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Abstract

The formation of calcium (Ca) stones occurs in an initial phase by fixed growth on kidney
calcifications consisting either of intratubular crystal accumulations protruding in renal
calices (Randall’s plugs) or of interstitial hydroxyapatite deposits (Randall’s plaques)
broken through the covering epithelial layers. Crystal aggregation (AGN) seems to be
responsible for stone growth during crystalluria. This chapter reports on new aspects
of the AGN of calcium oxalate being the most frequent stone compound and tries to
explain why despite the widespread occurrence of kidney calcifications and crystallu-
ria not everybody forms stones. Urinary crystals normally are protected from AGN by
coats of urinary macromolecules (UMs) which by their identical electronegative charge
create zones of electrostatic repulsion. At high urinary concentration or ionic strength
respectively, these zones are compressed and can be bridged by self-aggregated UMs.
Self-AGN occurs in concentrated urine by the adsorption of UMs on free surfaces like
Randall’s plugs or plaques. High oxalate excretion and high urine concentration favor-
ing intratubular crystal accumulation, breaking of epithelial layers on Randall’s plaques
and self-AGN of UMs are most deleterious factors in Ca stone formation and have to be
avoided by stone metaphylaxis.

Keywords: calcium nephrolithiasis, crystalluria, Randall’s plaques and plugs, urinary
macromolecules, calcium oxalate aggregation

1. Introduction

The pathogenesis of kidney stones that often are accompanied by very painful colic and
can lead to renal failure and even to the loss of a kidney is far from being clear. In Western
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populations, nephrolithiasis has reached a prevalence up to 10% [1]. Kidney stones are com-
posed of crystal aggregates within an organic matrix. Long times stone formation mainly was
ascribed to a pathological excretion of substances being involved in crystal formation. Fourier
transform infrared spectroscopy being now commonplace for stone analysis shows that cal-
cium oxalate (CaOx) is the most frequent stone compound. For calcium nephrolithiasis, the
most frequent stone disease and the topic of this chapter, the important substances are cal-
cium, oxalic and citric acid the latter being a calcium chelator [2]. However, not all stone form-
ers show a pathological excretion of these compounds, and some anomalies also are found
in urine of people without stone formation. Later on, stone research was focused on urinary
macromolecules (UMs, mainly proteins and some glycosaminoglycans) being an integral part
of the stone matrix and some of them promoting or inhibiting the crystallization of stone min-
erals [3]. In the meantime, more than 70 of such substances were isolated [4, 5], and 11 of them
containing anionic residues like carboxyglutamic acid, phosphate and sialic acid are thought
to be relevant for stone formation [6]. But anomalies with respect to excretion or composition
of these UMs were exclusively found in some small groups of patients [7].

Modern urological endoscopy which allows the inspection of the whole renal cavity showed
that calcium oxalate and phosphate stones comprising about 80% of all concretions [8] gen-
erally start by a fixed growth on papillary calcifications, which were already described as
potential source of nephrolithiasis in 1937 by Randall [9]. Recently much work was done to
elucidate the pathogenesis of these calcifications being present either as interstitial deposits
of calcium phosphate (Randall’s plaques) or as intratubular accumulation of calcium oxalate
crystals (Randall’s plugs) [10-12]. These calcifications when protruding into renal calyces can
induce stone formation either by heterogeneous nucleation of new crystals or more probably
by the aggregation (AGN) of crystals during crystalluria. The initial fixation on kidney calci-
fications allows stones to grow to a critical size where they cannot be washed out anymore by
the urine flow and where they become symptomatic. However, the finding of kidney calcifica-
tions and crystalluria is much more frequent than stone disease [3], and Randall’s plaques can
persist during some decades without or with only minimal stone formation [13]. Therefore,
the question raises whether special crystallization conditions in urine might be responsible
for stone formation by the apposition of new crystals on Randall’s plaques and plugs. This
question stimulated us to an intensive study of the formation and especially the AGN of
calcium oxalate crystals being with 60% the most frequent stone compound [8]. Experiments
were directly performed in urine where like in other biological mediums, crystals as well as
Randall’s plaques and plugs always are coated by proteins [14]. Instead of the study of indi-
vidual compounds thought to be involved in stone formation, the overall effect of UMs was
compared to that one of urine and urinary ultrafiltrate. UMs were isolated either by a hemo-
filtration procedure or by temporary adsorption on Ca phosphate to which urinary proteins
have a high affinity.

2. Measurement of calcium oxalate (CaOx) crystallization in urine

An approved test system which uses an increase of the rate of particle sedimentation as measure
for crystal AGN was modified [15]. Contrary to current crystal production in standardized and
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protein-free solutions and with a long period of crystal ripening, CaOx was directly produced
in urine by an oxalate titration [16]. Crystallization was followed monitoring optical density
(OD) by a spectrophotometer. Typical crystallization curves are shown in Figure 1A and C.
During a titration period of 15 min with the addition of 0.1 mM/min of sodium oxalate, a rapid
increase of OD indicating crystal formation is observed. From the time lag of this increase, the
critical oxalate addition to induce crystallization can be calculated and used as a measure for
the metastability of urine with respect to CaOx crystallization. At the end of titration, maximal
OD reflecting particle concentration in solutions [15] is determined, and magnetic stirring is
stopped. Following the further course during at least 30 min, two different types of curves are
observed. One type (Figure 1A) is characterized by a continuous slow OD decrease, which by
scanning electron microscopy (SEM) of the sediment (Figure 1B) mainly can be attributed to
the sedimentation of single crystals of CaOx monohydrate. From this low -mdOD/dt, the sedi-
mentation rate of single crystals and an average particle size can be calculated [17]. The other
type of curve is represented in Figure 1C. After an initial phase of slow OD decrease varying
from 7 to 35 min and called suspensions stability, a rapid decline of OD is observed which by
SEM of the sediment (Figure 1D) can be attributed to crystal AGN. Since OD mainly reflects
particle concentration, the rapid OD decrease can be explained by an increased particle clear-
ing in the observation field of the spectrophotometer. This high clearing bases on the one hand
on an accelerated sedimentation of crystal aggregates (the sedimentation rate increases with
particle diameter in square) and on the other hand on the diminution of particle concentration
by the integration of a lot of single crystals into few large aggregates. Interestingly, the rapid
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Figure 1. Crystallization curves (CC) of urine and scanning electron microscopy (SEM) of sediments: (A) urine with
inhibition of CaOx AGN in CC (low maximal rate of OD decrease, -mdOD/dt) and (B) mainly with single crystals of
CaOx monohydrate and only a few small aggregates in SEM, (C) urine with intensive AGN (high -mdOD/dt) in CC, and
(D) large aggregates predominating in SEM. Bars on SEM indicating 20 um.
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OD decrease reflecting AGN stops after on average 30% of OD has disappeared by AGN [16].
Therefore, AGN in crystal suspensions seems to be limited to a critical OD or particle concen-
tration. The maximal OD decrease observed in our experiments is expressed as maximal OD
change per minute (-mdOD/dt).

UM solutions and urinary ultrafiltrate (UF) were obtained using a hemofilter the excluding
limit of the dialysis membrane being 5 kDa [18]. To gain UF urine was placed on one side of the
membrane and the filtrate collected on the other side. UMs were isolated by dialyzing urine
against bi distilled water. This procedure showed a volume recovery of 96% and thus allowed
the isolation of UMs in their almost original concentration. UM solutions also were prepared
by Ca phosphate precipitation in urine, which was induced by the addition of sodium hydro-
gen phosphate at pH 7.0 [19]. After centrifugation and discharge of the supernatant, the pre-
cipitate was dissolved in distilled water buffered to pH 5.0 and with a volume corresponding
to the urine volume used for precipitation. To obtain comparable results experiments in urine,
ultrafiltrate and UM solutions were performed at identical pH, Na, and Ca concentration.

3. Crystallization conditions of CaOx in urine and within the kidney

CaOx crystallization in urine is a complex process. It occurs when the product of ion activi-
ties of Ca and oxalic acid (Ca, x Ox_) exceeds a critical value called formation product (FP).
In filtered urine, this FP was found to be very high. It exceeded about 14 times the product
of ion activities (Ca, x Ox_) observed in urine after equilibration with CaOx crystals in excess,
the ratio Ca, x Ox_/Ca_ x Ox_ being a measure for the state of saturation [2]. lon activities
and thus crystallization tendency of calcium and oxalic acid are reduced by the formation of
highly soluble complexes of Ca with citric acid and of Ox with magnesium. These complexes
reduce the concentrations of Ca and Ox being disposable for crystallization. The influence of
stone forming substances, chelators, and pH on the state of urinary saturation with respect to
CaOx can be calculated by special computer programs [20] or experimentally be tested [21].
Equilibration experiments performed with CaOx crystals in 76 urines from recurrent calcium
stone formers demonstrated that supersaturation with respect to CaOx was only significantly
(p <0.001) correlated with urinary Ox concentration. The same experiments performed with
brushite on the other hand showed that Ca phosphate saturation mainly is governed by Ca
concentration and pH. Also clinical observations demonstrated that hyperoxaluria generally
is much more important for the genesis of CaOx stones than hypercalciuria [22]. In 60 urines,
an average addition of 0.64 mM Ox without a significant difference between stone patients
and controls was necessary to induce CaOx crystallization [16]. Such high urinary Ox concen-
trations are apart from rare cases of primary hyperoxaluria exclusively observed after exces-
sive Ox ingestion [23]. Nevertheless, crystalluria is a frequent finding. Crystals are found in
9-48% urines of stone patients and in 2-26% of healthy controls [24]. The discrepancy between
clinical and experimental observations can be explained by heterogeneous crystal nucleation
where preformed surfaces of Ca phosphate crystals, damaged renal tubular cells, and cellular
debris in urine [3] allow the formation of CaOx far below the high FP necessary for spontane-
ous nucleation. Cellular debris comprises about 50% of urinary deposits [25].
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For stone formation, crystals have to be retained in the kidney. This seems for single crys-
tals hardly to be possible. In the nephron, Ox normally reaches a sufficient concentration for
CaOx crystallization at the end of collecting ducts (CD), but at extremely high Ox concen-
trations, crystallization already can occur in the descending loop of Henle (DLH) [26]. Both
situations are schematically indicated in Figure 2. Even at the high Ox concentrations neces-
sary to induce crystal formation in DLH crystallization is a relative slow process compared
to urinary transit time (UT) through the nephron. Following CaOx crystallization in urine
by repeated measurement of the ionic Ca decay by a ion selective electrode shows that even
after an extreme Ox addition of 1 mM crystallization reaches during an average transit time
through the nephron of 3 min only about half of its final value (Figure 3). The figure demon-
strates that the study of crystals in urine which previously has remained several times in the
bladder hardly can be representative for the situation in the kidney. For the end of the neph-
ron when crystals have passed inner tubular diameters of minimal 15-60 um, maximal crystal
diameters of 4 um were calculated [27]. The discrepancy of crystals size and tubular dimen-
sions is even more pronounced when crystallization starts at the end of collecting ducts where
crystals only can grow during a few seconds until they reach the renal papilla (Figure 2).
Therefore, for the formation of obstructing plugs, crystals have to aggregate as demonstrated

DLH CD
S= |[—N U}
il
il | RP
DCr () 0.4° | 0.5b
2,22 >|4.1b
DT (W) 15 30 | 60
UT (s) | 180 7

Figure 2. Localization of CaOx crystallization in the nephron (hatched areas): descending loop of Henle (DLH), collecting
duct (CD), renal papilla (RP), maximal crystal diameter (DCr) expected at nucleation site (*), at RP (°), minimal inner
tubular diameter (DT), urinary transit time (UT) to RP.
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Figure 3. Ionic Ca (Ca*) decay after addition of 1 mM Ox to urine: half time (®) and endpoint of crystallization (dashed
line), average urinary transit time through the nephron (UTN).

by the finding of large crystal aggregates on micro photographs of Randall’s plugs [10]. AGN
also seems to be responsible for the acquisition of CaOx on Randall’s plaques and generally
for the growth of calcium stones [28].

4. Crystal aggregation (AGN) in urine and within the kidney

Already in 1969, crystal AGN was found to be an important element in stone formation. In
a study of six patients with short-term stone recurrence and six healthy controls, patients
showed contrary to the controls 3 h after Ox ingestion large CaOx aggregates with diameters
up to 200 pm in their urine [29]. However, in our crystallization test, AGN could also be pro-
duced by high Ox addition in 11 urines of 30 healthy people but less frequent than in urine of
unselected stone patients (20/30, p < 0.05) [16]. Interestingly, this AGN started with a delay of
15-35 min being not only beyond the average urinary transit time (UT) of 3 min in the neph-
ron but also beyond an average UT in the renal pelvis of 12 min [30]. Crystal AGN seems thus
to depend on urinary Ox or crystal concentration respectively and on an induction time also
called suspensions stability.
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For AGN, particles have to collide. Under physiological conditions (without stirring or shak-
ing), this collision occurs by particle sedimentation or Brownian motion (diffusion). At maxi-
mal crystal concentrations of 24,000 crystals/ml being observed during crystalluria [27], only
2.5 x 107 collisions per minute can be expected by diffusion within the short UT through the
nephron [17]. Sedimentation on the other hand can accumulate under these conditions on a
tubular wall being in horizontal position 1.3 crystals/min and on kidney calcifications or stone
surfaces 624 crystals/cm? and minute. These accumulation rates are positively correlated with
particle diameter in square and particle concentration whereas collision rates increase by par-
ticle concentration in square [17]. To get some insight in AGN processes within an appropri-
ate observation time, studies have to be performed in highly concentrated crystal suspensions
where AGN mainly occurs on the basis of diffusion. For the measurement of CaOx AGN in
urine, Ox additions of 1.5 mM were necessary. Even under these extreme conditions, urine
showed a high inhibitory activity with respect to CaOx AGN. AGN only was observed in 31
of 60 urines and always with some delay [16].

Inhibition of AGN can be ascribed to an electrical surface potential which allows identically
charged particles only to near to critical distance where diffusion or sedimentation is com-
pensated by electrostatic repulsion [31]. Also lower surface potentials act as intermediate bar-
rier, which slows down AGN by the fact that numerous attempts are necessary to overcome
electrostatic repulsion. This may explain the delay of AGN which was always observed in
urine. In urine, crystals are coated by urinary macromolecules (UMs) which provide by their
anionic residues an electronegative surface potential in the order of -15 mV [18]. Scanning
electron microscopic pictures of CaOx crystals being incubated in albumin or globulin
solutions showed protein coats on the crystals with diameters of 10-20 nm [14]. UM coats
can be composed as mentioned in the Introduction by more than 70 different proteins [5].
Confronted with such multiple substances often with an unknown influence on crystalliza-
tion processes, we decided to center our studies on whole urine, on UM solutions which were
directly isolated from urine and on albumin being a frequent compound of urinary crystals
and stones [3].

Although the adsorption of proteins like prothrombin fragment 1 and albumin was ascribed
to a face-specific interaction between Ca in the lattice of CaOx crystals and selected anionic
groups in the proteins [32], the coating of surfaces by UMs can also be a rather unspecific pro-
cess. As Figure 4 shows, not only crystals but also latex beads can be easily coated by UMs.
This coating bases on a hydrophobic effect between proteins and latex. By Zetasizer analysis,
latex beads showed after the incubation in UM solutions, an increase of particle diameters by
40 pm corresponding to an UM coat of 20 um. A pH change in the UM solution from 6.0 to
5.0 diminished the negative surface potentials of the coated beads from -34 to -24 mV and
produced a massive increase of particle diameters or AGN, respectively. This pH effect which
bases on a reduced ionization of the anionic protein residues by an increased H* concen-
tration demonstrates that surface potentials are essential for the inhibition of AGN. Further
experiments which were performed with latex beads in almost electrolyte and especially
Ca-free albumin solutions showed that the AGN of UM-coated particles too can base on a
hydrophobic effect [19].
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Figure 4. Affinity of urinary macromolecules (UMs) to latex beads (LBs) measured by particle size distribution (PSD)
within a 2-min interval: (A) PSD of LBs before incubation in UM solution, (B) after incubation, (C) pH change from 6.0 to
5.0 in suspension of latex in UM solution showing from the left to the right curve a progressive increase of particle size
due to AGN of the coated latex beads.
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Pathological UMs with reduced anionic groups are found to be responsible for crystal
AGN in urine [33-35] and were observed in urine of some stone patients [36-38]. However,
also dialysis in a hemofilter abolishes the inhibitory activity of UMs [16]. All UM solu-
tions obtained by dialysis from 29 urines with previously low maximal sedimentation
rates showed a massive increase of -mdOD/dt indicating AGN (Figure 5). In order to find
low molecular weight substances which might be responsible for the inhibition of AGN,
crystallization tests were repeated in urinary ultrafiltrate (UF) with an identical result as
obtained in the UM solution. Also a loss of important substances by the adsorption on
the large surface of the hemofilter could be excluded by repeating crystallization tests
in UM solutions where UMs were isolated only by temporary adsorption on Ca phos-
phate and consecutive dilution as described above. Further experiments performed with
albumin brought an explanation for this peculiar loss of AGN inhibition after temporary
contact with large surfaces. Albumin at high concentration has a tendency to self-AGN
[39], which is demonstrated in Figure 6A. By the measurement of particle size distribution
(PSD) immediately after the preparation of an albumin solution (AS) in a high urinary
concentration of 20 mg/l, a main peak at 10 nm being typical for albumin and a lower sec-
ond peak around 1000 nm were found. Two minutes later, the main peak was somewhat
diminished and peaks around 350 and 4100 nm became visible indicating progressive
self-AGN of albumin. However, in the CaOx crystallization test performed in AS, only a
minimal acceleration of sedimentation was observed (Figure 7A). The diluted Ca phos-
phate precipitate of AS on the other hand showed in PSD that all extracted albumin was
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Figure 5. Effect of UM isolation on inhibition of CaOx AGN (low -mdOD/dt): native urine (NU), dialysed urine (DU),
ultrafiltrate (UF), and dissolved Ca phosphate precipitates of urine (DP) (1 =29, x + SD, NU vs. DU, UF and DP p <0.001).
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Figure 6. Particle size distribution (PSD) of albumin: (A) PSD in albumin solution in high urinary concentration (AS,
20mg/1) and (B) PSD in dissolved Ca phosphate precipitate of AS (DPA).

aggregated into a high single peak at 480 nm (Figure 6B) and in the crystallization test, a
rapid OD decrease being characteristic for intensive crystal AGN was found (Figure 7B).
These observations demonstrate that crystal AGN also occurs in the presence of normal
but self-aggregated UMs. UM aggregates with increasing size like aggregated albumin
obviously can bridge critical distances of electrostatic repulsion and connect crystals prob-
ably by hydrophobic binding to their UM coats. Scanning electron microscopy of Ca Ox
crystals being incubated in gamma globulin solutions showed at crystal convergence of
some aggregates large amounts of amorphous material suggesting a crystal binding by

aggregated proteins [14].

The formation of Randall’s plugs seems to be a product of crystal AGN. Randall’s plugs are
observed as origin of kidney stones at states of massive chronic supersaturation of urine either
with respect to CaOx as found in primary hyperoxaluria or with respect to Ca phosphate
in primary hyperparathyroidism [40]. Under these conditions, crystallization as mentioned
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Figure 7. Crystallization curve of AS and DPA: AS shows with a relative low -mdOD/dt inhibition of CaOx AGN, and a
high -mdDO/dt in DPA indicates massive AGN (1 =5, x £ SD, p <0.01).

above already can start in DLH. During their way through the nephron, crystals can drop
by sedimentation on tubular walls where they stick and together with following crystals can
form large crystal accumulations. Such accumulations probably are an ideal platform for the
adsorption and self-AGN of UMs. Massive crystalluria and even hyperoxaluria are known to
damage tubular cells and thus to favor the sticking of crystals on tubular walls [41]. Damaged
tubular cells produce pathological proteins which also favor this sticking and the AGN of the
crystals [3]. Furthermore, basement membrane denuded by its epithelial layer can induce het-
erogeneous nucleation of CaOx [42]. These mechanisms can provoke massive crystal aggre-
gates which protruding from ducts of Bellini into renal calices can raise stone formation in the
kidney as observed by urological endoscopy [40].

5. CaOx AGN in the presence of hydroxyapatite (HAP), a possible
model for stone formation on Randall’s plaques (RPLs)

Idiopathic Ca nephrolithiasis where by definition no metabolic or endocrinologic disor-
ders like primary hyperoxaluria or hyperparathyroidism are found is the most frequent
stone disease and generally starts by stone growth on RPLs [10-12, 40]. RPLs are subepi-
thelial deposits of Ca phosphate in the renal papilla which by disruption of the covering
epithelial layer can come in contact with urine and give raise to stone growth. The Ca
phosphate deposits, mainly HAP, are a consequence of the transformation of epithelial
cells into an osteoplastic phenotype with an increased production of bone-specific proteins
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like osteopontin (OP) favoring tissue mineralization [12]. Histological analysis with immu-
nohistochemistry or infrared spectroscopy of RPLs with an adherent stone showed that
the RPLs consisted of an OP matrix with HAP deposits, whereas the adherent stone in
addition to OP and HAP contained Tamm-Horsfall glycoprotein (THG) and CaOx crystals
[40]. Stone formation on RPLs thus seems to occur at the interface of HAP and CaOx crys-
tals being embedded in proteins like OP and THG which like albumin have a tendency to
self~AGN [3]. The osteoplastic transformation of epithelial cells which mainly occurs in
the loop of Henle was ascribed to vascular or metabolic disorders since in epidemiological
studies, stone disease was found to be associated with hypertension, myocardial infarc-
tion, diabetes, or metabolic syndrome [12]. However, RPLs seem to be very frequent and
not always associated with stone disease. High-resolution radiography of 50 consecutive
sets of cadaveric kidneys showed in 57% radiographic evidence consistent with RPLs [43].
In an older study, in all kidneys of 100 randomly selected autopsies, some papillary calci-
fications were found but only in seven cases of kidney stones [44]. Urological endoscopy
revealed RPLs even in 43% of cases not being related to stone disease [45]. The mechanisms
involved in the progression of a RPL to a kidney stone are far from being clear. One of
these processes is breaking of epithelial layers, which brings the calcifications of RPLs in
contact with pelvic urine [12]. A further unknown factor is the formation of CaOx crys-
tals on the denuded and protein-coated HAP of RPLs. Therefore, we tried to mimic this
formation by the study of CaOx crystallization in the presence UM-coated HAP (cHAP).
Contrary to previous studies performed immediately after thawing of frozen urine, 15
freshly voided urines of five healthy men were examined.

To prepare cHAP, commercially available HAP crystals (0.05 mg/ml) were incubated at 37°
during at least 30 min in one portion each of 15 urines from healthy persons [46]. After
centrifugation and discharge of the supernatant, the crystals were suspended in a second
portion of the same urine. Ca and pH were adapted to the standard values of 2 mM and
6.0, respectively, used in the tests. CaOx crystallization tests as described above were per-
formed in urine with and without the cHAP suspension. By this procedure, a high -mdOD/
dt indicating AGN was observed in 8 of 15 urines performed with cHAP, whereas in the test
performed without cHAP, only one of the 15 urines showed a high -mdOD/dt. Interestingly,
urines with and without cHAP-induced AGN significantly (p < 0.01) could be distinguished
by their sodium concentration (Figure 8) being an indicator for urinary ionic strength [47]. A
high ionic strength seems to favor AGN, whereas urine dilution abolished the cHAP-induced
AGN. All urines with an initially high -mdOd/dt showed after dilution and adaption of Ca
and pH to the initial values only a slow OD decrease being typical for the sedimentation of
single crystals without AGN. Urinary dilution down to 33% did not disturb urinary inhibi-
tory activity with respect to not cHAP-related CaOx AGN, which is in agreement with the
finding that urine even diluted to 20% is still an excellent inhibitor of the AGN of CaOx crys-
tals [48]. The promotion of AGN by a high ionic strength can be explained by its influence on
the extension on electrostatic surface potentials (ESPs). In electrolyte-containing solutions,
ESP exponentially decreases with increasing distance from negatively charged particles by
a cation accumulation (in our experiment of sodium) [31]. In concentrated urine with a high
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Figure 8. CaOx AGN (increase of -mdOD/dt) induced by UM-coated hydroxyapatite (cHAP) in urine: crystallization
test without (o) and with the addition of 0.05 mg/ml cHAP (®) at low and at high sodium concentrations (Na) and after
urinary dilution (UD) (n =8, x + SD).

ionic strength, ESP is compressed to a few nanometers where crystals can approach to dis-
tances where self-aggregated UMs can take over their bridging effect.

To get more information about CaOx AGN being induced by cHAP, supplementary experi-
ments were performed in solutions of albumin in a high urinary concentration (AS, 20 mg/l).
The comparison of experiments performed in AS and in concentrated urine showed almost
identical results (Figure 9). A high inhibitory activity with respect to CaOx AGN of AS and
urine was abolished by the cHAP addition and also in the dissolved Ca phosphate precipi-
tates (DPs) of urine and AS. Under the special conditions of our experiments, albumin seems
to be an ideal substance to mimic UM effects. Adsorption on surfaces favors self-AGN of
UMs as demonstrated with respect to albumin and thus can turn inhibitors to promoters of
AGN [46]. Ca phosphates are excellent substrates for UM adsorption [5]. HAP of RPLs being
denuded from their epithelial cells is therefore an ideal platform to initiate stone formation by
the adsorption and self-AGN of UMs. Since the effect of UMs or albumin on CaOx AGN was
identical when adsorbed on HAP or when being in solution after temporary adsorption, HAP
of RPLs is more likely to act as a mediator of crystal AGN than as a heterogeneous nuclea-
tor for CaOx formation as suggested by others [12]. Indeed, scanning electron microscopy
of urinary sediments after HAP-induced CaOx AGN showed in agreement with findings on
RPLs large CaOx aggregates which were in the surroundings but not in direct contact with
the HAP crystals [49].
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Figure 9. Almost identical results obtained in crystallization test (CT) performed with concentrated urine (¢) and
albumin solution (AS, 20 mg/l (0): CT performed in native urine or AS (native), in urine or AS with UM or albumin
coated HAP (+cHAP) and in dissolved Ca phosphate precipitates of urine or AS (DP) (1 =8, x + SD).

6. Summary and conclusions

The formation of Ca stones in the kidney during crystalluria seems to base on crystal AGN
either on Randall’s plugs or on plaques. Urine has, as demonstrated by our study, a high
inhibitor capacity with respect to CaOx AGN. Coating of crystals by electronegative charged
UMs creates zones of electrostatic repulsion between the crystals which under normal condi-
tions and within the short urinary transit time in the kidney hardly can be overwhelmed by
diffusion or sedimentation being responsible for particle collision and thus AGN. Zones of
electrostatic repulsion are reduced in the presence of pathological UMs with a lack of anionic
residues or in concentrated urine with a high ionic strength. UMs with a lack of negatively
charged anionic groups create an insufficient surface potential on UM-coated crystals. At high
ionic strength, the extent of surface potentials is compressed by an increased accumulation
of cations. Under these conditions, zones of electrostatic repulsion probably can be bridged
by normal but self-aggregated UMs. Self-AGN occurs by the adsorption of UMs on surfaces
especially of HAP with its high affinity to UMs. The AGN of UM-coated particles like uri-
nary crystals or latex beads probably mainly bases on a hydrophobic effect between the large
hydrophobic protein segments. This effect can occur either directly between pathological UM
coats or is mediated by self-aggregated but normal UMs.

Stone formation on Randall’s plugs mainly occurs at high urinary supersaturation with
respect to Ca salts as observed in primary hyperoxaluria or in hyperparathyroidism both with
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high recurrence rates of stone formation. At such states of chronic urinary supersaturation,
crystallization already can start in the descending loop of Henle and crystals during their way
through the nephron can stick to tubular walls and by sedimentation can accumulate further
crystals. Tubular cells damaged by massive crystalluria favor crystal sticking and produce
pathological UMs, which enhance crystal AGN. Crystal accumulates are ideal platforms for
the adsorption of UMs and their self~AGN and thus for crystal AGN. By such mechanisms,
large crystal plugs can be formed which when protruding out from ducts of Bellini into the
renal calices may give raise to stone formation. Whereas in hyperparathyroidism nephrolithi-
asis can be cured by parathyroidectomy, the treatment of primary hyperoxaluria is extremely
difficult but not the topic of this chapter. However, in stone metaphylaxis, a high fluid intake
is essential which apart from urinary supersaturation also reduces ionic strength and urinary
transit time through the collecting ducts and the renal pelvis.

The formation of Randall’s plaques (RPLs) being the origin of most idiopathic Ca stones
seems to be a complex process of biomineralization. RPLs are frequent but not always con-
nected with stone disease. Even in the case of nephrolithiasis, stone formation on a RPL can
take decades, whereas other RPLs in the same kidney can remain stone free [13]. Idiopathic
Ca nephrolithiasis often is characterized by long stone free intervals [50]. In these cases, stone
formation seems more to be the result of a coincidence of noisy factors than a real disease.
A most dangerous constellation is an excessive ingestion of Ox rich food (e.g., chocolate) in
combination with a poor fluid intake. After excessive Ox intake, a threefold increase of uri-
nary Ox was observed [23]. High urinary Ox and consecutive crystal concentrations can, as
mentioned above, induce the secretion of pathological UMs and destroy epithelial layers of
RPLs. The consequence is that HAP deposits come in contact with crystals in a concentrated
urine where self~AGN and AGN are enhanced by a high ionic strength and a high UM con-
centration. Therefore, for idiopathic Ca stone patients, dietary Ox restriction and a high fluid
intake are mandatory. However, only the last measure is evidence based [51]; since in stud-
ies of stone metaphylaxis, the compliance of patients especially of those with long stone-free
intervals often is rather poor.

Author details

Johannes M. Baumann
Address all correspondence to: johannes.denise.baumann@bluewin.ch

Stone Research Center Biel, Biel, Switzerland

References

[1] Romero V, Akpinar H, Assimos DG. Kidney stones: A global picture of prevalence, inci-
dence and associated risk factors. Reviews in Urology. 2010;12(2-3):e86-e96

175



176

Pathophysiology - Altered Physiological States

[2]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Baumann JM, Affolter B. From crystalluria to kidney stones, some physicochemical
aspects of calcium nephrolithiasis. World Journal of Nephrology. 2014;3(4):256-267

Khan SR, Kok DJ. Modulators of urinary stone formation. Frontiers in Bioscience.
2004;9:1450-1482

Thurgood LA, Wang T, Chataway TK, Ryall RL. Comparison of the specific incorpora-
tion of intracrystalline proteins into urinary calcium oxalate monohydrate and dehy-
drate crystals. Journal of Proteome Research. 2010;9(9):4745-4757

Thurgood LA, Ryall RL. Proteomic analysis of proteins selectively associated with
hydroxyapatite, brushite, and uric acid crystals precipitated from human urine. Journal
of Proteome Research. 2010;9(10):5402-5412

Robertson WG. Do “inhibitors of crystallization” play any role in the prevention of kid-
ney stones? A critique. Urolithiasis. 2017;45:53-56

Jaggi M, Nakagawa Y, Zipperle L, Hess B. Tamm-Horsfall protein in recurrent calcium
kidney stone formers with positive family history: Abnormalities in urinary excretion,
molecular structure and function. Urological Research. 2007;35:55-62

Mandel NS, Mandel IC, Kolbach-Mandel AM. Accurate stone analysis: The impact on
disease diagnosis and treatment. Urolithiasis. 2017;45:3-9

Randall A. The origin and growth of renal calculi. Annals of Surgery. 1937;105:1009-1027

Daudon M, Bazin D, Letavernier E. Randall’s plaques as the origin of calcium oxalate
kidney stones. Urolithiasis. 2015;43(Suppl 1):5-11

Evan AP, Worcester EM, Coe FL, Williams J Jr, Lingemann JE. Mechanisms of human
kidney stone formation. Urolithiasis. 2015;43(Suppl 1):19-32.

Khan RS, Canales BK. Unified theory on the pathogenesis of Randall’s plaques and
plugs. Urolithiasis. 2015;43(Suppl 1):109-123

Kok DJ, Boellaard W, Ridwan Y, Levchenko VA. Timeless of the “free-particle” and
“fixed-particle” models of stone-formation: Theoretical and experimental investigations.
Urolithiasis. 2017;45(1):33-41

Khan SR, Finlayson B, Hackett RL. Stone matrix as proteins adsorbed on crystal surfaces:
A microscopic study. Scanning Electron Microscope. 1983;1:379-385

Hess B, Nakagawa Y, Coe FL. Inhibition of calcium oxalate monohydrate crystal aggre-
gation by urine proteins. The American Journal of Physiology. 1989;257:F99-F106

Baumann JM, Affolter B, Casella R. Aggregation of freshly precipitated calcium oxa-
late crystals in urine of calcium stone patients and controls. Urological Research.
2011;6:421-427

Baumann JM, Affolter B, Meyer R. Crystal sedimentation and stone formation. Urological
Research. 2010;38:21-27



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

The Way from Renal Calcifications and Urinary Crystals to Kidney Stones: An Important Aspect...
http://dx.doi.org/10.5772/intechopen.70598

Baumann JM, Affolter B, Caprez U, Clivaz C, Gliick Z, Weber R. Stabilization of calcium
oxalate suspension by urinary macromolecules, probably an efficient protection from
stone formation. Urologia Internationalis. 2007;79:267-272

Baumann JM, Affolter B, von Arx U, Noé€l M. Alteration of urinary macromolecules
by adsorption on surfaces, probably an important factor in urolithiasis. Urolithiasis.
2013;41(6):467-474.

Brown CM, Ackermann DK, Purich DL. EQUIL93: A tool for experimental and clinical
urolithiasis. Urological Research. 1994;22:119-126

Ackermann D, Baumann JM. Chemical factors governing the state of saturation towards
brushite and whewellite in urine of calcium stone formers. Urological Research.
1987;15:63-65

Robertson WG, Peacock M. The cause of idiopathic calcium stone disease: Hypercalciuria
or hyperoxaluria? Nephron. 1980;26(3):105-110

Balcke P, Zazgornik ], Sunder-Plassmann G, Kiss A, Hauser AC, Gremmel F, Derfler K,
Stockenhuber F, Schmidt P. Transient hyperoxaluria after ingestion of chocolate as a
high risk factor for calcium oxalate calculi. Nephron. 1989;51:32-34

Fogazzi GB. Crystalluria: A neglected aspect of urinary sediment analysis. Nephrology
Dialysis Transplantation. 1996;11:379-387

Marickar YM, Salim A. Photomicrography of urinary deposits in stone clinic. Urological
Research. 2009;37:359-368

Robertson WG. Kidney models of calcium oxalate stone formation. Nephron Physiology.
2004,98:21-30

Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney
International. 1994;46:847-854

Saw NK, Rao PN, Kavanagh JPA. Nidus, crystalluria and aggregation: Key ingredients
for stone enlargement. Urological Research. 2008;36:11-15

Robertson WG, Peacock M, Nordin BE. Calcium crystalluria in recurrent renal-stone
formers. Lancet. 1969;2:21-24

Finlayson B, Reid F. The expectation of free and fixed particles in urinary stone disease.
Investigative Urology. 1978;15:442-448

Miiller RH. Zetapotential und Partikelladung in der Laborpraxis. Stuttgart: Wissen-
schaftliche Verlagsgesellschaft; 1996

Cook AF, Grover PK, Ryall RL. Face-specific binding of prothrombin fragment 1 and
human serum albumin to inorganic and urinary calcium oxalate monohydrate crystals.
BJU International. 2009;103:826-835

177



178

Pathophysiology - Altered Physiological States

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Webber D, Rodgers AL, Sturrock ED. Glycosylation of prothrombin fragment 1 governs
calcium oxalate crystal nucleation and aggregation, but not crystal growth. Urological
Research. 2007;35:277-285

Wang L, Guan X, Tang R, Hoyer JR, Wierzbicki A, De Yoreo ]J, Nancollas GH.
Phosphorylation of osteopontin is required for inhibition of calcium oxalate crystalliza-
tion. Journal of Physical Chemistry B. 2008;112:9151-9157

Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA. Calcium
oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-
Horsfall protein. Urological Research. 2011;39:269-282

Coe FL, Nakagawa Y, Asplin J, Parks JH. Role of nephrocalcin in inhibition of cal-
cium oxalate crystallization and nephrolithiasis. Mineral and Electrolyte Metabolism.
1994;20(6):378-384

Webber D, Radcliffe CM, Royle L, Tobiasen G, Merry AH, Rodgers AL, Sturrock ED,
Wormald MR, Harvey DJ, Dwek RA, Rudd PM. Sialylation of urinary prothrombin frag-
ment 1 is implicated as a contributory factor in the risk of calcium oxalate kidney stone
formation. FEBS Journal. 2006;273:3024-3037

Kolbach AM, Afzal O, Halligan B, Sorokina E, Kleinman JG, Wesson JA. Relative defi-
ciency of acidic isoforms of osteopontin from stone former urine. Urological Research.
2012;40:447-454

Cerini C, Geider S, Dussol B, Hennequin C, Daudon M, Veesler S, Nitsche S, Boistelle R,
Berthézene P, Dupuy P, Vazi A, Berland Y, Dagorn JC, Verdier JM. Nucleation of calcium
oxalate crystals by albumin: Involvement in the prevention of stone formation. Kidney
International. 1999;55:1776-1786

Coe FL, Evan AP, Worcester EM, Lingeman JE. Three pathways for human kidney stone
formation. Urological Research. 2010;38:147-160

Kahn SR. Calcium oxalate crystal interaction with renal tubular epithelium, mecha-
nism of crystal adhesion and its impact on stone development. Urological Research.
1995;23:71-79

Khan SR, Masiamini SA, Atmani F, Glenton PA, Opalko F], Thamilselvan S, Hammett-
Stabler C. Membranes and their constituents as promoters of calcium oxalate crystal
formation in human urine. Calcified Tissue International. 2000;66(2):90-96

Stoller ML, Low RK, Shami GS, McCormick VD, Kerschmann RL. High resolution radi-
ography of cadaveric kidneys: Unraveling the mystery of Randall’s plaque formation.
Journal of Urology. 1996;156(4):1263-1266

Haggitt RC, Pitcock JA. Renal medullary calcifications: A light and electron microscopic
study. Journal of Urology. 1971;106:342-347

Low RK, Stoller ML. Endoscopic mapping of renal papillae for Randall’s plaques in
patients with urinary stone disease. Journal of Urology. 1997;158(6):2062-2064



[46]

[47]

[48]

[49]

[50]

[51]

The Way from Renal Calcifications and Urinary Crystals to Kidney Stones: An Important Aspect...
http://dx.doi.org/10.5772/intechopen.70598

Baumann JM, Affolter B. The paradoxical role of urinary macromolecules in the aggre-
gation of calcium oxalate: A further plea to increase diuresis in stone metaphylaxis.
Urolithiasis. 2016;44(4):311-317

Guerra A, Allegri F, Meschi T, Adorni G, Prati B, Nouvenne A, Novarini A, Maggiore
U, Fiaccadori E, Borghi L. Effects of urine dilution on quantity, size and aggregation
of calcium oxalate crystals induced in vitro by an oxalate load. Clinical Chemistry and
Laboratory Medicine. 2005;43:585-589

Kok DJ, Papapoulos SE, Bijvoet OL. Crystal agglomeration is a major element in calcium
oxalate urinary stone formation. Kidney International. 1990;37:51-56

Baumann JM, Affolter B, Caprez U, Henze U, Lauper D, Maier F. Hydroxyapatite induc-
tion and secondary aggregation of calcium oxalate, two important processes in calcium
stone formation. Urological Research. 2001;29:417-422

Strohmaier WL. Course of calcium stone disease without treatment. What can we expect?
European Urology. 2000;37:339-344

Fink HA, Akornor JW, Garimella PS, MacDonald R, Cutting A, Rutks IR, Monga M, Wilt
TJ. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: A systematic
review and meta-analysis of randomized trials. European Urology. 2009;56:72-80

179



ntechOpen

ntechOpen



