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Abstract

Analysis of creep properties has traditionally been made with empirical methods involv-
ing a number of adjustable parameters. This makes it quite difficult to make predictions
outside the range of the original data. In recent years, the author has formulated basic
models for prediction of creep properties, covering dislocation, particle and solid solution
hardening. These models do not use adjustable parameters. In the present chapter, these
models are further developed and utilised. The dislocation mobilities play an important
role. The high-temperature climb mobility is extended to low temperatures by taking
vacancies generated by plastic deformation into account. This new expression verifies the
validity of the combined climb and glide mobility that has been used so far. By assuming
that the glide rate is controlled by the climb of the jogs, a dislocation glide mobility is
formulated. The role of the mobilities is analysed, and various creep properties are
derived. For example, secondary creep rates and strain versus time curves are computed
and show good agreement with experimental data.

Keywords: creep, dislocation, mobility, model, creep strain

1. Introduction

If metals are exposed to load at high temperatures, a slow deformation called creep takes place.

A characteristic feature of creep is that it occurs even when the load is kept constant. This should

be contrasted to plastic deformation at ambient temperatures where an increase in the load is

needed to generate further plastic strain. Creep in metals has been studied for many decades,

and a number of excellent textbooks exist on the subject, see for example [1–4]. A common way

of measuring the creep deformation is to apply a fixed load to a specimen and then record its

elongation as a function of time. The relative increase in the elongation is referred to as the

(creep) strain. Its time derivative is called the creep strain rate. Another important quantity is

the stress, i.e. the load divided by the specimen cross section. After sufficient test time, the

specimen ruptures. The rupture time and the specimen elongation at rupture are recorded.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



A creep test typically shows three stages: primary, secondary and tertiary. During the primary

stage, the creep rate is initially high but shows a gradual decrease until it reaches a constant

value, which corresponds to the secondary stage. This stage usually takes the longest time.

Finally, the creep rate starts to increase. This is the tertiary stage that eventually leads to

rupture. The dependence of the creep strain as a function of time is referred to as a creep

(strain) curve. Although the described shape of the creep curve is the most common one, there

are many variants.

Creep-exposed materials can be found in many types of high-temperature plants, for example,

fossil-fired power plants. The desire is to make the materials as strong as possible, and the

creep rate low to ensure a long lifetime. The deformation rate is controlled by the movement of

the dislocations, i.e. the line defects that are present in large numbers. If the movement of the

dislocations is fast, the creep strength is low. To increase the creep strength, the movement of

the dislocations must be reduced. Typically, the most efficient way to hinder this movement is

to have a high content of other (forest) dislocations. There is a strong interaction between

different dislocations. The second most used way of increasing the strength is to introduce

particles in the microstructure. Particles or precipitates are a very potent way of raising the

strength. A third way is to have elements in solid solution. The difference in size between the

solute and the matrix atoms makes it more difficult for the dislocations to move.

Most creep investigations concern metals above half the melting point. The stress dependence

of the strain rate in the secondary stage has always generated much interest in creep research

because it has been assumed to reflect the operating dislocation mechanism. In Figure 1, such

dependence is illustrated for 0.5Cr0.5Mo0.25V steel at 565�C over a wide range of stresses.
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Figure 1. Creep rate versus stress for 0.5Cr0.5Mo0.25V steel at 565�C. The n values indicate the exponent in the power-

law creep law. At large stresses, the creep rate increases exponentially with the stress. This is referred to as power-law

breakdown. Some of the data points are extrapolated. (After Wilshire [5].).
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The slope of the curve is the creep exponent n. At intermediate stresses (and temperatures), the

creep exponent is typically in the range 3–8. In the figure, it is 4. At high stresses (and at low

temperatures), the creep exponent is much higher, in the figure illustrated with n = 12. At still

higher stresses, the creep rate varies exponentially with stress, which is called power-law

breakdown. At very low stresses, the n value is small, sometimes approaching unity.

0.5Cr0.5Mo0.25V steel is clearly a particle-strengthened material. Other particle-strengthened

alloys can show much higher creep exponents than in Figure 1.

In the past, the creep exponent has often been used to identify the operating dislocation

mechanisms. For intermediate exponents (3–8), climb of dislocations is in general considered

as the operating mechanisms although glide has also been assumed for certain alloy types.

This will be discussed below. At high stresses, glide has been suggested as the dominating

mechanism. At low creep exponents approaching unity, diffusion creep has been assumed as

the main mechanism. The consistent change of operating mechanism with stress has been

challenged, see for example [5].

In recent years, basic creep models have been formulated. With the help of these models, the

assumptions mentioned above will be reanalysed in the present chapter.

2. Dislocation model

To understand the creep process, the key quantity is the dislocation density and its variation

with time. Models for the dislocation density development during creep have been available

for a long time [6]. Recently, these models have been expanded and derived more precisely. We

will use the following formulation [7]:

dρ

dε
¼

m

bcL
ρ
1=2

� ωρ� 2τLMρ
2= _ε (1)

where ρ is the dislocation density, ε the strain, m the Taylor factor, b the Burgers vector, τL the

dislocation line tension, M the dislocation mobility and _ε the strain rate. The value of the

dislocation mobility M will be discussed below. The dynamic recovery parameter ω for pure

metals and the work-hardening constant cL are given by the following expressions [8, 9]:

ω ¼

m

b
dint 2�

1

nslip

� �

(2)

cL ¼

m2αG

ω Rm � σy

� � (3)

where dint is the interaction distance between dislocations where dislocations of opposite sign

get close enough to annihilate each other and thereby reduce the dislocation content. This

distance is taken as the core diameter of the dislocations. nslip is the number of active slip

systems, which is 12 for fcc alloys. α is a constant in the Taylor equation, G is the shear modulus

and Rm and σy are the true tensile strength and yield strength at ambient temperatures.
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According to Eqs. (2) and (3), ω and cL are temperature-independent constants. This is also in

close agreement with experiments [7, 9]. In some papers, ω has been found to be temperature

dependent [10, 11]. However, in these cases the final term in Eq. (1), the static recovery term,

has not been considered, which should cover at least part of the temperature dependence.

Eq. (1) can be considered as a basic equation for the development of the dislocation density.

A detailed derivation of Eq. (1) can be found in [8].

Eq. (1) describes the development of the dislocation density with strain. The first term on the

right-hand side is responsible for the generation of dislocations, i.e. work hardening. The two

other terms take into account the annihilation of dislocations. The second term gives a strain-

controlled recovery, which is called dynamic recovery. The final term is referred to as static

recovery. It is time controlled since the strain rate appears in the denominator. The terminology

of recovery is not consistent in the literature, which one has to be aware of.

3. Dislocation mobilities

3.1. Climb mobility

The dislocation mobility M in Eq. (1) is an important quantity. It describes the speed v of the

dislocations:

v ¼ Mbσ (4)

where σ is the applied stress. Dislocations can propagate by glide along their slip system or

by climb perpendicular to the slip system. The latter process requires emission or absorption

of atoms by diffusion, and it is slower than glide. The climb mobility at high temperatures

(>0.4 Tm where Tm is the melting temperature) was derived by Hirth and Lothe [12]:

Mclimb ¼

Ds0b

kBT
e
σb3

kBTe
�

Q
RGT (5)

where T is the absolute temperature, σ the applied stress, Ds0 the pre-exponential coefficient

for self-diffusion, Q the activation energy for self-diffusion, kB Boltzmann’s constant and RG the

gas constant.

At lower temperatures, the climb rate is influenced by the generation of vacancies due to

plastic deformation. A brief derivation of this effect will be given here since it cannot be found

in the literature. When a climbing dislocation is forced to move, it will emit or absorb vacan-

cies. When gliding dislocations cut each other, jogs in the form of steps of the length of a

Burgers vector are formed on them. The jogs are often sessile and must then climb when they

move and hence emit or absorb vacancies.

Mecking and Estrin [13] have estimated the number of vacancies produced mechanically in a

unit volume per unit time as:
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P ¼ 0:5
σ _ε

Gb3
(6)

The quantities in this equation have been defined above. In [13] the constant in Eq. (6) was

estimated to 0.1. A detailed derivation shows that it is 0.5. The annihilation rate A for the

excess vacancies was found to be

A ¼ Dvac

λ
2

c� c0ð Þ (7)

where c0 is the equilibrium vacancy concentration and Δc = c � c0 is the excess concentration.

Dvac is the diffusion constant for the vacancies. λ is the spacing between vacancy sinks.

Assuming the presence of a substructure, λ can be related to the cell or subgrain size dsub [13],

which in turn can be found from the applied stress:

λ ¼ dsub ¼
KsubGb

σ
(8)

where Ksub is a constant that typically takes values from 10 to 20. From Eqs. (6)–(8), we find the

following expression for the excess vacancy concentration:

Δc

c0
¼ 0:5

ffiffiffi

2
p

K2
sub _εb2

Dself

G

σ
(9)

In deriving Eq. (9), we have also made use of a relation for the self-diffusion coefficient:

Dself ¼ c0ΩDvac (10)

whereΩ is the atomic volume. It is now assumed that the climb rate is proportional to the total

vacancy concentration. This is the same assumption as was made in [13]. The increase in the

climb rate gclimb due to the presence of excess vacancy concentration from Eq. (10) is then

gclimb ¼ 1þ Δc

c0
(11)

To find the total climb mobility, the expression in Eq. (5) should be multiplied by gclimb:

Mclimb enh ¼ Mclimbgclimb (12)

3.2. The glide mobility

In a dislocation-free crystal, the glide mobility is very high. Edington measured a mobility

of M0 = 1 � 104 1/Pa/s for a copper single crystal [14]. In an alloy where a forest of

dislocations is present, the mobility is much lower. During deformation as described

above, jogs will be formed on the dislocation. Many times the jogs have to move perpen-

dicular to their glide planes. This means that they are sessile, i.e. they have to move by
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climb [12], which is a slow process. It is natural to assume that it is the motion the jogs

that controls the glide rate and that is what we will do. This is also what Hirth and Lothe

have assumed [12].

The basis for the glide mobility is Eq. (12), since the jogs move by climb. However, there is an

additional factor. Only a small fraction of each dislocation consists of jogs. Since the jogs move

slowly, the forces on the dislocations are concentrated to the jogs. The average distance

between jogs can be determined from the dislocation density ρ as ljog ¼ 1=
ffiffiffi

ρ
p

. The force F on

a dislocation is given by the Peach-Koehler formula F = b σ l where l is the length of the

dislocation. If l is chosen as ljog, F will be the force on each jog. Consequently, the stress on the

jogs is increased by

gglide ¼
ljog

b
¼

1

b
ffiffiffi

ρ
p (13)

where the length of a jog is taken as the length of the Burgers vector. With the help of Taylor’s

equation,

σ ¼ σy þ αmGb
ffiffiffi

ρ
p

(14)

where σy being the yield strength, Eq. (13) can be rewritten as

gglide ¼
αmG

σ� σy
(15)

The glide mobility is obtained by multiplying the climb mobility by gglide:

Mglide ¼ Mclimbgclimbgglide (16)

Eq. (16) applies to both edge and screw dislocations. With the assumptions considered, the

climb and glide mobility are closely related. gglide is roughly equal to the ratio between the

shear modulus G and the applied stress σ. Since G is much larger than σ, gglide is always

significantly larger than unity. Thus, the glide mobility is larger than the climb mobility, which

is a common assumption when modelling creep.

3.3. Cross slip mobility

Screw dislocations can change glide plane with the help of cross slip. This can simplify the

annihilation of dislocations with opposite signs and thereby contribute to the recovery.

Cross slip requires an additional activation energy Ecs. Püschl gave the following estimate

of Ecs [15]:

Ecs ¼ 0:012Gb3
dSFE
b

ln
2dSFE
b

� �

(17)

where dSFE is the width of a stacking fault [12]:
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dSFE ¼
Gb2

8πγSFE

2� νPð Þ

1� νPð Þ
(18)

where νP is Poisson’s ratio and γSFE is the stacking-fault energy. With stacking-fault energies of

45 mJ/m2 for copper and 166 mJ/m2 for aluminium [16], the resulting values for Ecs become 560

and 40 kJ/mol, respectively. Thus, a pronounced temperature dependence is obtained. Eq. (17)

is based on elasticity theory models. However, recently ab initio calculations have been

performed providing similar results to those of Eq. (17) [17, 18]. Now, the influence of cross

slip on the mobility can be introduced:

gcross-slip ¼ exp �
Ecs

RGT

� �

(19)

Mcross-slip ¼ Mclimbgclimbgglidegcross-slip (20)

The consequences of the strong temperature dependence in the model for cross slip mobility

will be discussed later in Section 6.

3.4. The climb-glide mobility

The results in Sections 3.1–3.3 are new. It has been recognised that the climb mobility in Eq. (5)

predicted far too low creep rates at low temperatures and high stresses. It was thought that

glide could be the controlling mechanism during these conditions. For this purpose, a com-

bined climb and glide mobility was introduced [19]:

Mclglide ¼ Mclimbfclglide (21)

where fclglide is given by

fclglide ¼ exp
Q

RGT

σ

Rmax

� �2
 !

(22)

where Rmax is the true tensile strength at ambient temperatures. Eq. (22) has several important

consequences at low temperatures. First, it reduces the activation energy for creep. Second, it

increases the creep rate by a large factor. Third, it raises the value of the creep exponent

dramatically. These results are in excellent agreement with experiments [9, 20]. Examples will

be given below in Sections 4 and 5.

The derivation of Eq. (21) was inspired by the work of Kocks et al. [21]. They gave an empirical

expression for the glide mobility. Unfortunately, it involved five unknown parameters and was

therefore of little use directly. However, some of the parameters could be fixed by following a

procedure due to Nes where an integrated climb and glide mobility was formulated [22]. The

remaining parameters could be set with the help of work by Chandler [23].

Ideally, to describe creep, the fundamental models for the mobilities derived in Sections 3.1–3.3

should be used. However, they are difficult to use directly since gclimb involves the strain rate.
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Instead, the equations in Sections 3.1–3.3 will be used to verify Eq. (22), which can then be

applied to derive the creep rate. Direct comparison between gclimb and fclglide is shown in

Figures 2 and 3 for aluminium.
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Figure 2. Climb enhancement factor versus temperature at five strain rates for aluminium. Eq. (11), for the increase in

vacancy concentration due to plastic deformation, is compared with Eq. (22) for the climb-glide enhancement.
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Figure 3. Climb enhancement factor versus stress at six temperatures for aluminium. Eq. (11) is compared with Eq. (22).

The values of stresses and strain rates are taken from experimental creep data [24].
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In Figure 2, a continuous set of parameters for temperature and strain rate are used, whereas

in Figure 3 experimental values are applied. It can be seen that the enhancement in vacancy

concentration due to plastic deformation can fully explain the increase in creep rate in relation

to the high-temperature climb mobility.

A second example of the comparison is given in Figure 4 for copper.

Again the agreement between the two sets of models is quite good. The temperature, stress

and strain rate dependences are well covered in Figures 2–4.

4. Secondary creep

4.1. Pure elements

Our understanding of the creep process is largely based on the creep recovery theory [6]. The

key feature of this theory is that the recovery rate is sufficiently rapid that the dislocation

density can be kept constant during secondary creep. If the dislocation density is continuously

rising, the creep deformation will slow down and eventually stop, which is contrary to obser-

vations. Thus, there is a balance between the generation and the annihilation of dislocations

during creep. If we assume stationary conditions, the strain derivative in Eq. (1) vanishes. The

resulting expression for secondary strain rate is

_εsec ¼ 2τLMρ
3=2=

m

bcL
� ωρ

1=2

� �

(23)
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Figure 4. Climb enhancement factor versus stress at six temperatures for Cu-OFP. Eq. (11) for the increase in vacancy

concentration due to plastic deformation is compared with Eq. (22) for the climb-glide enhancement.
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Using Taylor’s Eq. (14), Eq. (23) can be expressed in terms of stresses:

_εsec ¼ h σ� σið Þ with h σð Þ ¼ 2τLM T; σð Þ
σ3

αmGbð Þ3
=

m

bcL
� ω

σ

αmGb

� �

(24)

σdisl ¼ αmGbρ1=2 ¼ σ� σi (25)

where σdisl is the dislocation stress. σi is an internal stress that can have contributions from the

yield strength, solid solution hardening and particle hardening. At low stresses, the mobility

M is given by Eq. (5) that is independent of stress. If no internal stress is present, Eq. (24) gives

an approximate power-law expression with a stress exponent of 3. Such a stress exponent is

often observed at high temperatures for austenitic stainless steels [25].

With our present knowledge, the natural assumption is that static recovery is controlled by

climb. This is analysed in Section 6. This means that it is the climb mobility in Eq. (12) that

should be used in Eq. (24). In addition, we saw in Section 3.4 that the expression for the

enhancement factor for the climb mobility gclimb due to the raised vacancy concentration in

Eq. (11) agreed with the climb-glide enhancement factor fclglide in Eq. (22). Since the implication

of fclglide is known to successfully have described experimental data, this gives further support

to the use of Eq. (12).

Eq. (24) will now be applied to pure aluminium. For σi, the Peierls stress will be used.

Although a Peierls stress is not usually considered to be of importance for fcc alloys, recent

studies suggest that this conclusion is not true for Al. With ab initio methods, Shin and Carter
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Figure 5. Secondary creep rate versus stress for pure aluminium. Eq. (24) is compared to experimental data from [27].
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found the following value for the Peierls stress of edge dislocation σpe [26]. The value for screw

dislocations was much smaller:

σpe ¼ 4:9� 10�5G (26)

The application of Eq. (24) is illustrated in Figure 5.

At intermediate stresses in Figure 5, the slope of the curves is about 4.5, which is the value of

the stress exponent. At higher stresses, the slope increases that is referred to as power-law

breakdown. At low stresses, there is also an increase of the stress exponent. This is due to the

presence of the internal stress in Eq. (26). It can be seen that the model in Eq. (24) can handle

these three regions of the creep rate versus stress curves quite well.

4.2. Solid solution

The presence of elements in solid solution has two effects on the secondary creep rate. It gives

rice to a drag stress or a break stress, and it increases the activation energy for creep. The

increase in the activation energy is Umax
j , which is the maximum interaction energy between a

dislocation and a solute j [28]:

Umax
j ¼

β

b
¼

1

π

1þ νPð Þ

1� νPð Þ
GΩ0εj (27)

where Ω0 is the atomic volume and εj the linear lattice misfit of solute j. The additional

contribution to the activation energy is taken into account by multiplying the dislocation

mobility by the factor fQ:

fQ ¼ e�Umax
j =RT (28)

For slowly diffusing solutes, the contribution to the internal stress, cf. Eq. (24), is the drag stress

[28]:

σ
drag
j ¼

vcj0β
2

bDjkBT
I z0ð Þ (29)

where v is the dislocation speed, cf. Eq. (4), cj0 is the concentration of solute j and Dj the

diffusion constant for solute j. I(z0) is an integral of z0 = b/r0kBTwhere r0 is the dislocation core

radius. I(z0) often takes values of around 3.

The use of Eq. (29) is illustrated for Al-Mg alloys in Figure 6. The drag stress is added to the

internal stress in Eq. (24). The factor in Eq. (28) is also taken into account which raises the

activation energy for creep by the amount Umax
j , where j refers to Mg.

In the same way as for pure aluminium, there are three stages of stress dependence. In the

middle range of stresses, power-law behaviour is obeyed. At low stresses, there is a slight

increase in the creep exponent due to the presence of the Peierls stress that is the same as for
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pure aluminium. At high stresses, power-law breakdown takes place with an increase in the

stress exponent.

The modelling in Figure 6 is based on the climb mobility, so climb is assumed to be the

controllingmechanism over the full-stress range. In the literature, it has frequently been assumed

that glide is controlling in the middle stress range, see for example [31]. This should be due to a

larger effect of solid solution hardening on gliding than on climbing dislocations. This is difficult

to understand, since solid solution hardening has about the same effect for both mechanisms

[32]. In addition, why there should be transitions in mechanism at low and high stresses is not

obvious. Sometimes, it is assumed that the solutes break away from the dislocations at high

stresses, but that is predicted to take place at much higher stresses than where the transition

takes place [12]. Considering glide as a controlling mechanism is not consistent with the glide

mobility in Eq. (16). If that is applied, the experimental results in Figure 6 cannot be reproduced.

For fast diffusion elements such as interstitials, the drag stress according to Eq. (29) is usually

negligibly small. Instead, the solutes are locked to the dislocations, and they have to break

away to become mobile. The size of the break stress that should be added to the internal stress

σi in Eq. (24) is given by [28, 32]
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Figure 6. Secondary creep rate versus stress for Al-Mg alloys. Eq. (24) with the stress contribution to the internal stress

from Eq. (29) and the increase in activation energy from Eq. (28) is compared to experimental data [29–31].
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σjbreak
¼

Umax
j cj0

b3

ðyR
yL

e�
Wj yð Þ

kT dy (30)

The break stress is proportional toUmax
j .Wj(y) is the interaction energy between a solute j and a

dislocation at a distance y. The integration is performed over a distance of about �20 b. The

application of Eq. (30) is illustrated for copper with 100 at. ppm phosphorus (Cu-OFP). At low

temperatures, phosphorus gives a strong improvement of the creep strength. The solute phos-

phorus has two effects. It increases the creep activation energy by Umax
j , and a break stress is

added to the internal stress in Eq. (24). The result is shown in Figure 7 for oxygen-free copper

(Cu-OF) with and without phosphorus.

From Figure 7, it is obvious that the model can describe the influence of phosphorus on

the creep rate quantitatively. No adjustable parameters are used in this figure (or in any

other figure in the chapter). For Cu-OFP the creep exponent is about 65 in Figure 7.

This demonstrates the validity of Eq. (24) also deep down in the power-law breakdown

regime.

4.3. Stress-strain relations

Handling of stress-strain curves is not the subject of this chapter. The only message is that

Eq. (1) can also be used to predict stress-strain curves. For further details, the reader is referred

to [7, 33].
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5. Creep strain curves

In the primary stage, the creep rate is in most cases larger than in the secondary stage. This is

assumed to be due to a lower dislocation density and thereby a lower dislocation stress. The

additional driving stress during primary creep becomes [34]

σprimadd ¼ σdislstat � σdisl (31)

where σdislstat is the dislocation density during stationary conditions, which is given by the

difference between the applied stress σ and the internal stress σi:

σdislstat ¼ σ� σi (32)

The total stress during primary creep is given by

σprim ¼ σþ σprimadd ¼ 2σ� σdisl � σi (33)

where Eqs. (31) and (32) have been inserted. Eq. (33) gives the stress that should be used in the

expression for the secondary creep rate (Eq. (24)) to obtain the general expression for the creep rate:

_ε σð Þ ¼ _ε sec 2σ� σdisl � σið Þ (34)

When the secondary stage is reached, σ = σi + σdisl and _ε σð Þ are equal to the secondary creep

rate, according to Eq. (24) as it should. When σdisl is smaller than its stationary value, the creep

rate is higher, which is characteristic for primary creep. The use of Eq. (34) is illustrated in

Figure 8. In Figure 8a, a creep strain versus time curve is shown for Cu-OFP. The creep rate

versus time for the same case is given in Figure 8b. In the double logarithmic diagram, a

straight line is obtained, which is in close agreement with the experimental data. This type of

relation that is referred to as the ϕ model is quite frequently observed. It has several different
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names [9]. It is most well known for 9% Cr steels, see for example [35]. It is evident that Eq. (34)

can describe primary creep quite well.

6. Creep recovery theory

At ambient temperatures, for example, in steels, a gradually decreasing creep rate is observed

at constant load until the deformation in practice stops completely. This is known as logarith-

mic creep. In constant strain rate tests, the deformation increases as long as the load is

increasing. This behaviour takes work hardening and dynamic recovery into account but not

static recovery. The derivation of the expression for the dynamic recovery constant is based on

pure glide [36]. It has been suggested many times in the literature that dynamic recovery is

controlled by cross slip, see for example [15, 37]. Qualitatively, this might seem logically. Cross

slip allows the screw dislocations to annihilate each other, leading to the partial recovery that

is characteristic for deformation processes at ambient temperatures in steels. The problem is

that the available models for cross slip that were summarised in Section 3.3 give temperature

dependencies that are orders of magnitude larger than the observed ones. Unfortunately, we

must conclude that we do not understand the role of cross slip at present. In fact, we can model

observed dynamic recovery considering just glide.

Most measured creep curves are characterised by a primary, a secondary and a tertiary stage.

Work hardening and recovery are continuously taking place. According to the creep recovery

theory, there is balance between work hardening and recovery in the secondary stage. Other-

wise, there would be either a raise or a decrease in the dislocation density, giving a reduction

or increase in the creep rate, respectively. Consequently, the dislocation density must remain

approximately unchanged in the secondary stage.

At high temperatures (T > 0.5 Tm), there is consensus that static recovery is controlled by climb

in so-called class II alloys, which include most creep-exposed alloys of technical interest. This

mechanism allows dislocations of opposite sign that attract each other to move towards each

other and finally annihilate. On the other hand, in class I alloys, glide has been assumed to be

controlling in a certain stress range with a creep exponent of 3. The most well-known type of

alloy in this class is AlMg. The assumption is problematic for several reasons. (i) The reason for

glide control is considered to be strong solid solution hardening. However, the effect of solid

solution hardening is almost equally strong for climb [28, 32]. In addition, the glide rate is

always faster than the climb rates according to Eqs. (12) and (16). (ii) At the upper end of the

stress range with a creep exponent of 3, break-away of solutes from the dislocations is assumed

to take place. The models for this effect suggest a much higher stress than the one observed.

(iii) The most problematic issue is that the static recovery must be based on glide. From

observations at ambient temperatures, it is unlikely to be possible. An alternative approach

was presented in Section 4.2 fully based on a climb model. It was demonstrated that all the

mentioned issues could be solved. In addition, a good fit to the data was found.

At or close to ambient temperatures, several metals give creep curves that have the same

general appearance as at high temperatures (T > 0.5 Tm) with primary, secondary and tertiary
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creep. For example, this is the case for Cu-OFP, see Figure 8. For a long time, it was assumed

that creep was controlled by glide and cross slip at low temperatures [19], because the esti-

mated climb rate was much too low to be of importance. However, this is not considered to be

the case anymore. When taking the enhanced vacancy concentration into account, the observed

creep rates for copper and aluminium can be fully explained by climb. This is evident from

Figure 7. In addition, it clarifies why static recovery can take place at low temperatures, which is

very difficult assuming the presence of only glide and cross slip.

7. Conclusions

• To model creep of alloys, the development of the dislocation density must be known. In

recent years, a basic model for the dislocation density has been formulated that fulfils this

requirement. Together with models for solid solution and particle hardening, the creep

behaviour of many alloys can be described without the use of adjustable parameters.

• A new expression for the dislocation climb mobility has been derived. It extends the well-

established formula of Hirth and Lothe to lower temperatures by taking the enhanced

concentration of vacancies due to plastic deformation into account. The new expression

can explain observed creep rates down to near-ambient temperatures.

• Assuming that glide of dislocations is controlled by the climb rate of their jogs, an

expression for the dislocation glide mobility is formulated. It turns out that the glide rate

is always higher than the climb rate. This suggests that climb is rate controlling in dislo-

cation creep. In the chapter, it is illustrated for AlMg alloys that this might apply to class I

alloys as well.

• It is suggested in the literature that cross slip is the controlling mechanism for dynamic

recovery. An expression for the cross slip mobility is set up based on published models for

the activation energy of cross slip. However, this expression cannot explain the observed

rate of dynamic recovery. This is still only possible by assuming glide control.

• It is demonstrated that the dislocation model can describe a range of properties without

the use of adjustable parameters. These properties include secondary creep and stress-

strain curves.
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