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Abstract

Various mathematical theories and simulation methods were developed in the past for
describing gas flows in nonequilibrium, in particular, hypersonic rarefied regime. They
range from the mesoscale models like the Boltzmann equation, the DSMC, and the high-
order hydrodynamic equations. The moment equations can be derived by introducing
the statistical averages in velocity space and then combining them with the Boltzmann
kinetic equation. In this chapter, on the basis of Eu’s generalized hydrodynamics and the
balanced closure recently developed by Myong, the second-order constitutive model of
the Boltzmann equation applicable for numerical simulation of hypersonic rarefied
flows is presented. Multi-dimensional computational models of the second-order con-
stitutive equations are also developed based on the concept of decomposition and
method of iterations. Finally, some practical applications of the second-order constitutive
model to hypersonic rarefied flows like re-entry vehicles with complicated geometry are
described.

Keywords: hypersonic rarefied flows, moment equations, balanced closure, numerical
simulation, discontinuous Galerkin

1. Introduction

Various mathematical theories and simulation methods were developed in the past for describ-

ing gas flows in nonequilibrium, in particular, hypersonic rarefied regime. They range from

the mesoscale models like the Boltzmann equation [1–6], the direct simulation Monte Carlo

methods [7], and the high order hydrodynamic equations [1–6, 8–20]. Among these models,

the kinetic Boltzmann equation plays a central role in the hierarchy of PDE-based mathemat-

ical models for gas kinetic theory. The kinetic Boltzmann equation can be transformed into the
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moment equations by introducing the statistical average in velocity space. Based on the

Maxwell’s equation of change and the so-called method of moments, Grad [8] in 1949 derived

the constitutive equations of viscous shear stresses and heat fluxes from the kinetic Boltzmann

equation of the distribution of monatomic gas particles. However, it was found by Grad [9]

himself that, within the framework of his constitutive equations, there is a critical Mach

number (1.65) beyond which no continuous shock wave solution in high compressive regime

is possible.

After Grad’s pioneering work in developing gas kinetic theory and subsequent failure of his

13-moment method in describing hypersonic shock structure, there have been enormous

efforts to resolve the problem from various perspectives, not only by physicists and mathe-

maticians, but engineers and also chemists. Among such efforts, Eu’s works [2–5] to develop

the gas kinetic theory consistent with the second law of thermodynamics beyond the linear

irreversible thermodynamics stand out. By recognizing the logarithmic form of the

nonequilibrium entropy production, Eu [2] in 1980 proposed a canonical distribution func-

tion in the exponential form, instead of Grad’s polynomial form. He also generalized the

equilibrium Gibbs ensemble theory—providing the relationship between thermodynamic

variables and the partition functions—to nonequilibrium processes. It turns out that

such canonical exponential form assures the nonnegativity of the distribution function and

satisfies the second law of thermodynamics in rigorous way, regardless of the level of

approximations.

Recently, Myong [15] in 2014 developed a new closure theory which plays a critical role in the

development of gas kinetic theory. The new closure was derived from a keen observation of the

fact that, when closing open terms in the moment equations derived from the Boltzmann

kinetic equation, the number of places to be closed is two (movement and interaction), rather

than one (movement only) misled by the Maxwellian molecule assumption in previous theory.

Therefore, the order of approximations in handling the two terms—kinematic (movement) and

dissipation (interaction) terms—must be the same; for instance, second-order for both terms,

leading to the name of the new closure as the balanced closure. Then, after applying the Eu’s

cumulant expansion based on the canonical distribution function to the explicit calculation of

the dissipation term and the aforementioned new closure, Myong [15] derived the second-

order constitutive models from the Boltzmann kinetic equation and proved that the new

models indeed remove the high Mach number shock structure singularity completely, which

had remained unsolved for decades.

On the basis of these new theories, this chapter will first describe a recent development

in theoretical models for numerical simulation of hypersonic rarefied flows from the

viewpoint of the method of moments. It will focus on the detailed derivation of the

second-order constitutive model from the original Boltzmann equation and the develop-

ment of associated computational models for numerical simulation of hypersonic rarefied

gas flows in simple geometry as well as complicated real vehicles. Finally, some practical

applications of the second-order constitutive model to hypersonic rarefied flows are

summarized.
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2. The second-order constitutive model of the Boltzmann equation

2.1. The kinetic Boltzmann equation and the method of moments

The Boltzmann equation plays a central role in the hierarchy of mathematical models for gas

kinetic theory. It was derived as an evolution equation for the singlet distribution function of a

gas by considering the collision dynamics of two particles and combining it with a statistical

molecular chaos assumption. Since the molecular chaos assumption is not of a mechanical

nature, that is, the Boltzmann equation is based on the assumptions made to “arrive at it” from

the reversible Liouville equations of motion, the Boltzmann equation should be regarded as a

fundamental kinetic equation at the mesoscopic level of description of macroscopic processes.

Thus, it is a postulate for dynamic evolution of singlet distribution functions f(t,r,v) in the

phase space (time, position, velocity),

∂

∂t
þ v �∇

� �

f v; r; tð Þ ¼ C f ; f 2
� �

, (1)

which cannot be derived from the pure mechanical deterministic consideration. Although it is

a first-order partial differential equation in space and time, its solution becomes very compli-

cated because it is nonlinear owing to the collision integral C[ f, f2], which is made up of

products of distribution functions.

The moment equations can be obtained by differentiating the statistical definition of the

variable in question with time and later combining with the Boltzmann equation [2–5, 8]; it

yields for molecular expressions of general moment h(n)

∂

∂t
h nð Þf

D E

þ∇� u h nð Þf
D E

þ ch nð Þf
D E� �

� f
d

dt
h nð Þ

� 	

� f c�∇h nð Þ
D E

¼Λ nð Þ � h nð ÞC f ;f 2
� �

D E� �

: (2)

The symbols c ,u ,〈〉 ,Λ(n) denote the peculiar velocity, the average bulk velocity, the integral in

velocity space, and the dissipation (or production) terms, respectively.

2.2. Exact derivation of the conservation laws

The conservation laws of mass, momentum, and total energy can be derived directly from the

kinetic Boltzmann equation. For example, in the case of momentum conservation law, differ-

entiating the statistical definition of the momentum with time and combining with the

Boltzmann equation yield

∂

∂t
mvfh i ¼ mv

∂f

∂t

� 	

¼ � m v � ∇fð Þvh i þ mvC f ; f 2
� �
 �

: (3)

Then the first term on the right-hand side becomes

� m v � ∇fð Þvh i ¼ �∇ � mvvfh i ¼ �∇ � ρuuþ mccfh i
� 

: (4)
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After the decomposition of the stress P into the pressure p and the viscous shear stress Π ([](2)

denoting the traceless symmetric part of the tensor),

P � mccfh i ¼ pIþΠ where p � mTr ccð Þf =3h i,Π � m cc½ � 2ð Þf
D E

, (5)

and, using the collisional invariance of the momentum, 〈mvC[f, f2]〉 = 0, we obtain

∂ ρu
� �

∂t
þ ∇ � ρuuþ pIþΠ

� �

¼ 0, (6)

an exact consequence of the original Boltzmann equation. A similar method with the statistical

definition of the heat flux, Q�〈mc2cf/2〉, can be applied to the derivation of the conservation

law of total energy Et. Then, we obtain the following conservation laws, all of which are an

exact consequence of the Boltzmann equation,

ρ
d

dt

1=ρ

u

Et

2

6

4

3

7

5
þ ∇ �

�u

pI
pu

2

4

3

5þ ∇ �
0
Π

Π � uþQ

2

4

3

5 ¼
0
0
0

2

4

3

5: (7)

2.3. Derivation of the second-order and first-order constitutive models via

the balanced closure

Starting from molecular expressions of the second-order and third-order moments, the consti-

tutive models of the stress tensor and heat flux vector can be derived via the method of

moments and the new balanced closure.

For the second-order moment h(2)=[mcc](2), where m ,[](2) denote the mass of gas molecule

and the traceless symmetric part, the following constitutive equation of the shear stress tensor

Π�〈m[cc](2)f〉 can be derived from the Maxwell’s equation of change (2) [3, 8, 15];

ρ
d Π=ρ
� �

dt
þ ∇ �Ψ Πð Þ þ 2 Π � ∇u½ � 2ð Þ þ 2p ∇u½ � 2ð Þ ¼ Λ

Πð Þ � h 2ð ÞC f ; f 2
� �

D E� �

,

Ψ
Πð Þ � mcccfh i � mTr cccð Þfh iI=3:

(8)

Similarly, for the next term, h(3) = (mc2/2�mCpT)c, Cp being the heat capacity per mass at

constant pressure, the constitutive equation of the heat flux vector Q�〈mc2cf/2〉 can be

obtained (assuming 〈mcf〉(�J)=0 in monatomic gas) [3, 15];

ρ
d Q=ρ
� �

dt
þ ∇ �Ψ Qð Þ þ mcccfh i � ∇uþ

du

dt
�ΠþQ � ∇uþΠ � Cp∇T þ pCp∇T ¼ Λ

Qð Þ � h 3ð ÞC f ; f 2
� �

D E� �

,

Ψ
Qð Þ � mc2ccf =2


 �

� CpT pIþΠð Þ:

(9)

Note that mCpTc appears when defining the third-order moments h(3) and both of higher

moments Ψ(Π) and Ψ
(Q) vanish near equilibrium. Note also that the constitutive equation (9)
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was not presented in Grad’s original work [8], since his 13-moment (approximate) closure was

already applied in the process. In the derivation, the following relations are used;

h 3ð Þf
D E

¼Q�CpTJ, ch 3ð Þf
D E

¼ mc2ccf =2

 �

�CpTP, f
∂

∂t
h 3ð Þ

� 	

¼�
∂u

∂t
�Π� J

∂

∂t
CpT
� �

,

fu �∇h 3ð Þ
D E

¼�ρEu �∇u�u �∇u �P� J u �∇CpT
� �

þ ρCpTu �∇u,

f c �∇h 3ð Þ
D E

¼�Q �∇u�Ψ Pð Þ �∇u�P �∇CpTþCpTJ �∇u,

Ψ Pð Þ � mcccfh i,ρE� mc2f =2

 �

,CpT ¼ p=ρþE:

(10)

For more details of derivation of heat flux, refer to Appendix A of Myong [15].

Finally, the following constitutive equations, all of which are again an exact consequence of the

Boltzmann equation, can be expressed in compact form;

ρ
d

dt

Π=ρ

Q=ρ

" #

þ
∇�Ψ Πð Þ

∇�Ψ Qð ÞþΨ Pð Þ
:∇u

" #

þ
2 Π�∇u½ � 2ð Þ

du=dt�ΠþQ�∇uþΠ�Cp∇T

" #

þ
2p ∇u½ � 2ð Þ

Cpp∇T

" #

¼
Λ
Πð Þ

Λ
Qð Þ

" #

: (11)

Once the exact constitutive equations are derived, it is necessary to develop a proper closure

theory so that they may be applied to the actual calculation of flow problems of practical

interests. The closure theory has a long history in many disciplines, since it is essential in

describing complex system consisting of vast amount of molecules like fluids, granular media,

and soft matter.

Myong [15] recently developed a new theory, so-called balanced closure, by considering the

high Mach number shock structure problem. The new closure was derived from a keen

observation of the fact that the number of places for closing the exact constitutive equations

(11) is two (movement and interaction), rather than one (movement only) misled by the

Maxwellian molecule assumption in previous works. In other words, the high order terms

associated with molecular interaction, Λ(Π)(�〈h(2)C[ f,f2]〉) ,Λ
(Q)(�〈h(3)C[ f, f2]〉), must be taken

into account in parallel with the other high order terms arising from movement of molecules

∇ �Ψ(Π) ,∇ �Ψ(Q)+Ψ (P) :∇u. Therefore, the order of approximations in handling the two terms—

kinematic (movement) and dissipation (interaction) terms—must be the same; for instance,

second-order for both terms.

When this balanced closure is applied to Eq. (11), that is,

∇ �Ψ Πð Þ

∇ �Ψ Qð Þ þ Ψ Pð Þ
: ∇u

� �

¼
2nd

0, Λ
Πð Þ

Λ
Qð Þ

� �

¼
2nd

�pΠ=μNS

�CppQ=kNS

� �

q2nd κ1ð Þ, (12)

the following second-order constitutive equations can be derived;

ρ
d

dt

Π=ρ

Q=ρ

" #

þ
2 Π �∇u½ � 2ð Þ

du=dt �ΠþQ �∇uþΠ �Cp∇T

" #

þ
2p ∇u½ � 2ð Þ

Cpp∇T

" #

¼
�pΠ=μNS

�CppQ=kNS

" #

q2nd κ1ð Þ, (13)
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where the second-order approximation of original dissipation term, q2nd(κ1), can be expressed

in a form of hyperbolic sine function whose argument is the first-order cumulant, κ1, and is

given as a Rayleigh dissipation function [3]

q2nd κ1ð Þ � sinhκ1

κ1
,κ1 �

mkBð Þ1=4
ffiffiffi

2
p

d

T1=4

p

Π : Π

μNS

þQ �Q=T

kNS

� �1=2

: (14)

The symbols kB ,d denote the Boltzmann constant and the diameter of the molecule, respec-

tively. Interestingly, the existence of the hyperbolic sine form in the dissipation (or production)

term of second-order constitutive equation can be explained in heuristic way [18, 19] by

recognizing that the net change in the number of gas molecules due to the Boltzmann collision

integral may be described by gain minus loss, that is, exp(nonequilibrium) � exp(�nonequilibrium), so

that the leading term of dissipation in the cumulant expansion becomes sinh.

Further, it is straightforward to show that, once 1st order approximation (meaning near

equilibrium) is introduced to Eq. (13), or equivalently, when the first two terms of the left-

hand side are ignored and the right-hand side is taken as first-order (q1st(κ1)=1), Eq. (13)

recovers the well-known first-order Navier-Stokes-Fourier constitutive equations

2p ∇u½ � 2ð Þ

Cpp∇T

" #

¼
�pΠ=μNS

�CppQ=kNS

" #

, equivalently
Π

Q

" #

¼ �2μNS ∇u½ � 2ð Þ

�kNS∇T

" #

: (15)

Lastly, it should be mentioned that, in spite of its conceptual simplicity, “balancing,” the new

closure theory turned out to be extremely powerful; for example, it can remove the high Mach

number shock structure singularity in gas dynamics including hypersonic regime, which had

remained unsolved for decades.

2.4. Resolving the high Mach number shock structure singularity

The stationary shock wave structure is a pure one-dimensional compressive gas flow defined

as a very thin (order of mean free path) stationary gas flow region between the supersonic

upstream and subsonic downstream. The shock wave structure is one of the most-studied

problems in gas dynamics, since it is not only important from the technological viewpoint,

but it has also been a major stumbling block for theoreticians for a long time after the failure of

Grad’s 13-moment method in finding continuous shock wave solution beyond a critical Mach

number (1.65) [9, 21–23].

The origin of the high Mach number shock structure singularity can be elucidated by investi-

gating the second-order constitutive equations (13) and (14), which are derived based on the

balanced closure. Since the mathematical structure of the constitutive equation of heat flux is

essentially the same as that of the constitutive equation of shear stress, it is enough to consider

the constitutive equation of shear stress only. Then Eq. (13) can be expressed as follows,

ρ
d Π=ρ
� �

dt
þ 2 Π � ∇u½ � 2ð Þ þ 2p ∇u½ � 2ð Þ ¼ � p

μNS

Πq2nd κ1ð Þ: (16)
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When assumptions of one-dimensional flow and steady-state are applied, it can be further

simplified into the following algebraic equation [15]

�
bΠ bΠNS �

bΠNS ¼ �
bΠq2nd

bΠ
���

���
� �

¼ �
bΠ �

1

3!

bΠ
3
�

1

5!

bΠ
5
�⋯

� �
,where bΠ �

Π

p
,ΠNS � �

4

3
μNS

∂u

∂x
:

(17)

This equation shows the nature of the second-order constitutive equation; it provides informa-

tion of how the stress bΠ is determined in the form of bΠ bΠNS

� �
for a given input bΠNS. And it

can be easily shown from the solution of the algebraic equation (17) that the equation is indeed

well-posed (existence, uniqueness, and continuous dependence on the data) for all inputs,

completely free from the shock structure singularity.

On the other hand, when the Maxwellian molecule assumption is introduced in unbalanced

way as done in Grad’s 1949 work, which is equivalent to assuming q = 1 while retaining the

Figure 1. Solutions of the second-order constitutive equation with nonlinear viscosity (17) and the ill-posed constitutive

equation (18). The horizontal and vertical axes represent the strain (force) term bΠNS and the normal stress bΠ, respectively.

The gas is expanding in the range of bΠNS < 0, whereas the gas is compressed in the range of bΠNS > 0. (Reproduced with

permission from [15]. Copyright 2014 AIP Publishing LLC).

Numerical Simulation of Hypersonic Rarefied Flows Using the Second-Order Constitutive Model…
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quadrature term �bΠ bΠNS

� �
, then the singularity arises near bΠNS ¼ 1 in the resulting constitu-

tive equation

�bΠ bΠNS �
bΠNS ¼ �bΠ, or bΠ ¼

bΠNS

1� bΠNS

: (18)

That is, when the closure (or approximation) is applied in unbalanced way, the high order

stress-strain coupling term j � bΠ bΠNSj of quadratic nature will grow far faster than the thermo-

dynamic force term j � bΠNSj, resulting in an imbalance with the right-hand side term j � bΠj

and eventually a blow-up singularity lim
bΠNS!1

bΠ ! ∞.

The general solution of the constitutive equation with nonlinear factor q2nd (17) is plotted

in Figure 1 along with the ill-posed equation (18), in the case of Maxwellian molecules. The

figure clearly shows that the high order stress-strain coupling term j � bΠ bΠNSj of quadratic

nature plays most important role in the second-order constitutive equation. Interestingly, the

figure also shows asymptotic behavior with the increasing degree of expansion, satisfying the

free-molecular limit bΠ ! �1 or Π + p!0.

3. Numerical simulation of hypersonic rarefied flows

3.1. Computational model for the second-order constitutive model based on decomposition

and method of iterations

The second-order constitutive equations (13) are in a form of very complicated partial differ-

ential equations so that solving them may be extremely challenging. However, a shortcut is

still possible, when we observe that the set of macroscopic variables consists of two subsets,

the conserved set and the nonconserved set which vary on two different time scales. It may be

estimated that the relaxation times of the nonconserved variables are very short, being of the

order of 10�10 s. Owing to such a small time scale, on the time scale of variation in the conserved

variables, the nonconserved variables have already reached their steady state. Therefore, the

constitutive equations (13) of nonconserved variables can be solvedwith the conserved variables

held constant [11–13, 16, 17], and resulting equations are

2 Π � ∇u½ � 2ð Þ

�∇ � pIþΠð Þ �Π=ρþQ � ∇uþΠ � Cp∇T

" #

þ
2p ∇u½ � 2ð Þ

Cpp∇T

" #

¼
�pΠ=μNS

�CppQ=kNS

" #

q2nd κ1ð Þ: (19)

In general, this algebraic constitutive equations (19) consist of nine equations of (Πxx ,Πxy,

Πxz,Πyy,Πyz ,Πzz,Qx ,Qy,Qz) for known 14 parameters (p ,T,∇u ,∇v,∇w,∇T). Because of the

highly nonlinear and coupled nature, it is not obvious how to develop a proper numerical

method for solving the equations. Nevertheless, it was shown by Myong [11–13] that they can

be rather efficiently solved based on the concept of decomposition and method of iterations.

Advances in Some Hypersonic Vehicles Technologies10



In the case of three-dimensional problems, the stress and heat flux components (Πxx ,Πxy,Πxz ,

Qx) on a line in the physical plane induced by thermodynamic forces of velocity and temper-

ature gradients (ux ,vx ,wx ,Tx) can be approximated as the sum of three solvers: (1) first on (ux ,

0,0,Tx), (2) second on (0,vx ,0,0), and (3) third on 0,0,wx ,0). Hence, nonconserved variables in

the case of x-direction can be decomposed as follows;

f ux; vx;wx;Txð Þ ¼ f 1 ux; 0; 0;Txð Þ þ f 2 0; vx; 0; 0ð Þ þ f 3 0; 0;wx; 0ð Þ: (20)

Similarly, it is possible to calculate the stress and heat flux in two other primary directions.

In the case of y, z-direction, nonconserved variables can be decomposed as follows, respec-

tively,

f uy; vy;wy;Ty

� �

¼ f 1 0; vy; 0;Ty

� �

þ f 2 uy; 0; 0; 0
� �

þ f 3 0; 0;wy; 0
� �

, (21)

f uz; vz;wz;Tzð Þ ¼ f 1 0; 0;wz;Ty

� �

þ f 2 uz; 0; 0; 0ð Þ þ f 3 0; vz; 0; 0ð Þ: (22)

Then, the final value of nonconserved variables (Πxx ,Πxy,Πxz,Πyy,Πyz ,Πzz,Qx ,Qy,Qz) can be

determined by adding up all these contributions from three decomposed solvers.

Furthermore, it can be noted that three solvers f1 , f2 , f3 basically consist of two elementary

subsets; one on gaseous compression and expansion, and another on the velocity shear flow.

Therefore, they can be easily solved by employing the method of iterations, which was first

developed by Myong [11–13].

3.2. Explicit modal discontinuous Galerkin (DG) method for high speed gas flows

The second-order algebraic constitutive equations (19), together with the conservation

laws (7), are the backbone of the new framework developed for numerical simulation of

hypersonic rarefied flows. Because of the nonlinear and coupling nature, a special treat-

ment of viscous terms is required when developing proper numerical schemes. In previ-

ous work [16, 17], the mixed DG formulation studied by Bassi and Rebay [24] and other

researchers was found suitable for the spatial discretization of the second-order constitu-

tive equations.

The mixed formulation determines the value of the second-order derivatives present in viscous

terms by adding auxiliary unknowns S, because the second-order derivatives cannot be

accommodated directly in a weak formulation using a discontinuous function space. There-

fore, S can be defined as the derivative of either primitive or conservative variables U. This

leads to a coupled system of conservation laws for S and U as

∂U

∂t
þ ∇ � Finv Uð Þ þ ∇ � Fvis U;Sð Þ ¼ 0,

S-∇U ¼ 0:

8

<

:

(23)

The spatial derivatives of primitive variables can then be computed by expanding the deriva-

tives of the conservative variables; for example,

Numerical Simulation of Hypersonic Rarefied Flows Using the Second-Order Constitutive Model…
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ρx ¼
∂ρ

∂x
, ux ¼

1

ρ

∂ρu

∂x
� u

∂ρ

∂x

� �
,

px ¼ γ γ� 1ð ÞM2 ∂ρE

∂x
� u

∂ρu

∂x
þ v

∂ρv

∂x

� �
þ
1

2
u2 þ v2
� � ∂ρ

∂x

� �
:

(24)

It was noted by Le et al. [16] that the introduction of an extra set of equations for the auxiliary

variables in Eq. (23) is necessary for the nonlinear implicit type of the constitutive models, such

as Eq. (19), because it is not possible to directly combine auxiliary equations with primary

equations due to the implicitness form of the viscous Jacobian matrix.

In order to discretize the mixed system (23) within the triangulated elements, the exact solu-

tions of U and S are approximated by the DG polynomial approximations of Uh and Sh,

respectively,

Uh x; tð Þ ¼
XNk

i¼0

bui
h tð Þϕi

xð Þ,Sh x; tð Þ ¼
XNk

i¼0

bSi
h tð Þϕi

xð Þ, ∀x∈ I, (25)

where bui
h tð Þ and bS i

h are the local degrees of freedom of U and S. ϕ(x) is the basis function for

finite element space, while Nk is the number of required basis function for the k-exact DG

approximation. Further, the mixed system (23) is multiplied with the test function, which is

taken to be equal to the basis function ϕ(x), and then integrated by parts over an element I. This

results in the weak formulation of the mixed system for Uh and Sh

∂

∂t

ð

I

UhϕdV �

ð

I

∇ϕ � FinvdV þ

ð

∂I

ϕFinv � ndΓ �

ð

I

∇ϕ � FvisdV þ

ð

∂I

ϕFvis � ndΓ ¼ 0,

ð

I

ShϕdV þ

ð

I

∇ϕUhdV �

ð

∂I

ϕUhndΓ ¼ 0,

8
>>>>><

>>>>>:

(26)

where n is the outward unit normal vector. V and Γ represent the volume and boundary of the

element I, respectively. The number of quadrature points necessary for kth order finite element

space depends on the type of quadrature rules employed in the numerical process. The Gauss-

Legendre quadrature rule has been implemented for both volume and boundary integrations.

Therefore, the volume and boundary integrals in Eq. (26) are computed using 2k and 2k + 1

order accurate Gauss quadrature formulas, respectively [25].

The flux functions appearing in Eq. (26) are represented by a numerical flux function. The

dimensionless form of the Rusanov (local Lax–Friedrichs (LLF)) flux hinv is applied for inviscid

terms. This monotone flux is commonly used in the DG method due to its efficiency in

computational cost. The Rusanov (LLF) flux is also the most dissipative flux that may improve

the stability of DG numerical approximation.

Finv � n ≈hinv U
�

;U
þ

� �
¼

1

2
Finv U

�ð Þ þ Finv U
þ

� �
� C U

þ �U
�

� �� �
,

C ¼ max u�j j þ a�S ; uþj j þ aþS
� �

:

(27)
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Here aS is the speed of sound at an elemental interface, and the superscripts (+) and (�)

denote the inside and outside sides at an elemental interface. The central flux (BR1) [24] is

employed as the numerical fluxes for calculation of auxiliary and viscous fluxes at elemental

interfaces;

Fvis � n ≈hvis U�
; S�;Uþ

; Sþ
� �

¼
1

2
Fvis U�

; S�ð Þ þ Fvis Uþ
; Sþ

� �� �

,

U � n ≈haux U�
,Uþ

,n
� �

¼
1

2
U�þUþ
� �

:

(28)

By assembling all the elemental contributions together, the semi-discrete DG formulation for

conservation laws (23) yields a system of ordinary differential equations in time for each

element as

M
dU

dt
¼ R Uð Þ, (29)

where M is the diagonal mass matrix and R(U) is the residual vector of the system. A

third-order total variation diminishing Runge-Kutta (TVD-RK) method is employed for

explicit time marching. The local time step for each element is determined by the follow-

ing relation

Figure 2. Comparison of the inverse shock density thickness of argon gas.
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Δt ¼
h

2kþ 1ð Þ

CFL

uj j þ as þ
1
Re

μ

h

, (30)

where CFL is the Courant number and h is the radius of the circumscribed circle in element I.

3.3. Numerical simulation of one-dimensional hypersonic shock structure

As the first test case, the one-dimensional hypersonic shock structure problem was considered.

Since the wall boundary condition is not present in the problem, the inherent behavior of the

numerical method free from the contamination caused by the solid wall boundary condition

can be investigated. The shock density thickness is known as one of important parameters to

assess the accuracy of the computational models in the shock structure problem. Various

solutions including the second-order constitutive model [11, 20] are compared with experi-

mental data in Figure 2. For better comparison, the analytic solutions of the shock density

thickness recently derived by Myong [23] are also reproduced in Figure 3.

It can be confirmed from Figure 2 of monatomic gases that the second-order result is in better

agreement with the experimental data than the Navier-Stokes-Fourier results, implying the

essential role of the second-order constitutive equation. Further, it can be found that the Eu’s

(unbalanced) quasi-linear generalized hydrodynamics model [3, 5] derived by ignoring the

Figure 3. Inverse shock density thickness. Maxwellian molecule for the thick solid curve; hard sphere for the thin solid

curve; constant case for the broken curve. (Reprinted by permission of the American Institute of Aeronautics and

Astronautics, Inc. [23]).
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stress-strain coupling term 2[Π�∇u](2) of quadratic nature while keeping q2nd predicts most

poorly, even worse than the Navier-Stokes-Fourier constitutive equation does. This in turn

implies that the balancing treatment plays a critical role in the closure theory.

3.4. Numerical simulations of multi-dimensional hypersonic rarefied flows

As the second test case, the two-dimensional hypersonic rarefied flows past a circular cylinder

were considered [16, 26]. The input parameters for this hypersonic case are M = 5.48, p = 5 Pa,

T = 26.6 K for far-field, and T = 293.15 K for solid wall. Working monatomic gas is assumed

argon with Pr = 2/3. The Langmuir slip and jump boundary conditions [12, 13, 27] are applied

at the solid surface. The results of both the first-order NSF and the second-order nonlinear

Figure 4. Normalized density fields and contours of the two-dimensional hypersonic gas flows past a circular cylinder,

M = 5.48 and Kn = 0.5. (Reprinted with permission from Elsevier [16]).

Numerical Simulation of Hypersonic Rarefied Flows Using the Second-Order Constitutive Model…
http://dx.doi.org/10.5772/intechopen.70657

15



coupled constitutive relation (NCCR) models are compared with DSMC data, which are

generated by assuming full tangential momentum and thermal accommodation for slip and

jump boundary conditions.

Detailed comparisons of normalized density contours of hypersonic rarefied case Kn = 0.5 [16]

are presented in Figure 4. The results of the case Kn = 0.5 show that the density contours and

the stand-off shock structure predicted by the NCCR model and the DSMC are in excellent

agreement, even in this high transitional regime. On the other hand, the thickness of stand-off

shock structure predicted by the first-order NSF model is much smaller than that of the second-

order NCCRmodel and DSMC. In addition, the degree of gaseous expansion near the rear part

of the cylinder predicted by the NSFmodel is considerably higher than that of the NCCRmodel

and DSMC. On the whole, the results of the second-order NCCRmodel show better agreement

with DSMC data than the first-order NSF results in hypersonic rarefied cases studied.

As the final test case, the three-dimensional hypersonic gas flows around a suborbital re-entry

vehicle, Intermediate eXperimental Vehicle (IXV) of the European Space Agency (ESA), were

investigated. The computational domain is defined by unstructured meshes; tetrahedron ele-

ments of 978,445 in this three-dimensional case. The flow conditions for the hypersonic case

are M = 5.0, Kn = 0.02, and an angle of attack 15 degree. Comparisons of normalized density

and Mach number contours are presented in Figures 5 and 6. On the whole, there seems not

much substantial difference between numerical solutions of the first-order and second-order

constitutive models, since the degree of nonequilibrium is not high. However, it can be

observed from the Mach number contours that some nonequilibrium effects begin to show up

in the bow shock structure and in the rear part of the vehicle where rapid expansion occurs.

Besides these findings, the present results demonstrate that the three-dimensional numerical

simulation of the second-order constitutive model is possible for hypersonic rarefied flows like

re-entry vehicles with complicated geometry.

Figure 5. Normalized density fields and contours of the three-dimensional hypersonic gas flows around a suborbital

re-entry vehicle,M = 5.0 and Kn = 0.02.
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4. Conclusions

A systematic derivation of the second-order constitutive equations from the kinetic Boltzmann

equation is presented. The core frameworks employed in developing the thermodynamically-

consistent constitutive models are a modified moment method, called Eu’s generalized hydro-

dynamics, and the new closure theory, called balanced closure, recently developed by Myong.

Then, multi-dimensional computational models of the second-order constitutive equations are

developed. The core concepts used in developing the models are the decomposition and the

method of iterations. Further, as the basic computational scheme to efficiently solve the con-

servation laws together with the second-order constitutive equations, a mixed explicit modal

DG method is developed. In order to assess the potential of the new computational model in

hypersonic flow regimes, several flow problems, including the one-dimensional shock struc-

ture and three-dimensional hypersonic gas flows around a suborbital IXV re-entry vehicle, are

numerically simulated. On the whole, the new second-order model is found to enhance

considerably the prediction capability of hypersonic rarefied flows in comparison with the

conventional first-order model.
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