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Abstract

We investigate resonant interactions in a specific electrical lattice that supports left-
handed (LH) waves. The impact of LH waves on the three-wave mixing process, which
is the most fundamental resonant interaction, is illustrated. In contrast to the ordinary
right-handed (RH) waves, the phase of the LH wave moves to the different direction
from its power. This exotic property together with the lattice’s dispersive features results
in the resonant phenomena that are effectively utilized for practical electrical engineer-
ing, including the significant harmonic wave generation via head-on collisions, har-
monic resonance, and short pulse generation driven by soliton decay. These resonances
are quantified by the asymptotic expansion and characterized by numerical and/or
experimental methods, together with several design criteria for their practical utiliza-
tion. To cope with dissipation, a field-effect transistor (FET) is introduced in each cell. In
particular, we characterize the stationary pulse resulting from the balance between
dissipation and FET gain.

Keywords: three-wave mixing, soliton decay, harmonic resonance, left-handedness,
electrical lattices, composite right- and left-handed transmission lines, traveling-wave
field-effect transistors, coherent structures

1. Introduction

Resonances have been utilized as the powerful tool to achieve harmonic wave generation in

electrical engineering. This chapter introduces left-handedness to the interacting waves and

discusses its impact in that field. In ordinary, that is, right-handed (RH) media, the wave vector

directs to the same direction as the Poynting vector, so that the phase and power move to a

common direction. In left-handed (LH) media, the situation is reversed.

To achieve strong resonant interactions, frequencies and wave numbers must be preserved. For

example, when a wave of frequency ω1 and wave number k1 interacts with one of ω3 and k3, a

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



significant third wave ofω2 and k2will be generated if the conditionsω1 +ω3 =ω2 and k1 + k3 = k2

are satisfied. The sum of the wavenumber decreases for the head-on collision, because the

wave vector of the left-moving wave has the opposite sign as that of the right-moving one. In

contrast, the sum frequency increases. The phase and power are transferred with the phase

and group velocities, respectively. In addition, the group velocity is given by the slope of the

dispersion curve, so that the frequency increases at least locally as the wavenumber decreases

in LH media, so that they can satisfy the resonant conditions for head-on colliding waves.

To investigate resonances involving LH waves, we introduce nonlinearity to composite right-

and left-handed (CRLH) transmission lines. CRLH transmission lines have been investigated

in electrical engineering community as the practical and broadband platform to support LH

waves [1–4]. The line has noteworthy dispersive property that the propagating wave exhibits

LH (RH) properties when its carrier frequency is greater (less) than the line’s characteristic

frequencies. Furthermore, several activities have clarified the wave dynamics in CRLH lines

with nonlinearity introduced by voltage-controlled devices [5–13]. In our case, the shunt

capacitor each cell of a CRLH line contains is replaced with the Schottky varactor [10, 14]. The

three-wave resonant interaction (3WRI) equations have been derived from the transmission

equations of that nonlinear CRLH line via the derivative expansion method and is used to

characterize the head-on collision of LH waves.

Even when ω1 = ω3 and k1 = k3, the significant energy is transferred from the fundamental to the

second harmonic when the conditions ω2 = 2ω1 and k2 = 2k1 are satisfied. This process, termed

harmonic resonance, is a special case of the three-wave resonant interaction, resulting from

resonance of two identical waves. The dispersion of a nonlinear CRLH line can cause harmonic

resonance for the LH fundamental and RH second harmonic waves. The phase of the LH

fundamental wave advances toward the input end. Accordingly, that of the second harmonic

wave should also move to the input. Because the fundamental wave increases to that direction,

the harmonic resonance generates the second harmonic wave more when it travels longer. The

generation efficiency of the second harmonic waves becomes enhanced through this behavior

via supplemental cavity resonance. It should be noted that the fundamental wave is spontane-

ously converted into its second harmonic one without the aid of pump waves.

Similar spontaneous resonant interaction is expected in nonlinear CRLH lines. The soliton

decay is realized for three waves having different group velocities. It requires the situation

where the wave having the middle group velocity is incident to the line. Then, a soliton

contained in the incident wave decays into the fast and slow solitons spontaneously. Inevita-

bly, the slow soliton(s) occupies the LH branch for the nonlinear CRLH line; therefore, it starts

to travel to the opposite direction to the incident and fast solitons, leading to the shortening of

the fast soliton. By solving the eigenvalue problem of the Zakharov-Shabat (ZS) equation

relating with the 3WRI equation, it is found that the fast soliton can become shorter for longer

incident wave. Through these observations, we can utilize the soliton decay in the nonlinear

CRLH line for generating broadband envelope pulses.

The use of nonlinear CRLH lines is sometimes limited because of wave attenuation caused by

finite electrode resistance and substrate current leakage. In order to achieve loss compensation,

a traveling-wave field-effect transistor (TWFET) is considered [15]. For the voltage waves
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traveling over FET electrodes, two CRLH lattices are required, which are, respectively, loaded

with the gate and drain in each cell. The unit-cell FET can be biased via the LH inductors. In

addition, the inter-cell direct current flow is cut off by the LH capacitors. The device introduces

LC resonant pairs in each cell, which can operate as nonlinear oscillators with the aid of FET

gain; therefore, the device can be considered as a kind of spatially extended oscillator systems.

Hereafter, we call the device as the CRLH-TWFET. In the case of supercritical Andronov-Hopf

bifurcation, the oscillation amplitude gradually increases when the bifurcation parameter

passes a critical value. Then, the relaxation time needed to initiate autonomous oscillation

becomes sufficiently large; therefore, it succeeds in effectively suppressing autonomous oscil-

lation to guarantee the loss-compensated propagation of LH pulse waves. On the other hand,

the amplitude grows to become discontinuously finite in subcritical cases, where the system

affords the coexistence of an oscillatory region with a nonoscillatory region in addition to the

homogeneous oscillatory state [16]. The resulting coherent structures function as the building

blocks of the spatiotemporal patterns appearing in the system. When both boundaries at the

ends of the oscillatory region preserve their relative positions, the oscillatory region preserving

this envelope is called a pulse. Possibly, the boundary velocity vanishes, so that the pulse

becomes localized and stationary [17, 18]. From the scientific viewpoint, a convenient elec-

tronic system to support such solitary waves is valuable for clarifying their interacting dynam-

ics using either numerical or experimental method.

After describing the structure and dispersive properties of the nonlinear CRLH line, the head-

on collision of envelope pulses is characterized numerically on that line to illustrate significant

generation of harmonic waves through resonances. Next, the process is quantified by the 3WRI

equations derived by applying the derivative expansion method to the transmission equations

of a nonlinear CRLH line. Subsequently, two spontaneous resonant interactions: harmonic

resonance and soliton decay are characterized, where the same 3WRI equations are used to

model the wave dynamics. Finally, the development of a stationary pulse in a CRLH-TWFET is

discussed.

2. Fundamental properties of nonlinear CRLH TLs

Because the nonlinear electrical lattice we investigate is based on CRLH lines, we first describe

their fundamental properties. The unit-cell structure is shown at the top of Figure 1(a), where

CR, LR, CL, and LL represent the shunt capacitor, series inductor, series capacitor, and shunt

inductor, respectively. It is shown that two different frequencies are allowed to be supported

on the line for a wavenumber k. As shown below, the high frequency mode exhibits a RH

property and the low frequency one becomes left-handed; therefore, we denote the dispersion

relationships of the two as ω = ωRH,LH(k) (ωRH is for the RH and ωLH for LH). Under the sixth

order long wavelength approximation, these two are explicitly given by

ωRH kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
2
x kð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
4
x kð Þ �

1

CLC0LLLR

s

v

u

u

t

, (1)
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ωLH kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
2
x kð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
4
x kð Þ � 1

CLC0LLLR

s

v

u

u

t , (2)

where ωx(k) is defined as

ωx kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k6

720C0LR
� k4

24C0LR
þ k2

2C0LR
þ 1

2C0LL
þ 1

2CLLR

s

: (3)

.Furthermore, Vg(k) represents the group velocity of the line explicitly given by

Vg kð Þ ¼ k k4 � 20k2 þ 120
� �

240C0LR

ω kð Þ
ω

2
x kð Þ � ω2 kð Þ , (4)

where ω = ωLH(k) for the LH branch and ω = ωRH(k) for the RH branch. Typical behavior of ω(k)

is shown in Figure 1(b). There are two essential frequencies that characterize the lines’disper-

sive nature ωse and ωsh defined by 1=
ffiffiffiffiffiffiffiffiffiffiffi

CLLR
p

and1=
ffiffiffiffiffiffiffiffiffiffi

C0LL
p

, respectively. It is found that the line

exhibits a LH property at frequencies lower than ωl�min(ωse,ωsh) and an ordinary RH prop-

erty at frequencies higher than ωu�max(ωse,ωsh). When ωse = ωsh, the LH branch is continu-

ously connected with the RH one, and the line is called balanced. On the other hand, when ωse is

not coincident with ωsh, a stop band, where all supporting modes become evanescent, appears

between ωl and ωu, and the line is called unbalanced. One of the noteworthy properties of LH

waves is that the wavelength becomes longer as the frequency increases at least locally. In

Figure 1. Structure of nonlinear CRLH lines. (a) The cell structures of linear (upper) and nonlinear (lower) CRLH lines

and (b) the dispersion curve of CRLH lines.

Resonance114



addition, the envelop wave (accordingly, the power) moves to the different direction from its

carrier wave, because Vg(k) has the opposite sign to the phase velocity.

To introduce nonlinearity, we employ the Schottky varactor in place of CR as shown at the

bottom of Figure 1(a). The Schottky varactor is a special type of a diode, whose capacitance is

varied by the terminal voltage that biases reversely. In general, its capacitance voltage relation-

ship is modeled as

C Vð Þ ¼ C0 1þ
V0

V J

� �m

1þ
V

V J

� ��m

, (5)

where C0, VJ, and m are the zero-bias junction capacitance, junction potential, and grading

coefficient, respectively. In addition, the cathode of the Schottky varactor is biased at V0. Using

this representation, the transmission equations are given by

LR
d2In

dt2
¼ �

In
CL

�
d

dt
Vn � Vn�1ð Þ, (6)

CR
d2Vn

dt2
¼ �

Vn

LL
þ

d

dt
In � Inþ1ð Þ �

dCR

dV

dVn

dt

� �2

, (7)

where In and Vn are the current and voltage at the nth cell, respectively.

3. Head-on collision of LH waves

It is well known that the efficiency of resonant interactions between two waves is maximized,

when the phase-matching condition: k2 = m1 k1 + m3 k3, ω2 = m1ω1 + m3ω3, where k1,3 and ω1,3

represent the wavenumbers and angular frequencies of interacting waves, and k2 and ω2

represents those of the wave generated by the interaction. Moreover, m1,3 are integers that are

specified by the order of the generated harmonics. When the incident pulses have a common

carrier frequency and are traveling in opposite directions, it results in the condition k1 = �k3.

Hence, the maximal second harmonic generation can be observed when k2 = 0. Similarly, for

the third harmonic generation, k2 has to be close to k1. For RH waves, the higher the frequency,

the shorter the wavelength; therefore, it is impossible to satisfy this condition. On the other

hand, when the carrier frequencies of the interacting waves are both set to ω l/2, any CRLH

lines can generate second harmonic waves effectively via head-on collisions because the sec-

ond harmonic frequency ω l corresponds to zero wavenumber. Figure 2 shows the head-on

collision of envelop pulses whose carrier frequencies correspond to ω l/2 (=1.6 GHz). To obtain

Figure 2, we set C0, CL, LR, and LL to 1.0 pF, 1.0 pF, 2.5 nH, and 2.5 nH, respectively, so that the

line becomes balanced with ω u = ω l = 3.2 GHz. In Figure 2(a), the dispersion curve is shown,

where P1, P2, P3, and P4 represent the positions on the dispersive curve the fundamental,

second, third, and fourth harmonic waves occupy, respectively. Note that the wavenumber at

P2 is equal to zero, and either P3 or P4 exhibits coincident wavenumber with that of P1. Figure 2(b)

shows the calculated waveforms, where six spatial waveforms are recorded in 60-ns increments.
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Long wavelength envelope pulses result from the head-on collision as indicated by red circles.

Another example is shown in Figure 3. The carrier frequency of the colliding pulses is set to

1.9 GHz, such that the wavenumber of the second harmonic becomes nonzero, and the

wavenumber of the third harmonic becomes close to that of the fundamental wave; therefore,

the resonance conditions can be satisfied for (m1, m3) = (1, 2) and/or (2, 1). As expected, we can

see that the wavelengths of the collision-induced pulses are comparable to that of the incident

ones in Figure 3(b). Actually, the spectral peak of the collision-induced pulses is located at

Figure 2. Second harmonic generation via head-on collision of LH waves. (a) The dispersive properties of interacting

waves and (b) the numerically obtained time-domain waveforms.

Figure 3. Fourth harmonic generation via head-on collision of LH waves. (a) The dispersive properties of interacting

waves and (b) the numerically obtained time-domain waveforms.
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5.6 GHz, being close to the third harmonic. Note that P3 occupies the RH branch, so that the

LH waves are converted into the RH ones through resonances.

The resonance is briefly discussed for the two colliding pulses having different carrier frequen-

cies [19]. Let the carrier frequency of the left (right)-moving pulse denote as ω1(2). Then, we set

ω1 slightly higher than ωl/2, while ω2 is fixed at ωl/2. The resulting amplitude of the

wavenumber of the right-moving pulse surpasses that of the left-moving one. Both of incident

pulses exhibit left-handedness; therefore, the wave vector directs to the left for the second

harmonic wave. Because the second harmonic wave is carried by the RH mode, the collision-

induced envelope pulse moves to the left. Similarly, only the right-moving envelope pulse

develops, if ω2 is set slightly higher than ωl/2, while ω1 is fixed at ωl/2. These expectations were

validated experimentally using bread-boarded test circuit [20].

In the next section, the evolution equations of the envelope functions of the incident and

collision-induced pulses are obtained by the application of the derivative expansion method

to the transmission equation of a nonlinear CRLH line [21]. In particular, the generation

efficiency of the second-harmonic wave is formulated for the case when the left- and right-

moving pulses have a common frequency and wavelength.

4. Three-wave mixing of LH waves

In the present study, we consider the case where the pulse spreads over many cells, and the

lattice is regarded as being homogeneous, such that the discrete spatial coordinate n can be

replaced by a continuous one x. Then, by series-expanding Eqs. (6) and (7), the evolution

equation of the continuous counterpart of the line voltage ψ = ψ(x, t) is given by

CRCLLRLL
∂
4
Ψ

∂t4
þ 4CLLRLL

dCR

dV

∂Ψ

∂t

∂
3
Ψ

∂t3
þ 3CLLRLL

dCR

dV

∂
2
Ψ

∂t2

� �2

þ 6CLLRLL
d
2
CR

dV2

∂Ψ

∂t

� �2
∂
2
Ψ

∂t2
þ

CLLRLL
d
3
CR

dV3

∂Ψ

∂t

� �4

þ CLLR þ CRLLð Þ
∂2Ψ

∂t2
þΨ� CLLL

∂4

∂t2∂x2
Ψþ

1

12

∂2Ψ

∂x2
þ

1

360

∂4Ψ

∂x4

� �

¼ 0,

(8)

where CR = C(ψ � V0). To quantify the resonant nonlinear processes in a nonlinear CRLH line,

we apply the derivative expansion method [22] to that evolution equation. It leads to the

evolution equations of envelop functions of the involved waves. We first expand the spatial

and temporal derivatives as

∂

∂x
¼

∂

∂x0
þ E

∂

∂x1
þ E

2 ∂

∂x2
þ⋯, (9)

∂

∂t
¼

∂

∂t0
þ E

∂

∂t1
þ E

2 ∂

∂t2
þ⋯, (10)

for ε << 1. For describing the three-wave mixing process of two waves having a wave number

of k1 and k3, then the wave number of the resulting wave k2 satisfies the condition k2 = k1 + k3.

Resonances in Left-Handed Waves Developed in Nonlinear Electrical Lattices
http://dx.doi.org/10.5772/intechopen.70739

117



As mentioned above, for efficient three-wave mixing, the frequencies must satisfy the resonant

condition, that is, ω(k2) = ω(k1) + ω(k3). The voltage variable is then assumed to have a form of

Ψ x; tð Þ ¼
X

3

j¼1

Aje
i ωjt0�kjx0ð Þ þ c:c:, (11)

where ωj�ω(kj) and Ai denotes the envelope function of variables x1, x2,… and t1, t2,…

Substituting Eq. (11) into Eq. (8), the terms proportional to ei(kjx0
�ω

j
t
0
) (j = 1, 2, 3) of each order

of ε are collected to be vanished. From O(ε2) terms, the evolution equations of envelope

functions are governed by the 3WRI equations given by

∂Aj

∂t
þ Vg kj

� � ∂Aj

∂x
¼ GjA

∗

jþ1A
∗

jþ2, (12)

where j = 1, 2, 3, mod 3, and the coupling coefficients are given by

Gj ¼
�i180mωjC0LL �1þ CLLRω

2
j

� �

V0 þ V J

� �

�CLLLk
2
j 360� 30k2j þ k4j

� �

� 360CLLR þ 360C0LL �1þ 2CLLRω2
j

� �n o , (13)

whose denominator becomes zero only at ω2 ¼ C0LRCLLLð Þ14 ∈ ωl;ωuð Þ so that G2 does not

exhibit any diverging behavior for frequencies in either the RH or LH branches. In particular,

the head-on collision of two envelope pulses having common wavenumber, there are two

cases ω2 = ωLH(0),

G2 ¼
�i

m

2 V0 þ V J

� �

1
ffiffiffiffiffiffiffiffiffiffi

C0LL
p , ωse > ωsh,

0, ωse < ωsh:

8

<

:

(14)

For ω2 = ωRH(0)

G2 ¼
0, ωse > ωsh,

�i
m

2 V0 þ V J

� �

1
ffiffiffiffiffiffiffiffiffiffi

C0LL
p , ωse < ωsh:

8

<

:

(15)

In summary, the value of G2 becomes finite only when the second harmonic frequency is

matched to ωsh. In contrast, for a balanced CRLH line,

G2 ¼ �i
m

4 V0 þ V J

� �

1
ffiffiffiffiffiffiffiffiffiffi

C0LL
p : (16)

Based on this G2 property, a scheme can be proposed for converting the carrier frequency of the

incident pulsed wave into its second-harmonic wave without deteriorating pulse duration.

Figure 4(a) shows the circuit configuration of the generator creating the pulsed second har-

monic waves. The nonlinear CRLH line is divided into two segments. The first and second
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segments are represented by black and grey elements, respectively. The line parameter values

used in the present demonstration are listed in Table 1. The biasing voltage to shunt varactors

is the unique difference between the segments, which are labeled as V0 and V1 for the first and

second segments, respectively. Increasing V0 decreases the capacitance of the Schottky

varactors and then increases ωsh. The first segment is then arranged for V0 to be sufficiently

large to satisfy the condition ωsh > ωse. An envelope pulse, whose carrier frequency fin is half as

high as ωsh/2Π, is then inputted to the first segment. In contrast, V1 is set to be small in order to

lower ωsh such that the stop band includes fin. The typical dispersion that the segments must

have is shown in Figure 4(b). Here, V0 and V1 are set to 2.7 and 0.2 V, respectively. The left- and

right-side dispersion curves are for the first and second segments, respectively. The incident

pulse cannot be transmitted into the second segment because f1 is designed to be in the stop

band. It is then reflected at the interface. The reflected pulse interacts with the incident pulse in

the same manner as the oppositely traveling pulse. The condition ωsh > ωse guarantees that

G1 becomes finite. Consequently, the second-harmonic wave develops in the first segment at

the vicinity of the segments interface. Because the group velocity at ωRH(0) is zero in the first

segment, the second-harmonic wave remains around the interface. This stationary oscillation is

partially transmitted into the second segment, resulting in the pulsed second harmonic wave

LR (nH) 2.8 CL (pF) 1.0 LL (nH) 2.5

C0 (pF) 1.0 VJ (V) 2.0 m 2.0

Table 1. Parameter values used to obtain Figure 4.

Figure 4. Effective method of second harmonic generation. (a) The device structure (upper), dispersive property of each

segment (lower), and (b) the numerically obtained time-domain waveforms.
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moving to the right on the second segment. The second harmonic pulse is uniquely obtained at

the end of the second segment. Figure 4(c) shows the numerically obtained evolution of a

single soliton having a carrier frequency of fin. Five spatial waveforms recorded at 45 ns

intervals are plotted. We can observe that the right-moving incident pulsed wave is reflected

at interface P, and a small envelope pulse is transmitted into the second segment. The trans-

mitted pulse has only one-fifth the amplitude of the incident pulse; however, it preserves pulse

shape and successfully doubles its carrier frequency.

5. Harmonic resonance

In this section, we investigate harmonic resonance in a nonlinear CRLH line [23]. As discussed

in Section 1, the harmonic resonance becomes significant when the phase velocities of the

fundamental and second harmonic waves are coincident. Figure 5(a) shows the typical disper-

sion of a CRLH line, where LR, LL, CL, and C0 are set to 2.5 nH, 2.5 nH, 1.0 pF, and 0.6 pF,

respectively. For convenience, we also define α�CLLR/C0LL. Notice that the line is balanced

when α = 1.0. Two points P1 and P2 in Figure 5(a) correspond to the fundamental and second

harmonic waves, respectively, for significant harmonic resonance. Both points are placed on a

common line passing through the origin, so that the second harmonic wave has the same

phase velocity as the fundamental. With kf and ωf as the wave number and angular frequency

of the fundamental wave, harmonic resonance becomes eminent when the second harmonic

wave satisfies the two conditions ks = 2kf and ωs = 2ωf, where ks and ωs represent the wave

number and angular frequency of the second harmonic wave, respectively. The second har-

monic wave must occupy the RH branch. Thus, the latter condition is more precisely written as

ωRH(2kf) =2 ωLH(kf). Note that both P1 and P2 exhibit relatively small wave numbers; the

Figure 5. Harmonic resonance in nonlinear CRLH lines. (a) The operating points in dispersion curve and (b) the steady-

state voltage profiles of fundamental and second harmonic waves.
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second-order long-wavelength approximation suffices to describe the processes involved;

therefore, the equation ωRH(2kf) = 2 ωLH(kf) is explicitly solved for kf to give

kf ¼
1

2

ffiffiffiffiffiffiffiffi

C0

5CL

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4α2 þ 17α� 4

αþ 1

r

, (17)

ωf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

5

4C0LL

r
ffiffiffiffiffiffiffiffiffiffiffiffi

1

αþ 1

r

: (18)

.Note that αmust be in (1/4, 4) for the real kf. The fundamental and second harmonic waves are

then shown to have the characteristic impedance Zf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

LL=CL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� αð Þ= 4α� 1ð Þ
p

and

Zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

LL=CL

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4α� 1ð Þ= 4� αð Þ
p

, respectively. Note that Zf = Zs at α = 1.0. According to the

derivative expansion method mentioned above, the 3WRI equations that describe the funda-

mental and second harmonic envelope functions are described as

∂Af

∂t1
þ vgf

∂Af

∂x1
¼ iρfAsA

∗

f þ γfAf , (19)

∂As

∂t1
þ vgs

∂As

∂x1
¼ iρsA

2
f þ γsAs, (20)

where vgf and vgs are the group velocities of the fundamental and second harmonic waves,

respectively, explicitly given by

vgf ¼ � 1
ffiffiffiffiffiffiffiffiffiffiffi

C0LR
p 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α 4α� 1ð Þ 4� αð Þ
p

16α2 þ 7αþ 16
, (21)

vgs ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

C0LR
p 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α 4α� 1ð Þ 4� αð Þ
p

�α2 þ 23α� 1
: (22)

.Note that vgf becomes negative because the fundamental wave is left-handed. The strength of

harmonic resonance is determined by the coupling coefficients ρf , s. Because of the term A2
f , the

fundamental wave is spontaneously converted into the second harmonic. Ordinarily, the

product ρfρs is negative, so that the increase of As results in the reduction of Af. This negative

feedback stabilizes both waves. On the other hand, the coupling coefficients are presently

given by

ρf ¼
5

ffiffiffi

5
p

m

4 V0 þ V J

� � ffiffiffiffiffiffiffiffiffiffi

C0LL
p 4� α

16α2 þ 7αþ 16

ffiffiffiffiffiffiffiffiffiffiffiffi

1

αþ 1

r

, (23)

ρs ¼
5

ffiffiffi

5
p

m

4 V0 þ V J

� � ffiffiffiffiffiffiffiffiffiffi

C0LL
p 4α� 1

�α2 þ 23α� 1

ffiffiffiffiffiffiffiffiffiffiffiffi

1

αþ 1

r

: (24)

Both ρf and ρs are then shown to be positive for α∈ (1/4, 4), such that the developing As

enhances Af. The second harmonic envelope wave travels backward because the phase of the
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fundamental wave travels in the opposite direction to its envelope. This means that the ampli-

tude of both the fundamental and second harmonic waves increases as the phase advances.

Figure 5(b) demonstrates the principle of operation, where the numerically obtained steady-

state profile of the voltage envelopes of the fundamental and second harmonic waves. The cell

number is set to 2000. In addition, the input and output impedances are set to the characteristic

impedances of the second harmonic and fundamental waves, respectively. The second har-

monic wave generated by the harmonic resonance should travel to the input end. The reflec-

tion of the second harmonic wave at the input end was suppressed via the matched

impedance, so the effect of the fundamental’s left-handedness on the profile of the second

harmonic could be seen. Small line resistors were used to suppress multiple reflections. In

addition, α and λf were set to 1.5 and 20 cells, respectively. We applied a 0.5-V sinusoidal

voltage at the left end (ff = 1.0 GHz). Through Fourier transformation, filtering, and inverse

transformation the calculated spatial voltages are separated into each wave component. The

second harmonic wave was superposed in-phase and gained amplitude in the direction to the

input end, as clearly shown in Figure 5(b).

By setting f0 and Zin to ff and Zf, respectively, we achieve effective second harmonic generation.

By the matched impedances, the fundamental waves can travel along the line without reflec-

tions at the ends. On the other hand, the second harmonic wave begins to travel to the input

(left) end and is reflected significantly in a line that satisfies the condition Zs >> Zf. The load

impedance also differs from Zs, such that the second harmonic wave exhibits multiple reflec-

tions. Hence, the second harmonic wave becomes resonant in cavity when the cell size of the

line is an integer multiple of λf/2, as illustrated in Figure 6. This cavity resonance makes the

nonlinear CRLH line become an effective platform for second harmonic wave generation

together with the above-mentioned positive feedback.

Figure 6. Practical structure for second harmonic generation using harmonic resonance.
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6. Soliton decay

To describe the soliton decay in a nonlinear CRLH line, we again consider the 3WRI equations

of a nonlinear CRLH line. By introducing Qj ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gjþ1

	

	

	

	 Gjþ2

	

	

	

	

q

Aj, Eq. (12) is transformed into

the standard 3WRI equation, that is,

∂Qj

∂t
þ Vg kj

� � ∂Qj

∂x
¼ γjQ

∗

jþ1Q
∗

jþ2, (25)

where γ1,3 = 1 and γ2 = �1. In what follows, an envelope having a carrier frequency of ωj is

called ωj-envelope for brevity. When a ω2-envelope is uniquely applied to the line and the

group velocities satisfy Vg(k1) < Vg(k2) < Vg(k3), its evolution is predicted by solving the eigen-

value problem of the following ZS equation in the framework of the inverse scattering trans-

form:

∂u1
∂x

þ iλu1 ¼ qu2, (26)

∂u2
∂x

þ iλu2 ¼ �qu1, (27)

where λ and (u1, u2)
T are the eigenvalue and corresponding eigenvector, respectively [24, 25].

In addition, q = q(x) is defined by

q xð Þ ¼ �
Q

0ð Þ
2 xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vg k2ð Þ � Vg k1ð Þ
� �

Vg k3ð Þ � Vg k1ð Þ
� �

q , (28)

for the spatial waveform Q
0ð Þ
2 xð Þ of the incident ω2-envelope. The stability of the ω1- or ω3-

envelope solitons is shown to be secured, that is, the original envelopes never lose the solitons,

while the ω2-envelope solitons are always unstable, which decay into both the slow and fast

envelope ones. The latter phenomenon is called soliton decay. When Q
0ð Þ
2 xð Þ evolves into N

solitons, the ZS equation must have N pure imaginary eigenvalues in the upper half plane,

whose norms are inversely proportional to the spatial width of the corresponding soliton. Let

λ 2ð Þ
m m ¼ 1;⋯;Nð Þ be such eigenvalues of Eqs. (26) and (27). Then, it is shown that

λ 1ð Þ
m ¼

Vg k3ð Þ � Vg k2ð Þ

Vg k3ð Þ � Vg k1ð Þ
λ 2ð Þ
m , (29)

λ 3ð Þ
m ¼ 1�

Vg k3ð Þ � Vg k2ð Þ

Vg k3ð Þ � Vg k1ð Þ

� �

λ 2ð Þ
m , (30)

where λ jð Þ
m j ¼ 1; 3ð Þ defines the eigenvalue corresponding to the soliton in the ωj-envelope

resulting from the decay of the soliton in the ω2-envelope corresponding to λ 2ð Þ
m . For example,
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the line can be designed to exhibit dispersive property shown in Figure 7, where the incident

envelope occupies the region in the neighborhood of P2. Then, due to the resonant conditions,

ω1,3-envelope is shown to be around P1,3 uniquely. Notice that group velocities satisfy

Vg(k1) < Vg(k2) < Vg(k3) and P1 is on the LH branch. Due to the negative Vg(k1), λ
1ð Þ
m takes a small

value, while λ
3ð Þ
m becomes rather large. As a result, the solitons in ω1-envelope start to travel

backward with a relatively wide width. Conversely, the ω3-solitons become short.

We validate the analysis with the numerical integration of Eqs. (6) and (7). The line is designed

to be balanced by setting CL, LL, C0, and LR to 1.0 pF, 2.5 nH, 1.69 CL, and 1.69 LL, respectively.

In addition, m, VJ, V0, and ω2 are set to 2.0, 2.0 V, 1.0 V, 4.54 GHz, respectively. Figure 8(a)

Figure 7. Dispersive properties of waves involved by soliton decay.

Figure 8. Numerically obtained waveforms exhibiting soliton decay. The dynamics are shown for (a) short and (b) wide

envelope pulse incidences.
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shows calculated waveforms on the line, where five spatial waveforms recorded at 250-ns

increments are plotted. A 0.25 V hyperbolic secant envelope with 3.5-ns duration is applied at

the left end. The incident ω2-envelope decays into a unique pair of the fast and slow solitons,

which are labeled at the fourth waveform as A and A0, respectively. The duration of the

incident ω2-envelope is varied to be 10.5 ns in Figure 8(b). Three times wider pulse is inputted

for Figure 8(b) than one for Figure 8(a). The incident ω2-envelope decays into three pairs of the

fast and slow solitons, which are labeled as (A, A0), (B, B0), and (C, C0). As expected, the widths

of the emitted solitons become narrower in Figure 8(b) than those in Figure 8(a).

As a broadband pulse generator, it suffices for a nonlinear CRLH line to succeed in the

emission of the first pair of solitons. To output the short envelope pulse uniquely, we only set

up a band-pass filter extracting frequencies around ω3 in the subsequent stage [26].

7. CRLH-TWFETs

Figure 9(a) shows the structure of a CRLH-TWFET. Two coupled transmission lines are

periodically loaded with FETs in such a way that one of the lines is connected to the gate and

the other to the drain [15]. The gate line consists of the series inductor, series capacitor, shunt

inductor, and shunt varactor, whose values are respectively denoted as LRg, CLg, LLg, and the

Schottky varactor modeled by Eq. (5) is assigned to Cgs, which is introduced to control bifur-

cation property of the line via VSD. The biasing voltage VGG is applied to each transistor

through the shunt inductance. On the other hand, LRd, CLd, LLd, and Cds configure the unit cell

of the drain line. The biasing voltage VDD is applied to the drain of each transistor through LLd.

Each inductor has finite parasitic resistances, which are denoted as RRg, RRd, RLg, and RLd for

LRg, LRd, LLg, and LLd, respectively. The gate and drain lines are coupled via the gate-drain

capacitor denoted as Cgd. Because of the couplings, there are at most two different modes for

each frequency. Moreover, the lowest and second lowest frequency modes exhibit a LH prop-

erty, whereas the other two modes exhibit right-handedness.

As in the case of nonlinear CRLH lines, the device can generate long wavelength harmonic

wave via head-on collision of LH waves. Interestingly, such collision-induced wave evolves to

a stationary pulse. Figure 9(b) demonstrates that, for the varactor, m and VJ are set to 1.5 and

5.0 V, respectively. We then set C0 to the value, for which Cgs becomes 140 pF at V = V0 = VGG.

The other reactance values are listed in Table 2. In general, the resistances tend to be propor-

tional to the corresponding inductances. VSD is set to 18.0 V to guarantee subcritical bifurca-

tion. The cell size is 500. Both ends are excited by a sech-shaped envelope pulse whose carrier

frequency is 7.7 MHz. The inset of Figure 9(b) shows the steady-state profile of the stationary

solitary wave, which has a flattop waveform with a width of 30 cells.

In practice, the line parameter values fluctuate, such that finite disorder is introduced to the

lattice dynamics, which effectively serves the Pieres-Nabarro potential to the wave dynamics.

When the pulse cannot overcome the potential, it is partially reflected to become a stationary

pulse via resonance. Thus, the stationary pulse is expected to develop more frequently on the

line when the fluctuation increases. To examine the property of the practical line, we fabricated
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a test line on print circuit board. Actually, the parameter values used to obtain Figure 9(b)

simulate those of the test line. Figure 10(a) shows the measured spatiotemporal voltage profile.

A sech-shaped envelope pulse was inputted only at the near end. The pulse moving to the far

end was significantly reflected near the 300th cell and two different stationary pulses developed

after reflection. Figure 10(b) shows the calculated voltage profile to simulate the measured

Figure 9. Head-on collision of envelop pulses in a TWFET. (a) The unit-cell structure and calculated spatiotemporal

profile is shown in (b). No fluctuation of device parameter values is assumed.

CLg (pF) 22.0 CLd (pF) 22.0 LLg (μH) 10.0 LLd (μH) 4.7 LRg (μH) 4.7

LRd (μH) 10.0 RLg (Ω) 9.7 RLd (Ω) 4.5 RRg (Ω) 4.5 RRd (Ω) 9.7

Cds (pF) 47.0 Cgd (pF) 13.0 Cgs0 (pF) 137.0 VJ (V) 4.96 m 1.5

Table 2. Parameter values used to obtain Figure 9(b).

Figure 10. Envelope pulses in disordered lattice. The spatiotemporal voltage profile obtained by (a) the measurement and

(b) calculation.
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result, where the fluctuation has 7% standard deviation. The device fluctuation cannot be

modeled exactly. However, it successfully demonstrates both the reflection and the develop-

ment of a stationary pulse. With the balance between the dissipation and FET gain in a disor-

dered lattice, resonant interactions lead to this interesting wave dynamics.

8. Conclusions

We first describe the three-wave mixing process in nonlinear CRLH lines. The head-on colli-

sion of LH waves results in a significant amount of harmonic waves, whose efficiency is

accurately predicted by the asymptotic method.

The CRLH dispersion allows us two spontaneous resonant processes to generate harmonic

waves: the harmonic resonance and soliton decay. The harmonic resonance in a nonlinear CRLH

line succeeds in generating second-harmonic waves even under the presence of finite line

resistance, when the line is designed for the second-harmonic waves to cause cavity resonance.

The left-handedness of the fundamental wave guarantees that both the fundamental and second

harmonic waves can gain amplitude as phase advances. The soliton decay in a nonlinear CRLH

line gives the effective way for generating broadband envelope pulses. The incident envelope

spontaneously emits several pairs of the fast and slow solitons. In general, slow solitons exhibit

left-handedness to travel backward and their fast counterparts become shorter than the incident

pulse. In addition, the wider the incident pulse, the narrower the fast solitons.

A CRLH-TWFET is shown to support stationary nonlinear oscillatory pulse waves, which is

generated by the collision of two counter-moving waves through resonance. The presence of

disorder helps the development of stationary pulses. The bias voltage of varactor in each cell

can be set independently and control the position and number of such stationary pulses.
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