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Abstract

This review introduces a novel mathematical description of protein assembly. Protein
assembly occurs in a substantially open non-equilibrium and non-linear kinetic system.
The goal of systems biology is to make predictions about such complicated systems, but
few have conducted stability analysis for given systems. Particularly, simulated dynamic
behaviors have not been sufficiently verified by kinetic analysis in predicting macromolec-
ular protein interactions and assembly. The non-linearity of protein assembly kinetics is
complex, and it is very difficult to determine a model of multi-protein interactions based on
numerical calculation. We studied the non-linear kinetics involved in the diffusion process
of proteins consisting of two or three species of macromolecules and set a novel model in
which non-linearity is given by the diffusion coefficient that depends on the protein con-
centration. Bymaking the diffusion coefficient concentration-dependent, non-linearity leads
to a simple system model. Protein assembly is initiated by monomeric protein interactions
and regulated by cofactors such as guanidine triphosphate (GTP) or adenosine triphosphate
(ATP) binding to the monomer. This cofactor concentration promotes the dynamic behavior
of protein assembly and can be treated as an order parameter. Further, kinetic stability
analysis in the center manifold theory (CMT) is introduced for analyzing the behavior of
the system around the critical state. Although CMT has not been sufficiently applied for
stability analysis of protein assembly systems, this theory predicts the dynamic behavior of
the assembly system around the critical point using concentration as a cofactor. Protein
assembly theory will provide a novel framework for nonlinear multi-parametric analysis.

Keywords: protein assembly, center manifold theory, tubulin, non-linear kinetics,
non-equilibrium state, diffusion coefficient, oscillation

1. Background

Protein assembly is essential for cellular activities such as cell signaling, gene expression by tran-

scription factor complexes, cytoskeleton formation, endocytosis, and cell motility. This reaction

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



system is one of the complicated systems and non-linear kinetics has been applied for under-

standing the dynamic behavior [1–8]. Among the protein assembly, tubulin and actin poly-

merization are well-known events that have been analyzed using numerous methods [9–13].

Microtubule and actin filaments consist of monomers that bind the cofactors guanidine tri-

phosphate (GTP) or adenosine triphosphate (ATP) to acquire assembly activity [14–16]. In

general, a protein interaction is controlled by an electric charge on the amino acid residue(s)

of the protein, such as tyrosine, serine, and threonine, by covalently binding to or reacting with

a cofactor such as ATP or GTP; subsequently, the monomer loses its interaction activity by

hydrolyzing ATP or GTP into ADP or GDP or through dephosphorylation, which is mediated

by the other protein’s phosphatase activity or its own enzymatic activity [17, 18].

In particular, dynamic instability in tubulin polymerization has been extensively investigated.

Dynamic instability signifies the intermittent transition between slow growth and rapid shrink-

age in polymeric assemblies of microtubules [9–13, 19]. Further, intra-polymeric Brownian

motion and fluctuation influence the structure and elasticity of tubules [20]. Zapperi and

Mahadevan presented an excellent model in which the ratio of longitudinal to lateral interac-

tions characterizes the assembly [21]. Hammele et al. presented a physical model and

suggested the physical properties of the microtubules [22]. Nucleation is the rate-limiting step

controlling the overall polymerization process [18]. The stable nucleus for polymerization is

oligomers, and the growth of aggregates through elongation/dissociation follows. For stable

growth, tubule lifespan is controlled by a GTP-cap that forms at their ends [19].

As another example of protein interactions, in the mitogen-activated protein kinase (MAPK)

signaling cascade, a set of protein kinases and protein substrates construct the signaling net-

work. The cofactor ATP/GTP transfers biological information in the reaction network to alter

gene expression [6–8]. Mathematical models of this cascade have demonstrated that the system

can act as an ultra-sensitive switch based on a combination of phosphorylation of protein

substrates and implicit feedback, leading to multi-stability [23, 24, 25]. Recently, Ueno et al.

reported that a model of MAPK signaling cascade functions as a band-path filtering system.

2. Protein interaction kinetics

2.1. Protein interaction model

Steps in protein assembly of microtubular polymerization are summarized as follows: (i) the

protein achieves an interaction active state by reversibly binding to a cofactor, which provides

the protein with assembly or interaction activity; the protein interaction activity decreases

when a hydrolyzed inactive cofactor is bound compared to an active cofactor; (ii) the protein

can hydrolyze the cofactor; (iii) the protein can exchange the inactive cofactor, such as ADP,

with an active cofactor; and (iv) active cofactors are supplied continuously and externally.

Thus, the interaction activity is self-limiting, in which the protein itself limits assembly activity,

resulting in dynamic instability [10–13, 19, 23, 26–28].

Let us consider a three-monomer model in which an active cofactor-binding protein (X),

oligomeric protein (W), and inactive cofactor-binding protein (Z) coexist. The sum of
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monomeric proteins is kept constant; this kinetics is attributed to a two-parametric analysis.

First, X can reversibly associate with the oligomer:

XþW ! W kinetic rate coefficients ! k1ð Þ (1)

Subsequently, Z is released from the oligomer:

W ! Z (2)

Here, Pi signifies the released inorganic phosphate. Finally, in the presence of sufficient active

cofactor, Z releases the inactive cofactor, ADP or GDP (I), binds an active cofactor, ATP or GTP

(P), and recovers its interaction activity, returning to the protein

Zþ P ! Xþ I k3ð Þ (3)

In addition, a monomeric protein has the potential to hydrolyze the cofactor by interaction:

Xþ X ! Xþ Z k4ð Þ (4)

Xþ Z ! 2Z k5ð Þ (5)

Formula (5) represents a self-reproducing reaction, which yields non-linear kinetics in this

reaction system.

2.2. Concentration dependence of protein diffusion

Diffusion of proteins plays an important role in protein interactions. Analysis of dilute

solutions of a macromolecule requires a greater understanding of the concentration depen-

dence of the diffusion rate because of the hydrodynamics of protein solutions involving

mutual diffusion of protein molecules. One of the approaches is applicable to the study of

self-diffusion in solutions [29–32]. In fact, proteins interact or associate with other mono-

meric proteins and phosphorylate or are phosphorylated by the proteins. In dilute solution,

proteins may diffuse in a free manner with sufficiently large vacant space that accounts for

only a fraction of the volume of a protein molecule. These vacancies are sufficiently large to

be occupied by proteins that are as large as the hydrodynamic volume. The effects of

molecular shape and size, solvent, and environment such as ion intensity and pH determine

the concentration dependence of the diffusion rate. Here, the diffusion rate D0 is set as the

probability of vacancy formation and does not depend on the velocity at which a monomer

diffuses. The probability P is given by a void adjacent to the objective protein, which is

sufficiently large to permit diffusion: D = DoP.

The probability P(V) of forming a vacancy of volume V in the solution is given by

P Vð Þ ¼ D0 exp �βcρVe= 1� cVeð Þ
� �

(6)

where Ve is protein exclusion volume, c is the protein solution concentration, and β is a

constant that reflects the effects of interactions with other macromolecules and shape on the

Non-Linear Kinetic Analysis of Protein Assembly Based on Center Manifold Theory
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probability of vacancy formation. Thus, D depends on the size and shape of the protein and

likely other factors

D ¼ D0

ð

∞

Ve

p Vð ÞdV ¼ D0 exp �βcρVe= 1� cVeð Þ
� �

(7)

At low concentrations of the macromolecule

D ¼ D0 1� βcρVe= 1� cVeð Þ
� �

≃D0 1þ 1� β
� �

cVe

� �

(8)

Thus, the dependence of the diffusion coefficient can be described using the protein solution

concentration (Figure 1).

2.3. Viscosity and diffusion coefficient of protein

The compatibility of Eq. (8) with the experimental data strongly suggests that the concentra-

tion dependence of the protein diffusion constant is governed by excluded volume interac-

tions, which may be predicted by calculating equilibrium protein density fluctuations. Eq. (8)

is consistent with the equation describing the viscosity η of concentrated protein solutions

η=η0 ¼ exp ρ ηð Þ= 1� ρ ηð Þ k=vð Þ
� �� �

(9)

where η0 is the solution viscosity at infinite dilution, η is the intrinsic viscosity of the solution, c

is the protein solution density, and k/v is a constant that corrects for the overlap of free volume v.

Figure 1. Self-diffusion rate constantsD for concentration of protein, c, with theoretical curve from Eq. (8) with β = 3.0. Near

the point x ~ 0, the diffusion coefficient obeys D = 1 � 2c. The vertical axis represents the diffusion coefficient D � 107 (cm2/s)

and horizontal axis represents hemoglobin concentration (g/dL). The graph is shown using new arbitrary values with ref-

erence to experimental data.
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2.4. Diffusion-limited protein association

Because protein diffusion in the viscous cytoplasm is significantly slower than other reactions

between interactions with other molecules, the protein assembly reaction is a diffusion-

controlled or diffusion-limit process. In general, the diffusion rate of monomer is given by the

concentration gradient that is the molar flux per unit area, J. This is the additional rate of

monomer X towards oligomer W multiplied by the area of the spherical surface of radius R of

the reactive end of polymer or oligomer

Rate of reaction ¼ 4πR2J (10)

In Fick’s first law, the flux towards X is proportional to the concentration gradient at radius of

macromolecule R

JX ¼ DX
d X½ �r
dr

� �

at r¼R

¼ DX
X½ �

R
(11)

By substitution of Eq. (10) into Eq. (11), the rate of reaction v is given as

v ¼ 4πRDXX
X (12)

The rate of the diffusion-controlled reaction is equal to the average flow of X molecule to all

W molecules. Accordingly, the global flow of all X to W is 4π R*DXNA XW. Similarly, the flow

of all W to X is 4π RDWNA WX. Further, using the sum of the diffusion coefficients of the two

species, the diffusion coefficient is rewritten as D = (DX + DW)/2. Then, the addition rate of X to

W is given by

Addition rate ¼ 4πR kX
oDXW (13)

In reality, the diffusion rate of oligomer is negligible relative to that of monomer, and the

addition rate is given as

Addition rate ¼ 4πR kX
oDXXW ¼ kXDXXW (14)

and

kX ¼ 4πR kX
o (15)

Using the above formula, the kinetic rate of ci and items of interaction between monomers is as

follows [8]:

dci
dt

¼ kjDici þ f cið Þ (16)

Non-Linear Kinetic Analysis of Protein Assembly Based on Center Manifold Theory
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where f(cj) represents the sum of the reaction kinetic items of jth species, cj, except the diffusion

process. When the potential of the electric field, ϕ(r), is considered, the flux is described using

spatial coordinate r

J ¼ �Di

dcj

dr
þ

1

kBT
cj
dϕ rð Þ

dr

� 	

(17)

In the solvent including two chemical species, the relative movement is related to the local

concentration gradient of cj and potential energy. When the gradient is described using

Eq. (17), monomer X moves across the sphere with radius R surrounding W and can be

described by

J ¼ � DX þDWð Þ
dX

dr
þ

1

kBT
X
dϕ rð Þ

dr

� 	

(18)

when X and the active site on the oligomer or polymer W interact to assemble or elongate the

polymer, which is determined by R. The total flux will be equivalent to the chemical reaction

rate using an arbitrary kinetic coefficient k

dX

dt
¼ �kXW ¼ �4πR2J (19)

At the steady state, flux across the sphere with a radius, or a shape parameter, r is constant for

any values. Accordingly, R in Eq. (19) is replaced with r using Eq. (18)

dX

dt
¼ �4πR2 DX þDWð Þ

dX

dr
þ

1

kBT
X
dϕ rð Þ

dr

� 	

(20)

By integration and rearrangement of Eq. (20)

kX ¼ �4π DX þDWð Þγ

ðX

X¼XR

d Xr exp ϕ rð Þ=kBT
� �
 �

(21)

and here

γ�1 ¼

ð

∞

R

exp ϕ rð Þ=kBT
� �

r2
dr (22)

Because r- > ∞, V(r) approaches zero

k ¼
4π DX þDWð Þγ

X
X� XR exp ϕ rð Þ=kBT

� �
 �

¼
4π DX þDWð Þγ

1þ 4π DX þDWð Þγ=kR exp �ϕ rð Þ=kBT
� �� �

≈

4πDXγ

1þ 4πDXγ=kR exp �ϕ rð Þ=kBT
� �� �

(23)
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Here, Xr=R = (k/kR) X. In calculating the above formula, fluctuations of diffusion coefficients are

neglected when the concentration of X is sufficiently low and kept constant during the reac-

tion. The kinetic coefficient is controlled by the diffusion process and the aggregation or

assembly is completed through interactions between X and W; Xr=R is set to zero. Then, k is

given by Eq. (23):

k ¼ 4πDXR (24)

The diffusion coefficients can be altered in proportion to the fluctuation of monomeric protein

concentration [9–14]. In the derivation of Eq. (23), the diffusion coefficient is related to the

viscosity η by the Einstein-Stokes formula

D ¼
kBT

6πrη Tð Þ
(25)

By using the Gibbs-Duhem expression, the diffusion coefficientD of one macromolecule can be

written as

D ¼
kBT

η
1�

NAv1
M1

c1

� �

1þ 2A1M1c1 þ⋯ð Þ≜D0 1�
NAv1
M1

c1

� �

1þ 2A1M1c1 þ⋯ð Þ (26)

where T is the temperature of the solution, kB is the Boltzmann constant, and η1 is the frictional

coefficient of the macromolecule in solution. A1 is the second virial coefficient, v1 is the partial

specific volume of protein with molecular weightM1, andNA is Avogadro’s number. The small

letter c1 denotes the concentration of the solute macromolecule. Then, dependency of the

diffusion coefficient on the ith component, Di, is as follows from (26):

aij �
∂Di

∂cj
¼ D0i 2AjMj �

NAvj

Mj

� �

(27)

where vj is the partial specific volume of the polymer with molecular weight Mj.

Further, the diffusion coefficient is given by extending the above formula to a mixed solution

of two macromolecules, X and Z

DX X;Zð Þ ¼
kBT

ηX

1�
NAvX
MX

X�
NAvZ
MZ

Z

� �

1þ 2AXMXXþ 2AZMZZþ⋯ð Þ

DZ X;Zð Þ ¼
kBT

ηZ

1�
NAvX
MX

X�
NAvZ
MZ

Z

� �

1þ 2AXMXXþ 2AZMZZþ⋯ð Þ

(28)

where vX and vZ are the partial specific volumes of X and Z with molecular weights MX and

MZ, respectively. AX and AZ are the second virial coefficients.

2.5. Fluctuation of diffusion coefficient

Subsequently, let us consider the fluctuation of participant proteins using lowercase letters

Non-Linear Kinetic Analysis of Protein Assembly Based on Center Manifold Theory
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X ¼ Xe þ x (29)

Z ¼ Ze þ z (30)

Here, the sum of the kinetic rate of fluctuations is constant because total amount of monomeric

protein is constant

_x þ _y þ _z ¼ 0 (31)

The dependency of the diffusion rate refers to the high interaction activities of X and low

interaction activities of Z. An increase in X contributes to a decrease in the diffusion coeffi-

cients DX and DZ in fluctuation items because of the higher interaction activity that reduces

diffusion; in contrast, an increased Z contributes to increased diffusion coefficients because the

interaction between increased Z induces lower assembly activity for the interaction with

monomeric proteins, resulting in increased mobility of monomeric proteins. This dependency

gives the non-linearity fluctuation items in the kinetic equation. Here, all preparations for

kinetics are completed.

2.6. General theory of non-linear kinetic equation of protein assembly

According to the above simple reaction cascade, (1)-(5), the kinetic equation contains the

concentrations of monomeric proteins as variables. For simplification, the equations are writ-

ten as follows:

_X ¼ �k1D1WXþ k3PZ� k4D4X
2 � k5D5XZ (32)

_W ¼ k1D1WX� k2D2W ≈ 0 (33)

_Z ¼ k2D2W � k3PZþ k4D4X
2 þ k5D5XZ (34)

Here,

D1 ≜
DX þDW

2
�

DX

2
, D4 ≜DX, D5 ≜

DX þDZ

2
(35)

Further, for simplicity, Eqs. (34) and (36) are given by replacing the kinetic coefficients with

arbitrary coefficients

_X ¼ �k1
0

WXþ k3PZ� k4
0

X2 � k5
0

XZ (36)

_Z ¼ k2
0

W � k3PZþ k4
0

X2 þ k5
0

XZ (37)

Here, k1D1W = k1’, k4D4W = k4’, k5D5 = k5’, and p = k3 P. At the steady state, setting the right

hands of Eqs. (32)-(34) equal to zero

Xe ¼
k2

0

k1
0 , Ze ¼

k2
0 k4

0
4k2

0 þ k1
20W

� 

k1
0 k1

0P� k2
0k5

0ð Þ
(38)

Kinetic Theory96



Here, the fluctuation of diffusion coefficients are given by

a ¼
∂k1

0

∂x
, b ¼

∂k1
0

∂z
, c ¼

∂k4
0

∂x
, d ¼

∂k4
0

∂z
, e ¼

∂k5
0

∂x
, f ¼

∂k5
0

∂z
(39)

By altering X, Z, k1’, k4’, and k5’ into X + x, Z + z, k1’ – ax + bz, k4’ � cx + dz, and k5’ � ex + fz in

Eqs. (36) and (37) and arranging, two dependent equations are obtained

_x ¼ f xxþ f z þ p
� �

zþ f xxx
2 þ f xzxzþ f zzz

2 (40)

_z ¼ f x
0

xþ f z
0

� f z pð Þ
� 

zþ f xx
0

x2 þ f zx
0

xzþ f zz
0

z2 (41)

Accordingly, the overall behavior of the kinetics of protein assembly is given by the mono-

meric kinetics of x and z. fxz(‘), fzx(‘), fxx(‘), and fzz(‘) represent the assembly activity between X

and Z, Z and X, X themselves, and Z themselves.

Figure 2. Scheme of monomer interaction. Individual globules represent monomers X•, and Z ○, released species. The

supply of the cofactor is kept constant and inactive cofactor is released continuously. The differential coefficients a, b, c,

and d indicate the interaction activity between X and Z. The differential coefficients are given in Eq. (39). The interaction

activity between X is higher and therefore the diffusion rate of X between X becomes slower; the interaction activity

between X and Z is lower, and therefore the diffusion rate of X/Z between Z/X becomes slightly slower; the interaction

activity between Z and Z is negligible and therefore the change in the diffusion rate of Z through Z is negligible.

Non-Linear Kinetic Analysis of Protein Assembly Based on Center Manifold Theory
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In reality,

_x ¼ � W k1
0 � aXeð Þ þ 2k4

0Xe þ k5
0Zef gxþ Wa� k4

0 þ 2cXe þ eZeð Þx2

þ p� bXe � k5
0Xe � dXe

2 � fXeZe

� �

z� k5
0 þWb� eXe þ f eZe

� �

xz� fXez
2

(42)

_z ¼ 2k4
0Xe þ k5

0Ze � cXe
2 � eXeZe

� �

xþ k4
0 � 2cXe � eZeð Þx2

þ �pþ k5
0Xe þ dXe

2 þ fXeZe

� �

zþ k5
0 þ 2dXe � eXe þ f eZe

� �

xzþ fXez
2

(43)

Thus, we determined a general formula for protein assembly. Cytoskeletal protein and protein

complexes in the signaling cascade can be described using this formula.

2.7. Linearity of cofactor supply to the assembly system

While protein assembly is a non-linear reaction involving a complicated set of reactions or

assembly steps, the supply of cofactor is simply given by the linear kinetic rate items as shown

in Eqs. (36, 37, 40 and 41). This means that the supply rate will be essentially be an order

parameter of the assembly system and is controllable by altering the concentration of the

cofactor (Figure 2). Accordingly, parameter p is variable in the numerical simulation, as

described below.

3. Calculus simulation of concentration oscillation

3.1. Oscillation of monomer concentration fluctuation

In actual simulation of protein assembly, numerical calculation was performed over a suffi-

ciently long period to evaluate the trend in system behavior.

Simulation: A simulation was performed using Mathematica® version 8 (Wolfram Research,

Champaign, IL, USA).

Simulation was performed with the notation in Eqs. (42) and (43), in which p is (a) 0.8, (b) 0.81,

and (c) 1.00 (Figure 3).

Below is the simulation program cord using Mathematica ver. 8 when p = 0.8:

D1 = 0.27, k2 = 0.00035, a = 790, b = 650, c = 105, d = 105, e = 105, f = 105, p = 0.8, Dxx = 155,

Dxz = 155, W = 1.

X = k2/D1.

Z = (k2 (D1^2 W + Dxx k2))/(D1 (D1 p - Dxz k2)).

NDSolve[{x’[t] == � (W (D1 - a X) + 2 X Dxx + Dxz Z) x[t] + (W a - Dxx + 2 c X + e Z) x[t]^2 +

(p - Dxz X - b X - d X^2 - f X Z) z[t] - (Dxz + W b - e X + f Z) x[t] z[t] - (f X) z[t]^2,

z’[t] == (2 X Dxx + Dxz Z - c X^2 - e X Z) x[t] + (Dxx - 2 c X - e Z) x[t]^2 + (Dxz + 2 X d - e X + f Z)

x[t] z[t] + (Dxz X - p + d X^2 + f X Z) z[t], x[0] == 0.000001, z[0] == 0.000001}, {x, z}, {t, 0, 30,000},

MaxSteps - > 50,000].
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Figure 3. Numerical simulation of protein assembly. Diffusion of active cofactor binding signaling molecule (X) and

inactive cofactor binding signaling molecule (Z). The upper graph shows two parametric plots of X and Z. Red and blue

lines in the lower graph represent the concentrations of X and Z, respectively. The horizontal axis represents time (s)

(0 ≤ t ≤ 200) and vertical axis represents the concentrations of X and Z, respectively. When p exceeds 0.80, chaos-like

oscillation is observed. Mathematica version 8 was used.

Non-Linear Kinetic Analysis of Protein Assembly Based on Center Manifold Theory
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g001 = Plot[{X + x[t]} /. %, {t, 0, 200}, PlotRange - > All, PlotStyle - > {RGBColor[1, 0, 1]},

PlotRange - > ALL].

g002 = Plot[{Z + z[t]} /. %%, {t, 0, 200}, PlotRange - > All, PlotStyle - > {RGBColor[0, 1, 1]},

PlotRange - > All].

g003 = ParametricPlot[Evaluate[{X + x[t], Z + z[t]} /. %%%], {t, 0, 2000}, PlotRange - > All,

AxesLabel - > {“X”, “Z”}] Show[g001, g003, AxesLabel - > {“t”, “X, Z”}].

As a result, regular oscillation with fluctuations in the amplitude and frequency can be illus-

trated in the plot following the above calculation. Plots on the right side that the oscillation

becomes definite within a limit-cycle when p = 1.5.

3.2. Oscillation frequency

In a previous study [6], an interesting relationship was observed between the average fre-

quency of simulated oscillation of the monomeric proteins and difference p� pc. The frequency

was nearly equivalent, but with irregular fluctuations, except for during the initial phase. The

relationship between average frequency < f > and p � pc is given by:

< f > ≃ 0:0256 ln p� pc
� �

þ 0:1407 (44)

These formulae imply that the amplitude of monomeric protein fluctuation provides informa-

tion regarding the outside alteration of the cofactor. Thus, outside alteration is transformed

inside into the information of assembly.

4. Center manifold theory (CMT)

4.1. Center manifold formulae

For stability analysis of the nonlinear dynamics in protein assembly, the center manifold theory

(CMT) for non-linear dynamic biological systems has been applied. Simulation is oriented to

analyze the behavior around critical values of the order parameter. CMT has been applied to

the Lotka-Volterra model of the predator-prey system to provide important simulation results

[33, 34]. However, the CMT can be applied to the protein assembly model. For stability

analysis around the critical point, Eqs. (40) and (41) were formulated. When p is equivalent to

pc, the Jacobian matrix L for (x, z) is given using the linear coefficients of (x, z) in Eqs. (40) and

(41):

L ¼

f x f z þ f pc
� �

f x
0

f z
0

� F pc
� �

 !

(45)

Particularly, the function f(p) represents the input and output of the cofactor that is the order

parameter. Using the eigenvectors of L, (l1, l2), coordinate transformation into u and v is

performed as follows:
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d

dt

x

z

� 	

¼
d

dt
l1 l2½ �

u

v

� 	

(46)

d

dt

u

v

� 	

¼
d

dt
l1 l2½ ��1 x

z

� 	

(47)

The above formulae are subsequently set as

du=dt ¼ f u u; vð Þ (48)

dv=dt ¼ f v u; vð Þ (49)

The center manifold around the critical point (p = pc) is then given as follows:

u ¼ h ε; vð Þ ¼ a1v
2 þ a2vεþ a3ε

2 þ a4v
3 þ a5v

2
εþ a6vε

2 þ a7ε
3 þO ε

4
� �

(50)

The effect of changing p and ε (p = pc) is analyzed using the center manifold around the critical

point of the system. Subsequently

u ¼ dv=dtð Þ∂h u; εð Þ=∂uþ dε=dtð Þ∂h u; εð Þ=∂ε ¼ 2a1vþ a2εð Þf u u; vð Þ (51)

Using Eqs. (49) and (50)

2a1vþ a2εð Þf u u; vð Þ ¼ a1v
2 þ a2vεþ a3ε

2 þ a4v
3 þ a5v

2
εþ a6vε

2 þ a7ε
3 þO ε

4
� �

(52)

Solving Eq. (52) gives the coefficients of ai in Eq. (50): a3 = a7 = 0. Substituting u in Eq. (51) given

by ν and ε into fv(u, v) in Eq. (47), the kinetic stability equation is given for fluctuation ν using

the coefficients ni (i = 1,…, 7) as follows:

dv=dt ¼ n1v
2 þ n2vεþ n3ε

2 þ n4v
3 þ n5v

2
εþ n6vε

2 þ n7ε
3 þO ε

4
� �

(53)

Independently of the numerical values in Eq. (53)

n3, n6, n7 ¼ 0 (54)

Using this result, we have

dv=dt ¼ n1v
2 þ n2vεþ n4v

3 þ n5v
2
εþO ε

4
� �

(55)

By setting the left-hand side of Eq. (55) equivalent to zero, a Hopf-bifurcation of the given

system is shown

v ¼ 0,
�n1 � n5ε�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ n5εð Þ2 � 4n2n4ε
q

2n4
(56)

Further approximate solutions to Eq. (56) are given as
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v ¼ 0, ≈ cε, � n1=n4 (57)

Thereafter, the solution cε increases as the concentration of ATP/GTP increases. From Eq. (51),

u is formulated using an arbitrary coefficient c

u ≈ 0, c n1=n4ð Þ2 (58)

This result implies that the fluctuation has two different values for the amplitude of an

oscillation.

5. Prospects of protein analysis assembly

Our aim in this review was to evaluate the association between the non-linearity in protein

diffusion and assembly. Here, we reviewed studies of protein assembly or interactions [1–4]

and performed mathematical analysis of the model in addition to numerical simulations.

Because the assumptions of the model are minimal, the simulation provides insight into

assembly. The results are summarized as follows: (i) the non-linear kinetic equations including

only two independent parameters may reveal dynamic behavior in the fluctuation of the

monomer concentration, (ii) the increase near the critical concentration of the cofactor induces

oscillations in amplitude and frequency; and (iii) center manifold analysis predicts the stability

of the model system near the critical concentration, showing bifurcation with respect to the

cofactor supply value. The behavior of the system shown in the simulation indicates that the

concentration change information of a cofactor outside the system is transduced into another

type of information, e.g., frequency of the concentration oscillation of the monomer. A small

increase in the outside cofactor concentration induces an oscillation change inside the mono-

meric protein, which may be crucial for responding to transformations in the outside environ-

ment. Such a trajectory in the observed oscillation resembles a limit-cycle-like in the well-

known two-parametric Lorenz model [13, 14].

Previous systems biology models did not focus on the diffusion process of a protein in the

cytoplasm. Non-linearity in the process is critical and essential to protein assembly. Before

considering a set of simultaneous kinetic equations, non-linearity in the diffusion process

should be considered, as de novo nucleation is negligible compared with the reaction of the

monomer and oligomer. The interaction between assembly-active monomer proteins attenu-

ates the diffusion rate in a non-linear fashion because they can assemble, which inevitably

yields non-linearity. As shown in this review, CMT is useful for reducing the parameters of

detailed stability analysis around the critical state.

6. Conclusion

Protein interactions play an important role in various biological activities at the cell level.

Although protein diffusion is a rate-limiting-step, cell behavior is orchestrated by protein
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interactions, and signaling transduction, the cytoskeleton, and cell motility are dynamically

altered in processes similar to “phase transitions” in inorganic chemical reactions. This review

provides a model of phase transition affected by minimal changes in cofactor concentration;

but oscillation and bifurcation are inducible by the simple model. Systems biology multi-

parametric analysis remains important; however, a simple model sufficiently can better illus-

trate oscillations in protein concentration with a limit-cycle. Outside alteration such as cofactor

concentration change is transformed inside into the information of assembly. Stability analysis

using the CMT is a simple method for understanding protein-interacting systems.
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