the Granger Causality [15-17] and the feedback effect in engineering and
finance [18, 19].
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For model (5), a weighted local least squares estimation method was provided in [4]. Let

Xi=vec(L,yi—1, oo Yi—p Xe—1, -+, Xt —p) and D(z)=(c(z), P1(2), -, Pp(2), P1(2), .-, B4(2)). Then
model (5) becomes

Y= D(z1-a)Xi + &4, (6)

where @(-) is a k x m matrix-valued function and X, is an m x 1 vector with m=1+pk+qv. For
any z; _ 4 in the neighborhood of z, by the Taylor expansion, we have

D(zig)=D(z) + D(2)(z1-g —2) = A + B(zt-4 — 2).

Let S and V be 2x2 matrices whose (i,j)th elements are p;,;_»= fu”j “?K(u)du and
Viij_2= [ 4"~ 2K?(u)du, respectively, and let s= (i, i3) . Given any invertible working vari-

ance matrix 0,2 of 6, the estimator (A, B) is achieved by minimizing

n
> o [y, — AXy = BXi(zi-a — 2)| 1K, (21-a — 2),
t=s'+1

where || || denotes the Euclidean norm, s/=max(p, d,q), and Kh”(x)=hn’1l<(x/hn) for kernel

function K(-) with bandwidth #,, controlling the amount of smoothing. Let Khn(i)(zt,d —2z) =

My 'z a—2)Ky(z_a—2) and S = (XeX:") ® 072K, @ (z,_y — z) for i=0,1,2. Then the
t=s'+1

weighted estimators <A, B) admit the closed form:

n

Z (Xt ® ‘752)%Khn (zt-a — 2)

( UEC(A) ) <§n0 gnl > - t=s'+1
mB)) \8u 3, "
vec(h,B) 1 S Z (X ®0,2)y,Kn, V(2 — 2)

t=s'+1

Under certain conditions, the weighted estimators are asymptotically normal (see [4]).

Recall that, in model (5), 0" is a positive-definite matrix measurable with respect to the sigma-
algebra generated by historical information. If there is a parametric structure of ¢;", for exam-
ple, the generalized autoregressive conditional heteroscedastic (GARCH) errors [4], then it
helps to improve the efficiency of the weighted estimation. Example 3 in [4] exemplifies this
point. Our intuition is that, if a parametric structure of ¢;" is correctly specified, then the
weighted estimation mimics the oracle estimation in the sense that o;" is known. This intuition
can be verified theoretically since o," can be estimated at rate of y/n which is faster than what
we can do for the regression function in model (5).

3.3. Extension of multivariate functional-coefficient models

Due to the fact that many economic factors are not stationary, classic regression analysis
requiring the stationarity condition suffers from a great limitation. Cointegration analysis has
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become a formidable toolkit in analyzing non-stationary economic time series. The concept of
cointegration goes back to Granger [20] and initiated a literal research boom. Engle & Granger
proposed the well-known Engel-Granger test to examine whether there is a cointegrating
relationship among a set of first-order integrated variables [21].

Motivated by Granger and Engel & Granger, Jiang proposed an error-correction version of
model (5) by incorporating the cointegrating relationship of first-order integrated variables [4].
This allows us to cope with the nonstationarity of vector time series and to improve the
accuracy of forecasting.

Let s; denote a k x 1 vector of first-order integrated variables and let y;,=s; —s;_ ;. Assume that
there is a co-integrating relationship for s; that is, there exists a unique k x r(0 <r <k) determin-
istic matrix O of rank r and a stationary process u, such that 0's,=u,. Then an error-correction
form of model (5) is

p q
Y, = c(zt-a) + ¥ (ze—a)ur-1 + Z ¢i(zi-a)y,_; + Zﬁi(ztfd)xtfi + & 7)
=1 =1

where y(z; _ ;) is a k x r coefficient matrix. This model simplifies to the Granger representation
theorem if the coefficient functions are constant and there are no exogenous variables [4].

Due to the widespread presence of cointegrating variables in finance and economics, model (7)
should improve the practicability of model (5). However, model (7) requires specification of
variable z;. This can be relaxed by using the idea of single index models. Recall that model (5)
can be represented in succinct form (6). The similar operations can be applied to model (7).
Now set z,=y"X; and let data decide the value of y. Then model (7) can be extended as

Y= O Xea) X + &, 8)

where y is a directional vector such that its first nonzero entry is positive. Model (8) is more
flexible than model (7), it is key to estimate . We introduce the profile lease squares method to
estimate model (8). The estimation procedure consists of several steps:

Step 1. Given an initial value of y, one obtains the weighted estimator (TD(, y) of coefficient
function in the same way as for model (6).

Step 2. Find the value ¥ to minimize

7y, — DO Xemasy) Xl )

t=s'+1

Step 3. Update the value of y by ¥, and repeat Step 1 and Step 2 many times until convergence.
The coefficient function @) is estimated by D(-; V).

It can be shown that @(-;7) shares the same asymptotic normality as the Oracle weighted
estimator in the sense that it knows the true value of y, since ¥ is y/n-consistent.
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3.4. Variable selection of multivariate functional-coefficient models

In this section, we consider variable selection of model (6). Increasing the lags p and q will
necessarily reduce the sum of squared errors. However, doing so will increase the burden of
coefficient estimation and may also lead to overfitting. Hence, for the multivariate functional-
coefficient model, order selection is of much importance.

Two widely used model selection criteria are Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). However, these stepwise methods yield heavy burden on compu-
tation and furthermore bring difficulty in establishing asymptotics for the estimation of
selected models. The problems become more severe for high-dimensional data. Various regu-
larization methods have been proposed to deal with these problems. Among them, a popular
approach, called LASSO, proposed by Tibshirani, performs variable selection and parameter
estimation simultaneously. See Ref. [22]. For univariate varying-coefficient regression models
withii.d. data, Wang and Xia [23] developed a shrinkage estimation method by combining the
idea of group LASSO [24] and kernel smoothing. In the following we develop a shrinkage
estimation method for multivariate functional-coefficient model (6):

Yy = DOz a) X + &4,
where the functional-coefficient matrix @(z)=(c(z), ¢1(2), ..., Pp(2), 1(2), ..., B4(2)). Since each

column of @(-) corresponds to the effect of a component of X;, for variable selection of X; we
should penalize each column of @(-) as a whole. This leads to minimizing

n n p+q+1
QD) = D" > lly, — D) XilPK(h (zea — zia)) + Y AP (10)
i=s'+1 t=s'+1 =1

where @;=(P{(zs+1-4), ---, Pi(zn —a)) With @) being the jth column of @(:), A/s are tuning
parameters, and for any matrix A we use ||A|| to denote the Hilbert-Schmidt norm of matrix. It
is interesting to establish model selection consistency and the oracle property of the shrinkage
estimation.

4. Multivariate time-varying coefficient models

Parallel to functional-coefficient model (5), it is natural to consider its alternative with time-
varying coefficients [25]:

p

y,=c(t/T) + Z ¢.(t/T)y,_; + iﬁi(t/T)xt_i +e,t=1,...,T, (11)

i=1 i=1

where y;is a k x 1 vector, x;is a v x 1 vector, cis)a k x 1 vector, ¢,(-) are k x k smooth matrices and
Bi(-) are k x v smooth matrices. The innovation satisfies the same conditions as model (5). It is
known that as time involves the economic conditions change slowly and smoothly. Model (11)
reflects this smoothing change by allowing the coefficients being smoothing functions of time.
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Let
O(t/T) = (c(t/T),qbl(t/T), ...,qbp(t/T),ﬁl(t/T), ...,ﬁq(t/T)).
Using similar arguments to model (6), we can rewrite model (11) as
Y, = (D(t/T)Xt +e,t=1,...,T, (12)

where @(-) is a k x m matrix and X, is the same as in model (6). By the Taylor expansion, for any
t in the neighborhood of t, € (0, T), we have

D(t/T)=D(to/T) + ' (to/T)((t — to)/T) = P+ Q((t — to)/T).

Running the local linear smoother for model (12), we minimize

T
> Ny, — PXe — QX (£ — to)/T)IPKi(t — to) (13)

t=s+1

over P and Q, where s=max(p, q) and K,(x)=h'K(x/hT). Then it is straightforward to obtain an

explicit form of the minimizer, (1/5, @) , for the above optimization problem,

T
5 - (Xt ® L)y Kn(t — to)
WC(P) Sro Sti\ t—sZ-H t
o) \sm Sw T (14
vec( Q) S (X @ L)y KVt~ to)
t=s+1
T . . . .
where Sy = > (X, X/) @ Ky (t — to) and K, (¢ — to) = (Th) ~'(t — to)' Ky,(t — to), for i=0,1, 2.
t=s+1

Define M=E[(X,X,") ® I;] and N=E[(X,X,") ® (0,°)°]. Let ;= [u'K(u)du, v;= [ u'K*(u)du,

U— (F‘o Hl)/vz (Uo U1>
it 01 02
Using similar arguments to [4], we can show that this estimator is asymptotically normal with
mean zero and variance X, where X=(U"'VU )@ (M 'NM ™).

4.1. Generalized likelihood ratio tests

The multivariate time-varying coefficient regression model is flexible and powerful to estimate
the dynamic changes of coefficients. After fitting a given dataset, some important questions
arise, for example, whether the coefficient functions are actually constant or of some particular
forms? This leads to statistical hypothesis testing. To answer these questions, we develop
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generalized likelihood ratio statistics to test corresponding hypothesis testing problems about
the coefficient functions [26].

For the multivariate time-varying coefficient model (12), assume X, "?¢, has mean zero and
covariance matrix [, with X, being a symmetric positive-definite constant matrix.

Consider the following hypothesis testing problem

Hy : @(t/T) € ©o(t/T) < Hy : D(t/T)¢O(t/T), (15)

where ©(t/T) is some known constant matrix @, or a set of functionalmatrices. Let @(t/ T)

denote the nonparametric estimator of @, and let @o(t /T) denote the true or estimated value of
coefficients under the null hypothesis. Following Fan et al. [26] and Fan and Jiang [27], we
define a generalized likelihood ratio statistic for testing problem (15):

T RSSy — RSS,
A =T og (T) (16)

T ~ T, . T T ~

where RSSy = 327, (yt - GDO(t/T)Xt) T (yt - cDO(t/T)Xt> , and RSS, = 327, (yt —D/T)
X,) ! (yt - </1\)(t/ T)Xt) with X being a known constant covariance matrix from a working
model. It is meaningful to study the asymptotic distributions of the test statistic under the null

and alternatives.

In the following example, we consider the case when ©(.) is a known constant. For any u =t/
Te(0,1), if we rewrite matrix @(u) as a vector, A(u)=uvec(D1(u), ..., D,,(1)), and denote
Ao(u) =vec(Por* (1), ..., Pop” (1)), then the power of the test is evaluated against alternatives:

H, @A) = Ag(u) + \/LT_hG(u), (17)

where G(u)=(g1(v), ..., gm(u))T is a vector of functions.

Example 1. To investigate the performance of the proposed generalized likelihood ratio test,
600 replications for each of sample sizes T=200, T=400 and T=800 from the multivariate time-
varying coefficient model were generated:

Y, =0/T)Xi + e, t=1,...,T

where k=2, v=p=g=1, A=vec(0.5,0.0074, 0.08, 0.65, 0.25, 0.75)T. We set the initial values x;=0
and y;=(0.15,0.2). Accordingly, X,=vec(y1,¢—1,Y2,+—1,%;—1) fort=2, ... , T. Three distributions
of the error term are considered: bivariate normal, bivariate log-normal, and bivariate #(5), each

1 05
05 1 ) According to alternative (17), the power of the test is

evaluated for a sequence of alternatives index by O:

with variance matrix X = <
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0

Hyg : Ag = (0.5,0.0075,0.08, 0.65,0.25,0.75)" + ﬁc

(t/T), (18)

where G(t/T) = ((sin (v2r/T),—0.09 cos (nt/T),0.16 sin (v31/T), 0.8 sin (v27/T),0.3sin (¢/T),
cos (\/ 1.57t/ T) )T and 6=0,0.2,0.4,0.6,0.8, 1. The power function is estimated by the relative
rejection frequency of Hy in the above replicates.

The significance level is set to be 5%, and the critical values in simulations are calculated
similarly by using the conditional bootstrap method in Ref. [26] for each given 0 value. Detail
of this method is as follows:

Step 1. Compute the estimators of the coefficient (AD(t/ T) under both the null and the alterna-
tive by setting the optimal bandwidth as the estimated value ﬁopt.

Step 2. Compute the test statistic A(Hy) and the residuals {e;} from the alternative model.

Step 3. For each given X, draw a bootstrap residual ¢;" from the centered empirical distribu-

tion of ¢, and compute y,* = ®(t/T)X; 4+ ¢/*. This forms a conditional bootstrap sample
T

{Xey b

Step 4. Compute the test statistic A1"(Ho) using the bootstrap sample constructed in Step 3.

Step 5. Repeat Step 3 and Step 4 to get a sample of the test statistic A" (Hp). The critical values
at significance level a are calculated by the 100(1 — a)th percentile of the sample.

Figure 1 displays the power curves in difference scenarios. We can tell from Figure 1 that the
patterns of power curves look like half of an inverted normal density. All the curves rise
monotonically from a height equal to the significance level of 5% until eventually it reaches
its maximum height of around 90%. It is evident from Figure 1 that the test is powerful for all
three different distributions of error terms. Moreover, the test becomes more powerful as
sample size increases. These indicate that the proposed test keeps the size and is powerful for
distinguishing the difference between the null and the alternative.

5. Conclusions

In this chapter, we have reviewed some parametric and nonparametric methods for modeling
nonlinear vector time series data, which include the VAR model, the multivariate threshold
autoregressive model, and the multivariate functional-coefficient regression model. These
models have great significance in econometrical and statistical theory and application. Based
on the weighted local least square estimation, we have proposed a variable selection method
for the functional-coefficient model. This model selection procedure is applicable to the pro-
posed multivariate single index models and multivariate time-varying coefficient models. We
have also extended the generalized likelihood ratio test to the time-varying coefficient model
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and demonstrated its performance through simulation. The proposed methodology is very
useful for modeling nonlinear dynamic structures inherited in financial data. However, there
are many problems remain unsolved for our procedure, such as the limiting theory about the
proposed methodology. Future work includes, but not limited to, extending our models to
nonstationary settings and exploring their performance in different applications.
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