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Abstract

In recent years, there has been accumulating evidence to support an autoimmune etiol-
ogy for some patients with drug-resistant seizures, typically in the context of an anti-
body-mediated encephalopathy; any seizure disorder that may be caused by pathogenic 
autoantibodies, are an example of autoimmune epilepsy. Autoimmunity is characterized 
by loss of immune tolerance that causes the destruction of cells and tissues. The largest 
complex histocompatibility system has had a strong association with autoimmune dis-
ease, although certain genes encoding cytokines and co-stimulatory molecules increase 
genetic susceptibility. In spite of having scientific advances in this research area, the 
conditions underlying mechanisms are unknown. Goal: this chapter aims to present 
in synthesized form, the genetic, immunological, and environmental factors role in the 
autoimmunity to epilepsy, as well as the therapeutic approach that has been used to 
control seizures, mainly where there is a suspected anti-neuronal-antibodies circulation. 
Methods: a review of the work achieved during the last years in patients with this con-
dition provides information and experience in the diagnosis and treatment of this epi-
lepsy type. For this, a systematic search of PUBMED is conducted using the search terms 
“autoimmune and epilepsy, auto antibodies and epilepsy, NMDA and epilepsy, AMPA 
and epilepsy, and GAD and epilepsy.” The list of identified articles was complemented 
by additional searches for relevant articles in the reference section of the publications 
captured by the initial search.
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1. Introduction

Epilepsy is considered, as one disease with the highest prevalence of 1% population suffering 
from it. This pathology is defined as a cerebral disorder that is characterized by the predispo-

sition to generate epileptic seizures, as well as the neurobiological, cognitive, psychological 

and social factors associated with this condition [1]. There is evidence that specific neuro-

nal auto antibodies with pathogenic potential may be present in a subset of patients with 

epilepsy. Importantly, it has recently been shown that some patients with these serum auto 

antibodies and mainly in CSF are often refractory to treatment with standard antiepileptic 

drugs (AEDs) and, on the other hand, may respond well to immunomodulatory therapies. In 

this way, it has been possible to make a therapeutic approach. The autoimmune basis led to 

the introduction of immunotherapy (IT) in some drug-resistant syndromes [2], prompted by 

an intensive search for self-antibodies (Abs) in epilepsy. The findings of limbic encephalitis 
associated with self-Abs against neuronal plasma membrane (receptors, ion channels) and 

intracellular proteins have further fueled this search. As seizures are key to the infestation 

manifest, this disorder serves as a model for understanding epilepsy-immune system interac-

tion [3], evoking the possibility that said antibodies could cause patients with epilepsy alone, 

and leading to the search for self-Acs in patients with pharmacoresistant epilepsy (PE). Recent 

prospective study found neuronal auto-Acs in about 10% of pediatric patients with seizures, 

a rate twice as high as in controls with other systemic diseases; this creates a quandary for 

clinicians as to when treatment should be chosen in pharmaco-resistant epilepsy patients [4].

2. Genetic and clinical heterogeneity of epilepsy

Autoimmune conditions are the result of multifactorial processes involving dysregulation of 

both the innate and adaptive immune system, and the possession of predisposing gene alleles, 

which ultimately at a certain moment in time “trigger” a sustained loss of self-tolerance result-

ing in an immune-mediated damage of autologous tissues [5]. The innate immune response is 

the host’s first line of defense against invading microorganisms, while the adaptive immune 
responds to the infection in a time-delayed but antigen-specific manner. Adaptive immune 
responses are driven by specific components of bacteria or antigen, require several days to 
develop, and exhibit immunological memory for a lifetime, such that a second exposure to 

the same antigen results in an accelerated and specific response. Cell populations of the innate 
immune system, such as dendritic cells (DCs), which are antigen-presenting cells, promote 

primary T cells and B cell responses and therefore relate innate and adaptive immunity [6]. T 

cells that are reactive to self- antigens are largely deleted in the thymus in an active process 

termed thymic or central tolerance induction. Central tolerance induction occurs in both the 

immature thymus T cells and bone marrow for B cells. During the ontogeny of lymphocytes, 

T lymphocytes receptors (TCRs) that recognize high affinity, self-peptides exposed in The 
HLA molecules are deleted by clonal deletion, in order to avoid self-reactive clones. Only the 

clones whose TCRs recognize their own peptides with medium affinity, mature in second-

ary lymphoid organs. This shows that the HLA molecules themselves determine the TCR 
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repertoire. Peripheral tolerance mechanisms include clonal anergy (absence of co-stimulatory 

molecules), unawareness and suppression by the activation of CD4 + CD25 + FOXP3 + regula-

tory T cells. In the antigen recognition, the segments α1 and β1 of the HLA molecules (both 
polymorphic), the processed peptide and the TCR are involved [7]. In fact, some processed 

peptides are only exposed in certain HLA molecules. So the molecules of the HLA itself also 

determine which peptide can be recognized by the mature T lymphocytes TCR. The HLA 

molecules of an individual, determine their immune response at two levels: during negative 

selection in the thymus and in the selection of peptides at the periphery [7, 8]. By the other 

way, the new lines of AEs research focused on the genes coding for molecules involved in the 

central tolerance and peripheral induction. These genes found on any chromosome encode 

for proteins involved in the lymphocytes and molecules selection, acting as death receptors 

or co-stimulatory molecules. Most AEs caused the difficulty in knowing the triggering agents. 
The AEs caused by a mutation in a single gene (monogenic), which are small, provide clini-

cal and experimental evidence of the contribution of different control mechanisms of self-
reactivity [9].

2.1. Genetic diagnostics of epilepsies

In epilepsy, there are no studies associating autoimmunity with genetic factors; however, 

studies have focused on other autoimmune diseases and focuses are mainly associated with 

major histocompatibility system. Several alleles of classical human leukocyte antigen (HLA) 

genes in the MHC locus have been linked to autoimmune diseases. The genes coding for 

HLA molecules are located on the short arm of chromosome 6 in the region of the major his-

tocompatibility complex (MHC). The HLA-I genes encoded by the HLAA, B, C, E, F, and G 

genes are expressed in all the genes encoding the class I, II, and III molecules. The nucleated 

cells and the platelets and HLA-II molecules are products of the HLA-DP, DQ, DR, DM, DO 

genes and are constitutively expressed in B lymphocytes, monocytes, macrophages, dendritic 

cells, endothelial cells, intestinal epithelial cells, cells early hematopoietic and activated T 

lymphocytes. The class III region called HLA non-classical contains a collection of approxi-

mately 20 genes. This region includes those encoding complement proteins, components 

involved in the intracellular processing of peptides (TAP1, TAP2) and epithelial cell surface 

molecules (MICA-MICB) [10, 11]. The fundamental function of molecules HLA-I and HLA-II 

is to bind their own and foreign peptides in order to transport them to the cell membrane. 

Once exposed, they are recognized by the TCR, so they have a central role in the execution of 

the immune response. HLA-I molecules primarily present cytosolic (such as a viral or tumor) 

peptides to CD8+ cytotoxic T cells, whereas HLA class II molecules generally have extracel-

lular peptides (such as bacterial) to CD4+ helper T lymphocytes. This functional division of 

peptide presentation ensures the activation of T cells (CD8+ and CD4+) and therefore the 

appropriate immune response for each type of antigen [10]. The HLA system has two funda-

mental properties that make it difficult to understand, the genes involved in the predisposi-
tion to AEs: polymorphism and linkage disequilibrium (LD) [12]. I-II molecules are the most 

polymorphic of the whole genome. This property determines that for each loci, there are mul-

tiple alleles whose DNA sequences only differ by a few nucleotides. These local mutations are 
known as single nucleotide polymorphism (NSP). Genes located in the MHC region have a 
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high genetic association. This property is known as linkage disequilibrium (LD) and describes 

the tendency of certain genes to inherit together given their closeness. The above determines 

that the frequency of these genes (in a single haplotype) in the population is greater than 

their individual inheritance [13, 14]. Inside the AEs gene, the greatest association is with the 

molecules of the HLA. The siblings concordance with identical HLA is 15% compared to 

1% for siblings with a non-identical HLA. This figure is indicative of the strong association 
between HLA molecules and a risk to develop an autoimmune disease. In some diseases, this 

association is stronger as in ankylosing spondylitis (AS), while in others, it is weaker than in 

the myasthenia gravis (MG) [15].

Genetic study with a cohort of 24 cases of Rasmussen (RE) autoimmune encephalitis, the 

human leukocyte antigen (HLA) class I and class II genes were sequenced; they got the asso-

ciation of three C*07 alleles: 02:01:01, DQA1*04:01:01, and DQB1*04:02:01, that increased the 

relative risk of RE. It has been shown that HLA-B*07:02 is a risk factor for Graves’ disease. In 

addition, 33% of patients in that study had HLA-A*03:01:01:01, which is considered a risk fac-

tor to multiple sclerosis. 17% of patients had a combination of three HLA class II alleles that 

were associated with type 1 diabetes; DQA1*, 05*01:01:01, DQB1*02:01:01 and 20% patients 

showed a combination of HLA alleles (DQA1*01:02:01:01, DQB1*06:02:01, DRB1*15:01:01:01), 

that have been linked to the risk of developing multiple sclerosis [15].

The same way, anti-leucine-rich glioma-inactivated (LGI1) encephalitis was associated [16] 

with the DRB1*07:01-DQB1*02:02 haplotype (10 patients, 91%) in HLA class II genes, as well 

as with B*44:03 (8 patients, 73%) and C*07:06 (7 patients, 64%) in the HLA class I region. The 

prevalence of these alleles in anti-LGI1 encephalitis was significantly higher than that in the 
epilepsy controls or healthy controls. By contrast, anti-NMDAR encephalitis was not associ-

ated with HLA genotypes. Additional analysis using HLA-peptide binding prediction algo-

rithms and computational docking underpinned the close relationship; this finding suggests 
that most anti-LGI1 encephalitis develop in a population with specific HLA subtypes [17].

2.2. Influence of environmental factors

The concordance values between monozygotic twins are indicative of the role of environmen-

tal factors in the development of autoimmunity. Within this group are infections (viruses, 

parasites, bacteria, and fungi), hormones and immune system regulation loss. The action 

mechanism proposed for these factors is based on the release of pro-inflammatory substances 
inducing the danger signals expression and the consequent activation of auto-reactive T lym-

phocyte clones.

T cell TCRs recognize different peptides in the groove of the HLA molecule as long as they 
maintain the same charge distribution and spatial orientation. Hence, own and foreign mol-

ecules that have this similarity are recognized by lymphocytes and produce an immune 

response [18]. The creation of an inflammatory microenvironment increases the presence 
of antigens due to tissue damage and the expression of co-stimulatory molecules. In this 

medium, the anergized T lymphocytes may activate and stimulate the immune response 

against antigens themselves [19].
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Nevertheless, infections can also modify the clinical manifestations associated with autoim-

mune epilepsy (AE) in such a way that infections are involved in the induction and protection 

of AEs in genetically predisposed individuals. This dual role underlying mechanism com-

pression offers new ways of controlling and treating these diseases [20].

3. Conventional etiological mechanisms of neural proteins as antibodies

The target antigens that play a critical role in neuronal transmission and in plasticity include 

the N-methyl-D-aspartate (NMDA) receptor, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA), the gamma-aminobutyric acid receptor (GABA), the glioma-inacti-

vating leucine-rich protein (LGI1) and the contacting-associated protein 2 (CASPR2), a protein 

that plays a key role in the normal function of voltage-dependent potassium channels [21].

The structure of NMDA receptors (R-NMDA) are formed by combinations of different sub-

units: NMDAR1 (NR1), NMDAR2 (NR2), and NMDAR3 (NR3); which form a Ca++ perme-

able ion channel. A single gene encodes the NR1 subunit; however, transcription can generate 

at least eight isoforms, whereas for NR2-type subunits there are four different genes encoding 
NR2A, NR2B, NR2C, and NR2D7 subunits. Functional NMDA receptors are composed of het-

erotetramers, and formed by two dimers twisted by the subunits NR1-NR2, where in the NR1 

subunit it possesses a glycine binding site and each in the NR2 subunit, a glutamate binding 

site, with two binding sites for glycine (S1) and two for glutamate (S2) in each receptor. The 

NR1-NR2 dimmer is considered the basic functional structure at each receptor, where differ-

ent physiological and pharmacological binding sites are found for different ligands [22, 23].

Each ionotropic receptor subunit has similar molecular structure, which is organized into four 

functional domains, which are: an extracellular domain with the amino (N) terminal (DNT), a 

ligand binding domain (DBL), a region (M1–M4), where the M2 segment that partially enters 

the membrane forms the ion channel, and finally, a carboxyl domain (C) in the intracellular 
region (DCT) (Figure 1(A)) [24, 25].

In NMDARAS, IgG antibodies are directed to the N-terminal extracellular domain of the 

GluN1 subunit of the NMDA receptor (Figure 1), specifically an epitope region at GluN1 
aa369 [26–28]; the cultures of dissociated rat hippocampal neurons and antibody-containing 

cerebrospinal fluid (CSF) from patients with NMDARAS have been used to study the molecu-

lar mechanism by which IgG antibodies cause hypo function of the NMDAR [29]; antibod-

ies decrease the levels of synaptic NMDA receptor and disrupt NMDA receptor currents in 

cultured neurons. In addition, antibodies disrupt the interaction between NMDAR and the 

ephrin B2 receptor (EphB2R), a major stabilizer of NMDARs at postsynaptic sites, facilitating 

the displacement of NMDARs from the synapse [29]. The antibody does not act as a receptor 

antagonist, by modulating the physiological receptor binding domain, but causes capping 

and internalization of the receptor [30]. Antibody-mediated internalization is independent of 

NMDAR activity and does not occur as a compensatory response to the agonism of the recep-

tor, suggesting that the mechanism of internalization is primarily NMDAR cross-linking by 

patient antibodies [29].
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Encephalitis associated with antibodies against GABAB1 receptor is generally presented as 

limbic encephalitis, as well as drug-refractory seizures. In a series of 15 patients, the mean age 

of presentation was 62 years (range 24–75) and both sexes were similarly affected. About half 
of the patients had an associated tumor, either a small cell lung carcinoma or a neuroendo-

crine lung tumor. These patients usually have antibodies to various non-neuronal proteins of 

uncertain significance, which suggests a susceptibility to autoimmunity [30].

In the knockout mice to the GABAB1 receptor, a variety of neurological and behavioral altera-

tions are found, including spontaneous seizures, increased anxiety, hyperactivity, hyperalge-

sia and memory impairment, suggesting a dysfunction of the limbic system [31, 32].

In contrast, patients present with limbic encephalitis in conjunction with antibodies to the 

AMPAR were not present with seizures as frequently: only 3/10 had seizures as presenting 

feature with one other patient having seizures after a relapse [33].

Figure 1. (A) Structure of AMPA receptor subunits. The transmembrane topology is shown, along with the flip/flop 
alternatively spliced exon, and the two ligand-binding domains (S1 and S2). Glycosylation sites are shown as trees in the 

N-terminal region; this region is associated with immune response. (B) Flow cytometry demonstrates the presence of T 

lymphocytes of the CD8+ class with greater activation, as well as B lymphocytes; here it can be known that the immune 

process has extravasated to the cerebral parenchyma, (C) and (D) the tissue based assay. Mouse brain tissue sections, such 

as hippocampus are stained with the patient’s serum or CSF by indirect immunoperoxidase technique. (C) Shows CSF 

immunoreaction at the hippocampus level of the cytoplasmic and a neuronal surface in D (anti-human IgG-Px, Abcam- 

ab97225). (E) TBA in F, shown a reaction at neuronal surface level that colocalizes with GAD65 / 67 (Alexafluor 546, Invitrogen 
Molecular probes). (G) Immunoblot, CSF recognizes 100 and 50 Kd proteins(Anti-human IgG-Px, Abcam- ab97225).
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Besides, anti-AMPA-GluR3B antibodies have been associated with many pathological effects: 
they activate glutamate, AMPA receptors, and are involved in the processes of “excitotoxic-

ity.” The phenomenon is associated with various pathological states of the CNS including: 

epilepsy, hypoxia/ischemia, and trauma. In animal and in vitro models, anti-NMDA-NR1 anti-

bodies may be highly pathogenic, as they may cause a decrease in surface NMDA receptors 

expressed in hippocampal neurons, and also decrease the density and synaptic localization of 

receptors NMDA. The expression of these NR1a subunits correlates with the distribution of 

high-affinity NMDA receptors by agonists. Anti-NMDA-NR1 antibodies induces reduction in 
expression through cross-linking and internalization of NMDA receptors. Such changes may 

impair glutamate signaling through NMDA receptors and lead to various abnormal neuronal 

/behavioral/cognitive/psychiatric disorders.

Nevertheless, anti-AMPA-GluR3B antibodies  induce many pathological effects that activate 

glutamate/AMPA receptors,which are involved in excitotoxic damage, the complement acti-

vation is modulated by regulatory proteins in which the activation plays a central role in 

the pathogenesis of brain damage and induces behavior and motor impairments. It has been 

observed in animal and in vitro models that anti-NMDA-NR1 antibodies can be highly patho-

genic, as they may cause a decrease in surface NMDA receptors expressed in hippocampal 

neurons, and the density and synaptic localization of NMDA, probably by the internaliza-

tion of receptors, which can impair glutamate signaling through NMDA receptors and lead 

to various neuronal/behavior/cognitive and psychiatric alterations. Knock-out mice to the 

GluR2 gene show reduced scanning and motor coordination. In these animals, the AMPA 

receptor-mediated synaptic transmission is reduced, but the long-term potentiation is better 
[34]. Knock-out mice to the GluR2 gene also exhibit increased cell death, possibly due to the 

excitotoxicity related to the greater insertion of the compensating homomeric GluR1 protein 

in AMPA receptors [35, 36].

4. Clinical features of epilepsy-associated autoimmune encephalitis

Each of the currently known neuronal cell surface or synaptic autoantibody associates with 

a specific syndrome or limited set off symptoms (Table 1). NMDAR antibody-associated 

encephalitis is a recently described disorder in which infrequent seizures are associated with 

the presence of autoantibodies directed against the extracellular domain of the NR1 subunit 

of the NMDAR. This disorder was first described as a clinical entity in 2005, in one in four 
young women who developed acute psychiatric symptoms, seizures, memory deficit, in asso-

ciation with the presence of an ovarian teratoma. In a study of 100 patients, it was shown that 

although the majority are young women (mean age 23 years), the disorder could occur in 

men and in children. This fact has allowed the number of pediatric cases to grow steadily and 

appears to represent approximately 40% of all cases [27, 37, 38].

4.1. NMDA receptor

Symptoms of anti-NMDA receptor encephalitis develop and resolve in a multi-stage process; 

most patients experience a prodromal similar to a viral picture, which is followed by a  pattern 
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Epilepsy-

associated 

antibody

Anti-LGI1

vs.
LGI1

(Channels Kv+)

Anti-CASPR2

vs.
CASPR2

LGI1 > CASPR2 

(VGKC-complex)
vs.
LGI1 > CASPR2

NMDAR

vs.
Subunit NR1

GAD

vs.
GAD-65

GABA
B
R

vs.
GABA

B
R

AMPA

vs.
GluR1/2

Gender/Age of 

involvement
M > F M > F M > F

>50 years

F > M

70% childhood

F > M

>20 years

M > F

>40 years

F > M

>40 years

Clinical 

manifestations
Hyponatremia.

Cognitive 

impairment.

It is associated 

with the presence 

of a thymoma or 

SCLC

Morvan 

syndrome

Complication 

with

Myasthenia 

gravis

Not associated 

with neoplasias

TLE

Hyponatremia and 

Synchronus dystonic 

arm posturing and 

grimacing facial 

ipsilateral associated 

with paraneoplasias 

(thymomas and lung 

cancer (SCLC)).

Viral pathway: 

fever, headache and 

fatigue of infectious 

etiology, delirium 

and disorientation.

10–20 days of 

evolution: orofacial 

dyskinesias, 

choreoatetotic 

movements, 

nystagmus, 

decreased 

consciousness and 

dysautonomia

Diabetes mellitus 

type 1, Stiff-
person syndrome, 

cerebellar ataxia, 

non-paraneoplastic 

LE

Severe cognitive 

impairment

LE

It is associated 

with the presence 

of SCLC

LE

It is associated 

with the presence 

of SCLC, thymus 

and breast cancer 

tumors

Psychiatric 

comorbidity
Confusion and 

behavior and 

REM sleep 

disorders

Cognitive 

impairment, 

memory loss and 

hallucinations

Sub-acute amnesia, 

confusion, sleep 

disorders, psychosis, 

anxiety, personality 

changes and 

depression

Personality changes, 

hallucinations (visual 

and auditory), 

difficulty speaking

Depression and 

anxiety.

Cognitive 

impairment, 

behavioral 

disorders such 

as psychosis and 

hallucinations

Confusion, 

amnesia, 

disorientation and 

psychosis

Seizure 

activity
GTC GTC FBDS

GTC

CPS

GTC

CPS

SE refractory to 

treatment

CPS.

CTsG

CPS

GTC

SE

GTC CPS

Electrographic 

activity (EEG)
Slow focal or 

generalized 

activity

Slow focal or 

generalized 

activity

Slow focal or 

generalized activity

Focal or diffuse 
delta/theta activity 

and delta brush 

activity

Slow focal or 

generalized 

activity

Slow focal or 

generalized 

activity

Focal activity
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Epilepsy-

associated 

antibody

Anti-LGI1

vs.
LGI1

(Channels Kv+)

Anti-CASPR2

vs.
CASPR2

LGI1 > CASPR2 

(VGKC-complex)
vs.
LGI1 > CASPR2

NMDAR

vs.
Subunit NR1

GAD

vs.
GAD-65

GABA
B
R

vs.
GABA

B
R

AMPA

vs.
GluR1/2

Treatment and 
prognosis

Good response to 

immunotherapy

Good response to 

immunotherapy

Good response to 

immunotherapy

Slow response to 

Immunotherapy 

with recurrence

Refractory to 

treatment with 

AED’s and 

immunotherapy

Good response to 

immunotherapy

Good response to 

immunotherapy 

with recurrence

References [49, 54–56] [31] [31, 63] [31, 55, 58, 65, 67] [59–61] [31, 41, 51, 57, 

62, 64]

[34, 57, 61, 66]

NMDAR, N-methyl-d-aspartate receptor; LGI1, leucine-rich glioma-inactivated 1; CASPR2, contactin-associated protein-like 2; AMPAR, amino-3-hydroxy-5-hydroxy-

5-methyl-4-isoxazolepropionic acid receptor; GABA a/B R, gamma-aminobutyric acid A/B receptor; mGluR1/2, metabotropic glutamate receptor type 1/2; LE, limbic 

encephalitis; SPS, stiff-person syndrome; CPS, complex partial seizure; EEG, electroencephalogram; FBDS , faciobrachial dystonic seizures; GTC, generalized tonic-clonic.

Table 1. Neuronal cell surface autoantibodies, associated epilepsy, and the clinical symptoms.
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of memory alterations, behavior, cognition, developing psychotic pictures, convulsions, dys-

kinesia (orofacial, trunk, and limb), and autonomic respiratory instability. Most adults are 

initially seen by psychiatric services and may be confused with acute psychotic disturbance 

or drug abuse. Most children are taken to medical care due to changes in mood, behavior and/

or personality, seizures, or language impairment [38–40]. Autonomic instability is a common 

manifestation in adults. Some patients develop severe cardiac arrhythmias that require the 

use of pacemakers. Signs of more frequent autonomic dysfunction in children include urinary 

incontinence and sleep disturbances [38]. Nuclear magnetic resonance (MRI) findings in these 
patients may be hyperintensities in FLAIR or T2 sequences in the cerebral cortex, cerebellar 

or temporal medial lobes, as well as in the corpus callosum and brainstem. In some cases, a 

transient increase in contrast, of the cerebral cortex, cerebellum, basal ganglia and meninges 

is observed.

Movement disorders are common and can be misinterpreted as a convulsive activity, the most 

common being dyskinesia, usually orofacial, choreoatetoid limb movements, rigidity, opis-

thotonos, or a combination of these. In most patients, EEG shows a slow generalized activity, 

disorganized without ictal discharges. These findings may overlap with ictal discharges in 
the EEG [41]. Niehusmann and colleagues [42] reported presence of NMDAR-antibodies in 

women (age range, 15–45 years), which had extra-temporal epilepsy, a reduction in level of 

consciousness and altered speech, as well as nystagmus, dyskinesia, dystonia, and hypoven-

tilation. Clinical improvements in seizure frequency were seen in treatment of three patients 

treated with an immunomodulator such as corticosteroids and IVIg.

4.2. GABAb

GABA receptors are essential to inhibition. The presence of autoantibodies against these 

receptors has been associated with seizures and changes in memory and behavior. In a study 

with 15 patients with GABABR and LE antibodies (median age of 62 years, range 24–75 years), 

the clinical features where the presence of seizures, confusion and altering memory. Seizures 

were the predominant characteristic in 87%, and were mainly onset of temporal lobe with 

secondary generalization. 13% of patients presented epileptic status. CSF findings showed 
lymphocytic pleocytosis (n = 4) and MRI showed an increased signal, typical of LE. Clinical 

improvement was observed in 40% of patients who received IT alone and 20% who had IT, 

and 46% of patients were taken for a surgery to remove tumors. On the other hand, in a series 

of 15 patients, the mean age of presentation was 62 years (range 24–75) and both sexes were 

equally affected. About half of the patients had an associated tumor, either a small cell lung 
carcinoma or a neuroendocrine lung tumor. These patients often have additional antibodies 

to glutamic acid decarboxylase (anti-GAD) and several non-neuronal proteins of uncertain 

significance, suggesting a susceptibility to autoimmunity [32, 43].

4.3. AMPA receptor

Antibodies to the AMPAR have recently been described in patients with limbic encephalitis 

(LE). The AMPAR antibodies are the least frequent of these antibodies, however, also these 

patients develop a limbic dysfunction that may be associated with significant psychiatric 
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 symptoms. The most common disorder effects were in the middle-aged women. Most patients 
present with a sub-acute appearance of confusion, disorientation and memory loss, and sei-

zures may also be part of the clinical describe. About 70% of patients have an underlying 

tumor in the lung, breast, or thymus. AMPAR is the predominant receptor subtype in the 

hippocampus, and it has been found that these antibodies in patients caused a decrease in the 

pre- and postsynaptic GluR1/2 receptor groups in cultures of rat hippocampal neurons. Since 

the receptor levels have been more affected at synapses than along dendrites, the findings sug-

gested a mechanism by which patients’ antibodies disrupted the receptor traffic, moving them 
from synaptic sites to extra-cellular sites and intracellular pool. These effects are similar to 
neuronal plasticity models that decrease synaptic strength, also called long-term depression. 

The effects of the antibodies were shown to be reversible [42, 45].

4.4. GAD

Glutamic acid decarboxylase (GAD) is a cytoplasmic enzyme that catalyzes the conversion 

of l-glutamic acid to gamma-aminobutyric acid (GABA), considered the main inhibitory 

neurotransmitter of the central nervous system. GAD is expressed primarily in GABAergic 
neurons and in pancreatic β cells, and has two isoforms with different molecular weight; 
GAD65 and GAD67. GAD antibodies act as a marker of the underlying autoimmune dis-

ease, although it is not known how antibodies against an intracellular enzyme can directly 

initiate pathological events; however, it is known that anti-GAD Abs inhibit the activity of 

GAD, and the synthesis of GABA antibodies to GAD is associated with several autoimmune 

disorders, including limbic encephalitis [44, 45], type 1 diabetes mellitus [46]. Stiff Person 
Syndrome (SPS) [47], and cerebellar ataxia [48], as well as overlapping syndromes. Recent 

work highlighting the response of these patients to immunotherapy and association with 

forms of epilepsy related to localization suggest that antibodies may also be present with 

specific cell surface. This is supported by a functional study of magnetic resonance spectros-

copy in patients with TLE and elevated levels of serum GAD antibodies that demonstrated 

significantly lower GABA levels within their cortex compared to paired control patients [44]. 

On the other hand, in one study with 138 patients over 18 years old, investigated with recent 

onset epilepsy, were prospectively studied to determine the clinical and radiological char-

acteristics of LE, and response to treatment. Fifty-three adult patients fulfilled the criteria 
for LE; nine had high-titer GAD antibodies and ten had voltage-controlled potassium chan-

nel (VGKC) antibodies. Patients with GAD antibodies were younger’s (range, 17–66 years) 

and had seizures only, whereas polymorphic limbic features were more frequent in the 

VGKC positive group. Patients with anti-GAD antibodies had more frequently oligoclonal 

bands of cerebrospinal fluid and intrathecal secretion of the specific antibody. Which after 

monthly, patients were treated with intravenous methylprednisolone pulses, however GAD 

antibodies remained elevated in 6/6 patients, however VGKC antibodies normalized in  

6/9 patients (p < 0.03). Despite the more intense anticonvulsant treatment in the group with 

anti-GAD antibodies (p < 0.01), none of these patients were seizure free, unlike all patients 

with VGKC antibodies (p < 0.001). High-titer GAD antibodies define a form of non-para-
neoplasic LE. It is a chronic non-persistent disorder, and should be included in the differential 
diagnosis of patients with LE and mediotemporal encephalitis [49].
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4.5. LGI

Studies describing treatment of LGI1-antibody associated encephalopathy, LGI1 is a protein 

secreted by neurons that interact with pre- and postsynaptic receptors. LGI1 mutations have 

been associated with autosomal dominant temporal lobe epilepsy syndrome [50, 51]. Patients 

with antibodies against LGI1 develop alterations of memory, confusion, and seizures. The 

MRI results are typical of limbic encephalitis. Memory and cognitive deficits can be preceded 
by brief tonic seizures that can be confused for mimic myoclonic movements. Observational 

studies have provided evidence of a marked improvement with for high-dose steroids, IVIG 

and PLEX for patients with auto-antibodies to LGI1 and CASPR [37, 50–52]. In a retrospec-

tive study of 10 patients with high titers of VGKC-complex antibodies that had seizures and 

memory disorders, who received IVIG 2 g/kg/day, 100 mg prednisolone on alternate days 

and PLEX for 5 days, improvement was observed in frequency of seizures and cognition in 

six patients within 2 weeks to 12 months, correlating with reductions in antibody titers [37]. 

Earlier treatment, and possibly corticosteroids, appeared to provide greater benefits than 
before. This disorder had been included previously within the spectrum of antibodies against 

voltage-dependent potassium channels. Some patients develop hyponatremia and behavior 

or REM sleep disorders. Only 20% of cases are associated with a neoplasm, usually thymoma 

or small cell lung carcinoma.

5. Diagnostic approach

The laboratory diagnosis of AD depends on the identification of the clinical symptoms of the 
patient, their association with each disease and their correspondence with the detection of 

AA. For this reason, laboratory tests are of great importance for the evaluation of patients 

when an AE is suspected. The results can confirm the diagnosis, estimate the severity of the 
disease, and are useful to follow up its evolution and establish a prognosis. The presence of 

autoantibodies (AA) alone in a patient does not mean the diagnosis of an AD, the associated 

signs and symptoms help to achieve the definitive diagnosis and are of crucial importance. 
Analysis of CSF plays a central part in all diagnostic criteria for encephalitis, including 

infectious encephalitis, relevant antibodies might be found only in the CSF, because the 

repertoire of antibodies in the CSF and serum can be different in the same patient (e.g., 
NMDA receptor in CSF and serum) [52]. By other way, serological tests to detect AA have 

demonstrated the presence of AA in healthy individuals and in known non-EA patients 

and approximately half of all autoimmune encephalitis series are Ab-negative cases, so 

AA is a confirmatory diagnostic test, for this reason the diagnostic tests must be combined. 
Three basic research techniques are used for this purpose must include: tissue-based assay 

(TBA), cell-based assay (CBA), and immune-precipitation (IP; in-house). In the TBA, rat 

or mouse brains are stained with CSF or serum of patients with an indirect immunohisto-

chemistry or immunofluorescence technique or the combination of two fluorophores, one 
that identifies the autoantibody and the other to the antigen and use of confocal microscopy 
(Figure 1(C)–(F)).
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In the cell brain adhesion test (CBA), cells (e.g., HEK293 cells) are transfected with the respec-

tive neural antigens (receptors, channels, etc.) and incubated with the CSF or serum of patients 

with an indirect immunofluorescence technique. Autoantibodies to the specifically expressed 
receptor result in the cell membrane marking cells, similar, primary cultures of hippocampal 

neurons can be used, with these methods autoantibodies are displayed on the surface of the 

neuronal membrane [53].

For the detection of classical intracellular and cytoplasmic antibodies, the immunoblot tech-

nique is used. Immunoblotting is the method that uses Abs to detect a specific protein from 
a mixture of several unrelated proteins separated by molecular weight. The diagnosis of 

antibodies with this technique involves several steps, including protein extraction of mice 

brain tissue followed by (30–50 μg) spitted proteins through electrophoresis, and transfer 
of a nitrocellulose membrane and overlapping of the primary antibody (the serum or CSF 

of the patient) and secondary on the membrane labeled with enzymes (Figure 1(G)) or fluo-

rescent antibodies [54]. Recently, we introduced flow cytometry and have confirmed that in 
those patients with AE, a large presence of activated T and B cells is observed; in some cases, 

the CD8+ cells are dominated and in negative cases, there is no activation of lymphocytes 

(unpublished data); the results suggest that this tool could provide additional information on 

the patient’s immune response (Figure 1(B)). On the basis of this data, the recommendation is 

to include both CSF and serum for citometric testing in patients with suspected autoimmune 

encephalitis.

6. Concluding remarks

Recently, several reports that associate CNS disorders with autoantibodies are directed against 

cell surface proteins, which are likely to be pathogens. Many of these conditions have seizures 

as an early and prominent feature, which are commonly refractory to conventional drugs. 

In contrast, a good response with immunotherapy is often observed. The studies in patients 

coincide in clinical manifestations, but not in autoantibodies. For this reason, CSF is crucial 

in the identification of new antigens, including NMDAR, AMPAR, GABABR, GABAARr, 
mGluR5, DPPX and LGI1, and Caspr2. Serum negativity is more likely with a milder form 

of the disease, presenting with clinical pictures of psychosis but not requiring intensive care, 

particularly if the antibodies are generated predominantly in the brain, which makes it neces-

sary to standardize the diagnostic methods in order to be safer and to offer a timely diagno-

sis. The effects of antibodies on children (the effects of antibodies on hippocampal synapses) 
are different from that of adults; this may explain some of the differences in clinical pictures 
between adults and children. For this reason, the selection of patients for the autoimmune 

evaluation requires a high level of suspicion in the initial consultation. Since there have been 

currently no universally agreement upon diagnostic criteria for autoimmune epilepsies, the 

clinical evidence, such as the high frequency of seizures, psychiatric co-morbidity and resis-

tance to AEDs, are important indicators to decide it. More studies are needed to identify early 

autoantibodies and to perform preventive treatments.
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