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Abstract

Many technologies have been developed to improve the quality of broadcasting, but persist
with theproblem that avoids the continuityof communicationswhen thephysical conditions
of the media change. However, loss of signal propagation cannot be avoided because the
refractive index of propagation media changes at the same time as magnetization, electro-
magnetic potential and other local parameters. That is, there is neither a device nor theories
that take into account the effect of the sign of the refractive index under the broadcasting
process. Simultaneously with the change of refractive index, conventional waves may find
travel conditions inaccessible to the desired destination. In this chapter, we proposed that a
sudden change in conditions is due to a resonant behavior of the media naturally described
byahomogeneous integral equation of Fredholm. In addition,wepropose amethod to avoid
the loss of the signal due to drastic changes in the broadcasting regime.

Keywords: resonances, broadcasting, evanescent waves, communications, negative
refraction index

1. Introduction

As we mentioned in the abstract, we propose the behavior of the electromagnetic waves

propagating media—a model that consists in the division of the space in several portions and

layers that eventually are considered as a superposition of thin layers of plasma. We must

underline that only when exceptional conditions locally prevail in a particular portion of space,

we can suppose the existence of these plasma layers. When an alternation of unmagnetized

and magnetized layers occurs, we can observe that for some intervals of the magnetization and

electric potential values, the refraction index of the set of alternating plasma layers becomes

negative. That is, we have left-hand material conditions as we have called them. Because

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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Xiang-kun Kong et al. [1] found experimentally that they could change the refraction index

sign as they wanted in a succession of magnetized and unmagnetized plasma layers (which

they called as a plasma sandwich), we have applied the plasma sandwich model (PSM) to our

proposal. The reason they assume for the change in the refraction index sign is very different to

the explanation we present nowadays. Xiang-Kun Kong et al. [1], suppose is the coupling

between the electromagnetic polarized waves and the evanescent waves. Instead this reason-

ing, we have shown in several papers that the homogeneous integral equation of Fredholm

(HFE) and its Fourier transform (THFE) give us a simple reason, that is, the brake of confine-

ment of the evanescent waves that turn to be traveling waves. In addition, last explanation is

accompanied by the properties of the resonant solutions of the HFE and THFE equations. One

of the most important resonance properties is the orthogonality that allows the possibility to

send signals with little loss. Another important property of the resonances is the fact that the

resonances cannot live on the original sites where the evanescent waves lived. The generation

of propagation modes from the evanescent ones is due to a resonant behavior mechanism. We

also preserved the term precursor for the evanescent waves that become traveling waves. With

this definition, the traveling resonant waves cannot live where the precursors lived. One of the

advantages of the PSM is the fact that we can model the resonant broadcasting regime from a

little set of PSM parameters. Also, instead of the formalism employed by Xiang-kun Kong et al.

[1], we used our own formalism, the vector matrix formalism (VMF) [2–4]. The most decisive

variables are the electrical potential and the magnetization intensities.

2. Resonances and the Fredholm’s eigenvalue

We remember that we can represent the broadcasting process through a Fourier transform of a

generalized inhomogeneous Fredholm equation (TGIFE) [5,6] for the electric and magnetic

fields that is by the Fourier transform of the equation:

ð1Þ

In Eq. (1), Ej
m(ω) represents any of the electric or the magnetic field components and the

kernel is

ð2Þ

In Eq. (2), is the free Green function and is the interaction.

Then, the Fourier transform of Eq. (1) can be written as [2–4]:

ð3Þ

In Eq. (3), fn(ω) represents the Fourier transform of any of the electric or magnetic fields due to

the source fm(�)(ω), but as we can see from Eq. (1), both are vectors whose components are also
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vectors. Eq. (3) is an example of which we have called the vector-matrix formalism that avoids

a more complicated treatment in terms of integral equations.

From Eq. (3), we can input the condition for the existence of a resonance, which implies that

the source term vanishes; in other words, we are imposing the left-hand material conditions

[5–10]. Simultaneously, for a purpose of mathematical clearance, we let the discrete indexes J

and K in Eq. (1) take continuum values, so we now have a spatial dependence on r and r’; so

Eq. (3) with the left term equal to zero yields

ð4Þ

In this equation, w
R

m
r ω are the resonances, and we have introduced the Fredholm eigenvalue

[2] η
R

ω , corresponding to the R resonance. The introduced parameter η
R

ω allows for asking

about nontrivial solutions for Eq. (4) by means of Fredholm theory of integral equations. We

have shown that the structure of η ω
R

can be chosen in the same way as a phase factor [6]:

η
R

ω = e
ih ω

R ð5Þ

For the resonant frequency ω
R
, where in general it is given as:

ω
R

=K
R

− iΛ
R

ð6Þ

So, we must ask for h ω
R
to be a real number even when refraction index can be complex and

dependent of arbitrary magnetization or ionization conditions.

Resonances analyzed in the present chapter are electromagnetic traveling waves that comes

from the so-called precursors or evanescent waves, but they share very close mathematical

properties with the quantum mechanics resonances; i.e., it fulfills the following theorem we

have tested elsewhere [4]:

Theorem I

Suppose that w
l

ω and w
u

ω are solutions of Eq. (4), then,

w
l

t ω Aw
u

ω λ
u

− − λ
l

− = ð7Þ

We must remember the relation:

w
R

m
r ω →w

R
ω ð8Þ

On the other hand, the resonances w
R

m
r ω comply with the important orthogonality condition

between the eigenvalue function η
R

ω and resonance on the site of a punctual antenna located

at r
A
[5]:

η
R

ω
w
R

m
r
A

ω = ð9Þ
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That implies that the resonances vanish on the sites of the antennas that generate this precursor

signals, but we underline that not on the sites that generates the precursor signals of distinct

resonances w
R

m
r ω .

3. The VMF formalism

Now, we can return to our discrete proposal where we can put the parameters appeared in the

PSM [2, 3, 5] into the VMF model [2–4]. To this end, let us recall that Eq. (1) can be written as:

ð10Þ

where the kernel is the product of the free Green function  with the interaction A

so explicitly,

ð11Þ

Now, we can find the resonant frequencies in an academic example. To this end, we choose a

convenient kernel ; for simplicity, we do not take into account the three components of

the electromagnetic field. Supposing that we only have one component of the field, but we

have two emitting antennas, a possible kernel is [2]:

ð12Þ

In Eq. (12), we have introduced the PSM parameter δ . This parameter is defined as:

ð13Þ

where dM is the average thickness of the plasma-magnetized layer involved in the change of

sign of the refraction index; κ is the wave number of an incident beam interacting with the

electric and magnetic fields in a way that the whole kernel is expressed in Eq. (12). The

parameter ωp is an average value for the plasma frequency over the referred layer and can be

expressed in terms of the local electron concentration in the layer as:

2

1

2

0

1

2
p

Ne

mπ ε
ω = ð14Þ

In Eq. (14), is the permittivity of vacuum, N is the electron concentration and e is the

electronic charge.
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Different broadcasting regimes occur when these parameters change, that is the refraction

index sign changes. The PSM also considers a dynamical condition in the sense that we have

a series of sets of iterated layers changing with time in a random manner and therefore with

different effects for distinct frequencies.

Let us remember that the equation we must solve is Eq. (10) where the kernel is

ð15Þ

The conditions for resonances are that Fredholm’s determinant for Eq. (10) equals zero and that

Fredholm’s eigenvalue equals to one Eq. (16).

These last two conditions allow us to obtain the resonant frequencies for the system consti-

tuted by these two antennas but dependent on the parameters of plasma sandwich model. As

their similar quantum mechanics case, the wave number or the resonant frequency has an

imaginary part; that is, a resonant frequency can be represented by a complex frequency:

=K − iΛω ð16Þ

The transformation of the evanescent waves into traveling waves is a consequence of the

imaginary part Λ that avoids the electromagnetic field to be confined. In addition, we have

the relation between ω and the wave number k , that is,

κ = µεω ð17Þ

By substituting Eq. (12) into Eq. (10), we have that one of the resonance conditions is that the

Fredholm determinant ∆ must be zero, that is,

∆ A −B

B A
= ð18Þ

where

A=
ω −ω

p
δ

ω −ω
p

δ
− λ ð19Þ

and

    B = i
ω −ω

p
δ

ω −ω
p

δ
ð20Þ

In Eq. (19), λ�1 is the Fredholm eigenvalue.

We can put Eq. (16) into Eqs. (18)–(20) and express the Fredholm determinant as:
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Δ = Κ −ω
p

− iΛ
−

δ
−

Κ −ω
p

δ iΛδ + Κ −ω
p

δ iΛδ

− Κ −ω
p

− iΛ
−

λ Κ −ω
p

δ iΛδ + Κ −ω
p

δ iΛδ  

+λ

ð21Þ

We can explore some of the conditions for the existence of resonances (Figure 1); for example,

if we take Κ = ω
p

+
nπ

δ
, , λ = , and the condition Δ = , we obtain the following equation for Λ:

nπ
Λδ −

nπ
+ Λ δ λ =   ð22Þ

or defining

x ≡ Λδ ð23Þ

π x − x −π = ð24Þ

Then, the resonant frequencies will have the following form:

ω
res

= ω
p

+
nπ

δ
− i

x

δ
     ð25Þ

Now, we can put realistic values for δ and ωp taken from reference [1], that is,

Figure 1. Behavior of Eq. (22) with n = 1.

Resonance238



δ ¼ 1:68� 105Hz (26)

and

ωp ¼ 300� 106Hz: (27)

So, the first two resonances are

ω1,2 � ω� � 3005:1� i 3:778ð Þð Þ � 105Hz, (28)

for x� = ∓ 2.2484.

4. Resonances on a broadcasting process

In the past section, we saw that resonances follow important orthogonal rules. But each

resonance has only a unique associated frequency and not a complete band; indeed, the only

way for using an individual frequency in a broadcasting process is to emit information in a

telegraphic manner; that is, we must have a key and send in the same frequency a succession of

intervals of signals with different lengths in time. Fortunately, communication theory (CT)

brings us some clues about the problem for sending information [11–16]. First, we recall some

statements from this theory, and then we use them. In accordance with these statements,

suppose that f(t) is a function that is a member of a set defined in CT as an ensemble and

suppose in addition that we are interested on functions that are limited to the band from 0 toW

cycles per second, then we have the following theorem [11]:

Theorem II

Let f(t) contain no frequencies over W. Then,

f tð Þ ¼
X

∞

�∞

Xn
sin π 2Wt� nð Þ

π 2Wt� nð Þ
, (29)

where

Xn ¼ f
n

2W

� �

: (30)

We can see that we have expanded f(t) in terms of orthogonal functions, and the respective

coefficients Xn are coordinates in an infinite dimension space.

Theorem (21) can now be taken as a building stone for very special functions with very

important properties in the broadcasting processes. We have called these functions as commu-

nication packs in previous works. First, we use the cut-off frequency W as a label for

distinguishing different packs; second, we use each pack as a new component or coordinate

of the signal message f(t) that is, to each Wq frequency corresponds a projection or coordinate
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fq(t), and third, we choose eachWq as a resonant frequency that isWq =ωR. Our proposal is that

the complete signal f(t) can be recovered by adding its components fq(t).

5. Why to use communication packs?

We have shown how we can project a signal over different resonant dimensions, but why we

must do this. The reason is that theoretically, each resonance is orthogonal to any other

resonance, which means that there is no interference between signals traveling over different

resonances. Then, we expect that communication packs do not interfere between them because

we use different base functions in each pack but also because their defining frequency is a

resonant one; that is, we have defined a new space for the broadcasting process and each pack

carries a part of the signal over an orthogonal resonant dimension. In addition, we also expect

that the infinite sum in Eq. (26) really have a relatively few dominant terms around the

resonant frequencies in a manner that we do not need to sum an infinite number of terms for

a good approximation. If we want to evaluate the relative broadcasting efficiency between one

channel operating with a nonresonant situation and other channel operating with resonant

conditions, it is necessary to take into account that a resonant wave cannot live where the

precursors lived as we stated above. Therefore, as we have proposed in the abstract, we can

provide a specific device, i.e., a pair of circuits, each one with a different response, by selecting

the best circuit in any instant for a good reception and avoid the blocking effect in the

conventional circuits. In other words, we must remember that resonant solutions vanish at

the point sources. Let us take a simple example in which we have only two resonant frequen-

cies and then we can build their respective communication packs with the recipe based on the

theorem (29) and explicitly given in another previous work [2–4, 9]:

Suppose that Ρ(t) is the specific signal

Ρ tð Þ ¼
sin π 2Wtð Þ

π 2Wtð Þ
: (31)

Following Theorem II and using the resonances, we get the two communication packs:

Ρ1 tð Þ ¼
X

∞

�∞

Xn,1
sin π 2ω1t� nð Þ

π 2ω1t� nð Þ
(32)

Ρ2 tð Þ ¼
X

∞

�∞

Xm,2
sin π 2ω2t�mð Þ

π 2ω2t�mð Þ
, (33)

with ω1 and ω2 given by Eq. (28):

Xn,1 ¼ Ρ
n

2ω1

� �

(34)

Xm,2 ¼ Ρ
m

2ω2

� �

: (35)
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In example of Section 3, we have obtained two resonances so that the two packs are described

by Eqs. (32)–(35), but with the numerical values obtained before:

Xn,1 ¼
sin π 2W n

2ω1

� �� �

π 2W n
2ω1

� �� � (36)

and

Xm,2 ¼
sin π 2W m

2ω2

� �� �

π 2W m
2ω2

� �� � , (37)

That is,

Xn,1 ¼
sin π

Wn
ω1

π
Wn
ω1

(38)

and

Xm,2 ¼
sin π

Wm
ω2

π
Wm
ω2

(39)

So, the first CP is

Ρ1 tð Þ ¼
X

∞

�∞

sin π
Wn
ω1

π
Wn
ω1

 !

sin π 2ω1t� nð Þ

π 2ω1t� nð Þ
, (40)

and the second CP is

Ρ2 tð Þ ¼
X

∞

�∞

sin π
Wm
ω2

π
Wm
ω2

 !

sin π 2ω2t�mð Þ

π 2ω2t�mð Þ
: (41)

Eqs. (40) and (41) can be considered the projections of the real signal (31) over the two

dimensions of the resonance space.

6. Concluding remarks

We have shown how we can join several tools that we have developed for the purpose to

enhance the broadcasting process; with this aim, we have incorporated the so-called PSM

parameters into the algebraic equations (vector-matrix equations) of the VMF searching a

way to make communications invulnerable to abrupt changes in the atmospheric conditions.

This is very important particularly for high definition channels, which are more sensitive to
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these abrupt changes, and the PSM (plasma sandwich model) predicts that the mathematical

resonances are associated with the delivery of the so-called evanescent waves or to negative

values of the refraction index. One of our fundamental proposals is that the atmosphere

behaves like a collection of regions with changes from positive to negative (and vice versa)

refraction index with unpredictable frequency, and then we can use the PSM to characterize

them. On the other hand, we propose the use of the resonant frequencies to overcome the

broadcasting barriers by defining a new resonance space created by using the resonances as a

new dimension in which the communication packs are the projections of an arbitrary signal. In

addition, we suppose that the conventional traveling waves change their regular trajectories

when there is a local change in the refraction index sign, so the combined effect of the original

paths and the prevalence of the resonant modes make the broadcasting process very difficult

without the help of our proposals. By using the results of previous works, we also suggest the

use of a device with the possibility for put on and put out of two internal independent circuits

each one with a normal (positive refraction index) or resonant (negative refraction index)

performance. We underline that communication packs can be constructed even when the

current regime is not a resonant.
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