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Abstract

Semiconductor quantum dots (QDs) as a new class of fluorescent labels have become
valuable fluorescent platforms for biological applications due to their unique optical prop-
erties. In addition to their well-known size-dependent emission spectra, QDs are extremely
sensitive to the presence of additional charges either on their surfaces or in the surrounding
environment, which leads to a variety of optical properties and electronic consequences. By
using thiols as bridges between QDs and redox-active ligands, the fluorescence effects of
functionalized QD conjugates were investigated because QDs are prone to exchange
electrons or energy with the attached ligands upon excitation, resulting in their fluores-
cence change. The recovery/enhancement or quenching of the QD conjugate fluorescence
could be reversibly tuned with the transformation with the redox state of surface ligands.
Moreover, quenching of the QD emission is highly dependent on the relative position of
the oxidation levels of QDs and the redox-active ligand used. Importantly, the utility of
these systems could enhance the compatibility of functionalized QDs in biological systems
and can be used for monitoring the fluorescence change to trace in vitro and intracellular
target analyte sensing. We believe that redox-mediated quantum dots as fluorescence
probe are a significant step forward toward biosensing.
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1. Introduction

Semiconductor quantum dots (QDs) or nanocrystals with sizes smaller than the so-called Bohr

exciton radius (a few nanometers), resulting in an effect called quantum confinement due to

the appearance of discrete energy states in both the conduction and valence bands [1, 2].

Optoelectronics of colloidal QDs offer a compelling combination of solution processing and

fluorescence tunability through quantum size effects [3, 4]. They, however, are affected by a

variety of parameters including defects in the nanocrystal structure and the surface or with the

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



surrounding medium [5]. QDs, in particular, have a large-area solution processing on their

surfaces and are always capped with functional ligands, which provide surface passivation

and promote compatibility with the surrounding medium [6, 7]. These ligands along with the

surrounding matrix alter the overall optical and electronic properties of QDs as a result of

efficient elimination of the surface native defects, often attributed to the saturation of dangling

bonds, improved passivation, and higher packing densities [8–10]. So far, the processibility of

colloidal QDs is also exploited in a diversity of applications by fine-tuning their surface ligand

characteristics of the semiconductor nanoparticles [11–14]. For example, a water-soluble sur-

face ligand is required for biological sensors [15], an electron conductive layer is important for

photoelectric devices [16], and a polymerizable surface is needed to make fluorescence poly-

mer composites [17]. Unlike most organic dyes, QDs are also highly sensitive to charge

transfer, thus altering their fluorescence properties [18, 19]. Notably, coupling redox-active

ligands to the QDs surface can promote transfer of external electrons (and holes) to QD [18, 19].

Due to an efficient Auger recombination, the presence of additional charges can lead to

quenching of the QD fluorescence [20]. The quenching degree of QD fluorescence depends on

the location of the added charge, with a complete quenching observed for charges existing in

the QD core, due to the strong spatial overlap between charge(s) and exciton, whereas partial

quenching is observed for charge(s) locating on the QD surface (due to weaker overlap with

the exciton) [19, 20]. When electron transfer between QDs and the molecules bound to their

surface occurs, the nanocrystal and its attached ligand molecule exist in highly reactive

charged forms long enough to interact with the surrounding environment. The redox-active

moiety-functionalized QDs may promote the transfer of external electrons and holes to either

the QDs core conduction band or the QDs surface states [21]. Therefore, controlling charge

transfer of redox-active surface ligands across functionalized QD conjugates has been

attracting increasing interests for advanced diagnostics and in vivo imaging as well as

ultrasensitive biosensing [22, 23]. Redox-active compounds including metal complexes, ions,

and dyes have already been investigated for use in photo-induced electron-transfer QD sensing.

Since the development of high-performance QDs and the advent of excellent coupling tech-

niques to modify them with biological systems [23–25], there has been a urgent need to exploit

the interactions of QDs with the redox-active ligand for sensing [26, 27]. A few preliminary

researches have reported the redox-active ligand-functionalized QDs and their use to monitor

specific biological events. Biofunctional QDs enjoy increasing interest in basic and applied

science because of the many possible applications of these structures to fields including proteo-

mics, microarray technology, and biosensors. It is expected that these redox-active ligand-

functionalized nanocrystal will be able to perform specific functions, such as biorecognition in

the context of an electrical measurement, better than either purely organic or inorganic systems.

2. Quinone/hydroquinone as redox-active surface ligands of QDs

Quinone/hydroquinone is ubiquitous in nature and constitutes an important class of naturally

occurring redox molecules [28]. It is well-known that quinone/hydroquinone fulfills a univer-

sal and possibly unique function in electron transfer and energy conserving system [29].

Especially, a number of quinones/hydroquinones have the critical biological functions involving
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brain activity and neurotransmission (i.e., dopamine), blood clotting (i.e., vitamin K), protein

post-translational modification (i.e., topaquinone), cellular signaling molecule metabolism (i.e.,

estrogens and catecholamines), and antioxidant metabolism (i.e., ubiquinone and tocopherol

congeners) [30–32]. Redox moiety was introduced into the surface ligands to achieve the

redox-switchable fluorescence properties that could be useful for signal multiplexing, since

QDs are highly sensitive to the electron-transfer processes. Recently, the research of function-

alized QDs fabrication of redox quinone/hydroquinone on the surface of nanocrystals enjoys

increasing interest and performs the specific functions, such as biosensing, ultrasensitive

detection, and biomimetic research.

3. Ubiquinone-quantum dot bioconjugates and their application

In particular, ubiquinones [coenzyme Q, (CoQ)] are composed of the redox-active ubiquinonyl

ring with a tail of isoprenoid units in different homolog forms occurring in nature, which are

the only lipid-soluble antioxidant and plays a very important role in the cell membrane

physiology [33]. CoQ acts as a mobile electron carrier in the energy-transducing membranes

of mitochondria, which can be reduced by NAD(P)H-dependent enzymes. The reduced form

CoQH2 is a potent radical scavenger and antioxidant that protects membranes and lipopro-

teins from peroxidations as a potent radical scavenger [34, 35]. The redox state can be deter-

mined not only by the extent of oxidation (oxidative stress), but also by that of reduction

(enzymatic reaction). As well-known, fluorescence enhancement/quenching in QDs can be

switched by electrochemically modulating electron transfer between attached molecules and

QDs (Figure 1) [36]. For this purpose, three CoQ disulfide derivatives ([CoQCnS]2) possessing

the basic ubiquinone structure of 2,3-dimethoxy-5-methyl-1,4-benzoquinone with different

mercaptoalkyl side chain lengths at the 6-position (n = 1, 5, and 10) (Figure 2, left). The

emission of functionalized QDs can be reversibly tuned in two directions, enhancement or

Figure 1. Schematic of fluorescence enhancement/quenching characteristics of CoQH2 and CoQ-functionalized CdTe/ZnS

QDs. Adapted with permission from [36]. Copyright 2011 Wiley-VCH Verlag GmbH & Co. KGaA.
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quenching, depending on the different redox state of substrates bound to the surface of the QDs

(Figure 2, right). Following photoexcitation of functionalized QD bioconjugates, the conductive

band electron of QDs is transported to the lowest unoccupied molecular orbital of the oxidized

ubiquinone acceptor and the electron is then went back to the valence band of QDs via

nonradiative pathways. Thus, ubiquinones play the surface trap states acting as nonradiative de-

excitation paths for photo-induced electron carriers, resulting in fluorescence quenching. It isworth

noting that reduced ubiquinol ligands on the surface of QDs yield an obvious fluorescence

enhancement. In this case, the photo-excited CoQH2-QD bioconjugates decay to the ground state

because the ubiquinols serve as poor electron donors. This switching results in recovering a high

fluorescence compared to bare QDs. Furthermore, the reduced ubiquinols provide an efficient

passivation of the surface trap states to overcome the potential surface defects, leading to a

significantly enhanced fluorescence in CoQH2-QD bioconjugates. According to energy band,

bandgap of surface-capping ligand ubiquinol is larger than that of CdSe/ZnS QDs and hole

trapping is also negligible. Upon photoexcitation, the resulting electrons and holes are confined in

the surface regions of the ubiquinol-functionalized QDs, thus increasing the fluorescence. In addi-

tion, the fluorescence efficiency and stability of CoQH2-QD bioconjugates against photo-oxidation

has shown significant improvement due to the antioxidation effect of ubiquinol. Therefore, there is

the remarkable fluorescence difference between CoQ and CoQH2-capped QDs. Notably, the cap-

ping layer of reduced ubiquinol ligands enhances the QDs’ fluorescence intensity significantly,

while a modification using the oxidized ubiquinone ligands presents efficient quenching on fluo-

rescence intensity of QDs under the identical conditions (Figure 2, right). We show fluorescence

quenching efficiency to be dependent on alkyl chain spacer length of surface ligands, as more

pronounced quenching was observed for C2 spacer-modified QDs. Surface-attached CdTe/ZnS

QDs exploiting coenzymeQderivatives CoQ andCoQH2 can be chemically attached to the surface

of the QDs in an effort to mimic the electron transfer in the part of mitochondrial respiratory chain.

Our system is extremely sensitive to NADH and superoxide radical (O2•�) species, and mimics a

biological electron-transfer system in the part of themitochondrial respiratory chain. In addition, in

situ fluorescence spectra-electrochemical results further validate that the reduced state of

ubiquinols significantly increase the fluorescence of QD bioconjugates, while the oxidized state of

the ubiquinones decrease the fluorescence at varying degrees.

Figure 2. (Left) Chemical structures of synthesized [CoQCnS]2, n = 1, 5, 10. (Right) Fluorescence spectra of functionalized

QDs. (a) CdTe/ZnS QDs, (b) [CoQH2CnS]2, and (c) [CoQCnS]2-functionalized CdTe/ZnS QDs. A: n = 1, B: n = 5, C: n = 10.

Adapted with permission from [36]. Copyright 2011 Wiley-VCH Verlag GmbH & Co. KGaA.
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To further enhance the compatibility of ubiquinone-QD bioconjugates in biological system, the

ligands Q2NS, Q5NS, and Q10NS were designed and synthesized by a facile click reaction

between ubiquinone with terminal alkynes and alkylazide-disulfides via copper(I) tris

(benzyltriazolylmethyl) amine catalyzed 1,2,3-triazole formation [37] (Figure 3a). In this sys-

tem, the quinoid moiety in the QnNS surface ligands was introduced to achieve the redox-

switchable fluorescence properties for signal multiplexing. The 1,2,3-triazole groups can

enhance the compatibility of QnNS-QDs in biological system because of the similarity with

histidine. Three alkyl spacers (C2, C5, C10) confer various electron-transfer abilities either the

core or the surface of QDs. As a final point, the disulfide group facilitates modification of QnNS

ligand to the surface of QDs. Using the QnNS-QD bioconjugates, enhancement or quenching of

the fluorescence of QD bioconjugates can also be switched by modulating the redox state of

surface-capping ubiquinone ligands (Figure 3b) [38].

Interestingly, the emission of QD bioconjugates was enhanced when the surface-attached

ubiquinone layer was reduced to ubiquinol in the presence of NADH and complex I in an

effort to mimic the initial stages of mitochondrial respiration. The fluorescence intensity of

ubiquinol-QDs was decreased gradually when the O2
•� was added. As the concentration of

O2
•� is higher, the luminescence of the QDs is quenched to a higher extent, consistent with

the formation of a higher coverage of the oxidized ubiquinone-modified QDs. Moreover,

these systems provide the general framework for the creation of probes to monitor the

reactive oxygen species in living cells according to their redox state, suggesting that this

principle can be generalized to many different biological systems and applications. To

demonstrate 1,2,3-triazole groups incorporated into the ubiquinone ligands can enhance the

compatibility of QD bioconjugates in biological systems, we investigated a time-dependent

fluorescence process using ubiquinone-assembled QDs with or without 1,2,3-triazole

groups. A significant increase in the incubation time was observed for the same enhance-

ment of fluorescence compared to the triazole-linked ubiquinone-QDs in the presence of

NADH and complex I (Figure 3). This is because that the triazole groups behave similarly

to histidine ligands and can be used to cap enzymes through proteins- or peptide-affinity

coordination of triazole residues, leading to the triazole ubiquinone ligands efficiently

improving binding affinity with complex I. The ubiquinone-QD bioconjugate system could

be used for monitoring in vitro and intracellular complex I levels by the fluorescence changes

of QD. Epidemiological researches show that the activity of complex I of Parkinson patients

is impaired. Therefore, this system can be employed as a potent fluorescence probe for early

stage Parkinson disease diagnosis and progression monitoring by observing complex I levels

in human neuroblastoma SH-SY5Y cells.

Another novel strategy that uses QDs functionalized with quinonyl ligands was developed

[39]. A novel biosensor based on “switch-on” photoluminogenic strategy employing of

quinonyl glycosides functionalized QDs for the ingenious and biospecific imaging of human

hepatoma Hep-G2 cells that express transmembrane glycoprotein receptors (Figure 4). The

closely coupled quinonyl glycoside ligands are envisioned to have dual functions: the qui-

none part acts as a quencher of QDs and the glycoside part as a ligand for targeting a specific

receptor. Moreover, self-assembly of quinonyl glycosides to QDs through a sulfide bond may

produce QD bioconjugates that expose the glycosides in a clustering manner, enhancing

their binding avidity with the target receptors. We observed that the quenched fluorescence
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Figure 3. Schematic of ubiquinone-CdSe/ZnS QDs as redox fluorescence biosensor for Parkinson’s disease diagnosis. (a)

ubiquinone-terminated disulphides (QnNS) synthesis and self-assembly of QnNS on to CdSe/ZnS QDs. (b) Conceptual

visualisation of QnNS-QDs as complex I sensor in vitro. Under oxidized state (QnNS), ubiquinone functions as a favorable

electron acceptor, this results in effective QDs’ fluorescence quenching. Addition of complex I to QnNS-QDs solution in

the presence of NADH, ubiquinone coupled electron transfer and proton translocation from NADH, producing reduced

ubiquinol (HQnNS) form on the surface of QDs to mimic the initial stages of the respiratory chain. Ubiquinol when in

close proximity to the QDs produces fluorescence enhancement. (c) Energetic diagram of the QDs bioconjugates and

possible electron transfer processes: electron transfer from the QDs CB to QnNS LUMO, followed by the back QDs VB.

HQnNS only weakly accepts/donates electrons or energy and the excited QDs can return radiatively to the ground state.

Under these conditions, the presence of HQnNS results in a significant fluorescence enhancement. (d) Fluorescence

spectra of ubiquinone/ubiquinol- functionalised CdSe/ZnS QDs. e, Cyclic voltammetry of QnNS-CdSe/ZnS QDs. (f)

Visualisation of QnNS-CdSe/ZnS QDs as an intracellular complex I sensor. The mitochondrial-specific neurotoxin, rote-

none, inhibits complex I and leads to Parkinson's-like pathogenesis. Parkinson’s disease is characterized by impaired

activity of complex I in the electron-transfer chain of mitochondria. Adapted with permission from [38]. Copyright 2013

Nature Publishing Group.
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of the functionalized QDs (by quinone) could be recovered by a lectin that selectively binds

to the quinonyl glycosides clustering the QDs, but showed insignificant fluctuations toward

a panel of nonselective lectins. We further determined that QDs coated with quinonyl

galactosides could optically image transmembrane glycoprotein receptors of a hepatoma cell

line in a target-specific manner (which they showed much weakened imaging ability toward

cells with a reduced receptor level). This unique system, by taking advantage of the effective

quenching ability of benzoquinone for QDs and natural ligand-receptor pairing on the cell

surface (that recovers the signal), paves the way for the development of highly specific and

low-background techniques for bioimaging of cancer cells as well as probing of unknown

cell-surface receptors.

Figure 4. Schematic diagram of quinonyl glycosides functionalized QDs as a novel “switch-on” fluorescence probe for

specific targeting and imaging transmembrane glycoprotein receptors of human hepatoma Hep-G2 cancer cells [Q-Glc:

quinonyl glucoside disulfide; Q-Gal: quinonyl galactoside disulfide; Q: quinonyl disulfide]. Adapted from [39]. Copyright

2014 American Chemical Society.
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4. Dopamine-functionalized quantum dots and their application

Dopamine (DA) is an essential neurotransmitter in central nervous system and facilitates

various functions in brain. DA-induced neurotoxicity has long been known to be triggered by

the oxidation of DA and may play a role in pathological processes associated with

neurodegeneration. Under oxidative stress, DA could readily oxidize to produce DA quinone

catalyzed by tyrosinase in the presence of O2 and contribute to the nucleophilic addition with

sulfhydryl groups on free cysteine (Cys), glutathione, or Cys residue contained in protein [40, 41].

The interaction between DA quinone and Cys residue yields the formation of 5-Cys-DA

in vitro and in vivo. As well-known, Cys residue is particularly critical for maintaining

dynamic redox balance of cell and physiological function, which is directly correlated with

the level of cellular stress. However, DA inactivation modification between Cys residue and

DA quinone may disturb mitochondrial function, scavenge the thiol protein, inhibit protein

function, and possibly lead to cell death [42]. Moreover, this modification decreases in the

endogenous level of Cys residues, which is often found at the active site of functional proteins.

Recent studies suggest that disturbance of Cys residue homeostasis may either lead to or result

from oxidative stress in cell, contributing to mitochondrial dysfunction occurs early, and acts

causally in neurodegenerative pathogenesis [43]. Therefore, it is of considerable significance to

investigate the nature of this interaction process in physiology and pathology.

Due to the superior optical and photophysical properties of QDs, biorecognition or biocatalytic

reactions have been followed by fluorescence resonance energy transfer or electron-transfer pro-

cesses stimulated by redox-active biomolecule-functionalizedQDs [44–50]. The DA-functionalized

QDs were prepared through the following steps: (1) 596-nm-emitting thiohydracrylic acid capped

CdTe/ZnS QDs and a redox-active DA thiol derivative (DAs) as surface-capping ligand were

designed and synthesized; (2) the ligand molecule DAs was self-assembled onto the surface of

QDs [51]. About 24 DAs molecules per QD were chosen as the optimal ratio from the spectra

according to the QDs self-assembled with increasing ratio of DAs. DAs quinone on the surface of

QD bioconjugates are generated in the enzymatic oxidation of DAs by tyrosinase/O2, resulting in

the fluorescence quenching (Figure 5). With adding a three-fold maximum tyrosinase/O2, the

fluorescence intensity of DAs-functionalized QDswas obviously quenched as expected. However,

evenmuchmore excess tyrosinase/O2 did not greatly affect the fluorescence of bare CdTe/ZnSQDs

(≤10% quenching). After DAs-QDs catalyzed by tyrosinase/O2, the resulting product DAs quinone

acting as an excellent electron acceptor is efficient for hole trapping of QDs and induces the

fluorescence quenching. Fluorescence intensity of DAs quinone-QD bioconjugates recovered grad-

ually upon addition of increasing amounts of Cys. Approximately 96% of the fluorescence was

recovered after addition ofCys. It isworth noting that the 5-Cys-DAs containing catecholmoietyon

the functionalizedQDssignificantly recovered fluorescence.Here, thephoto-excited-functionalized

QD bioconjugates decay radiatively to the ground state of QDs because the 5-Cys-DAs ligands

could function as poor electron acceptors. This in turn results in a fluorescence recovery due to the

transformation from DAs quinone to DAs on the surface of functionalized QDs, blocking the

electron transfer fromQDs to benzoquinone.Only the presence of Cys residues (Cys orGSH) could

induce rapid fluorescence recoveryof theDAsquinone-functionalizedQDs, confirming the specific

coupling of Cys and DAs quinone in this system. In this study, photophysical properties of QDs
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were used to monitor the redox process of DAs and the formation of 5-Cys-DAs bymimicking the

interaction process that DA oxidizes to form DA quinone, which binds covalently to nucleophilic

sulfhydryl groups on Cys residues. The enzymatic process catalyzes the transformation of ligand

structure between DA quinone and catechol, leading to the fluorescence change of functionalized

QD bioconjugates (Figure 5). Several lines of evidence suggest that disturbance of Cys residue

Figure 5. Schematic diagram of self-assembly and FL quenching/recovery characteristics of DAs-functionalized CdTe/

ZnS QDs; Inset: schematic of the oxidation of DA and the irreversible interaction between Cys residue and DA quinone.

Adapted from [51]. Copyright 2015 American Chemical Society.

Figure 6. Schematic representation of redox-mediated indirect fluorescence immunoassay for the detection of biomarkers

using DAs-functionalized CdSe/ZnS QDs. Adapted from [52]. Copyright 2016 American Chemical Society.
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homeostasis may either lead to or result from oxidative stress in cell. In all major examples of

neurodegenerative diseases, there is strong evidence that oxidative stress contribute to mitochon-

drial dysfunction occurs early and acts causally in disease pathogenesis. Thus, this specific fluores-

cence changes in our proposed system develop a powerful fluorescence sensor to follow the tracks

of the neurotransmittermodification.

Inspired by redox-mediated fluorescence strategy, a redox-mediated indirect fluorescence immu-

noassay was developed for detecting the disease biomarker α-fetoprotein in a model based on

DAs-immobilized CdSe/ZnS QDs (Figure 6) [52]. In this system, tyrosinase conjugated with the

detection antibody was used as a bridge linking the QD fluorescence signals with the concentra-

tion of target disease biomarkers; the tyrosinase could catalyze enzymatic oxidation of DA to

DA-quinone, resulting in fluorescence quenching in the presence of the analyte. Using this

method, the detection limit for AFP was as low as 10 pM. This work provides a new pathway

for the detection of disease biomarkers by RMFIA and has good potential for other applications.

5. Conclusion

By using redox-mediated fluorescence strategy, we demonstrated that coupling QDs with redox-

active surface ligand is capable of fluorescence detecting of target analytes with high specificity.

Ubiquinone-coupled QDs could be used for quantitative detection of ROS and target-specific

imaging of transmembrane receptors in living cells. Dopamine as an electron donor could

sensitize QDs through different mechanisms for monitoring dopaminergic neurotoxicity. More-

over, the improvement of QD-dopamine bioconjugates as biosensors was used for clinical diag-

nostic applications. Cumulatively, these results confirm a critical role for redox molecules, and

especially quinone, in charge-transfer interactions with QDs for biological application.
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