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Abstract

The Wittig olefination utilizing phosphoranes and the related Horner-Wadsworth-
Emmons (HWE) reaction using phosphonates transform aldehydes and ketones into 
substituted alkenes. Because of the versatility of the reactions and the compatibility of 
many functional groups towards the transformations, both Wittig olefination and HWE 
reactions are a mainstay in the arsenal of organic synthesis. Here, an overview is given on 
Wittig- and Horner-Wadsworth-Emmons (HWE) reactions run in combination with other 
transformations in one-pot procedures. The focus lies on one-pot oxidation Wittig/HWE 
protocols, Wittig/HWE olefinations run in concert with metal catalyzed cross-coupling 
reactions, Domino Wittig/HWE—cycloaddition and Wittig-Michael transformations.

Keywords: Wittig olefination, one-pot reactions, Domino reactions, tandem reactions, 
Horner-Wadsworth-Emmons olefination

1. Introduction

The Wittig olefination utilizing phosphoranes and the related Horner-Wadsworth-Emmons 
(HWE) reaction using phosphonates transform aldehydes and ketones into substituted alkenes. 
Because of the versatility of the reactions and the compatibility of many functional groups in 
the transformations, both Wittig olefination and HWE reactions are a mainstay in the arsenal of 
organic synthesis. The mechanism of the Wittig olefination has been the subject of intense debate 
[1]. While initially it was supposed that all Wittig olefination reactions lead via 1,2-addition to 
betaine structures 4 as zwitterionic intermediates that would form oxaphosphetane 3 with a 
final release of alkene and phosphine oxide by ring opening (syn-cycloreversion process), it has 
been seen more recently that especially under salt-free, aprotic conditions, many ylides undergo 
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a π2s/π2a [2+2]-cycloaddition with the carbonyl component leading to the oxaphosphetane 3 

directly [2], which in certain cases can be in equilibrium with betaine structures 4 (Scheme 1). 
In HWE reactions, the deprotonated phosphonate 6a undergoes a nucleophilic addition to the 
carbonyl compound (e.g., 7), which usually is the rate limiting step [3]. The elimination to the 
final products proceeds through oxaphosphetane 9 (Scheme 2). The Wittig olefination has been 
used industrially in the synthesis of terpenoids [4]. Recently, a one-pot synthesis of the vasodi-
lator and anti-platelet agent Beraprost sodium, a prostacyclin analog, was communicated with 
the HWE reaction as the key transformation with the idea of using the approach in an industrial 
synthesis of the pharmaceutical [5].

For years after the discovery of the Wittig olefination [6, 7], most Wittig transformations were 
carried out under inert atmosphere using dry solvents such as THF [8], DME [9], diethyl 
ether [10] and benzene [11]. Later it was realized that stabilized and semi-stabilized Wittig 
reagents can be reacted in non-de-aerated solvents, where the solvents need not be dried spe-
cifically. Most of these conjugated Wittig reagents are thermally stable and tolerate water, air 
and mild oxidants, while maintaining reactivity towards aldehydes and often also towards 
ketones. This allows for a plethora of reaction conditions for many Wittig olefination reac-
tions such as obviating solvents altogether [12, 13] or running the reactions in aqueous solu-
tions [14, 15] or in mixed solvents [16]. Also, it permits one-pot transformations of Wittig 
olefinations in combination with other reactions, also because the stabilized and to some 
extent the semi-stabilized phosphoranes are inert to mild oxidizing and reducing agents. 
However, also with non-stabilized phosphoranes, where reactions have to be performed 
under the exclusion of air and moisture, Wittig reactions can be performed in conjunction 
with further transformations [17].

This chapter is to give an insight into the types of transformations that can be combined 
with Wittig- and Horner-Wadsworth-Emmons olefinations in Domino-, tandem and one-pot 

Scheme 1. Schematic presentation of the reaction mechanism of the Wittig olefination.
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reaction strategies. These include the preparation of phosphoranes and their reaction in situ, 
one-pot oxidation of alcohols to aldehydes and Wittig-olefination, in situ-recycling of phos-
phine oxides and catalytic Wittig reactions, one-pot Wittig-olefination metal catalyzed C─C 
bond forming reactions such as Suzuki-Miyaura, Sonogashira- and Heck reactions, Wittig and 
Horner-Emmons reactions in combination with polar cyclizations, Wittig-reactions carried 
out in combination with electrocyclic reactions, one-pot Wittig and Horner Emmons-addition 
reactions; cascade reactions featuring (triphenylphosphoranylidene)-ethenone and similar 
phosphoranes.

2. Wittig and Horner-Wadsworth-Emmons (HWE) olefination reactions 
with phosphoranes and phosphonates prepared in situ

Primarily, phosphoranes as Wittig reagents are prepared by the reaction of a triarylphosphine, 
usually triphenylphosphine, or, more seldom, a trialkylphosphine, and an alkyl halide with 
subsequent dehydrohalogenation of the triaryl(alkyl)alkylphosphonium halide produced. 
Non-stabilized Wittig reagents are not stable enough to be stored over longer periods of time; 
therefore, it is the norm that the Wittig-ylide is formed in situ from the oftentimes stable phos-
phonium salt, usually with a strong base, and then reacted directly with the carbonyl com-
pound. In the case of stabilized phosphoranes, they are often stable enough to store, and the 
dehydrohalogenation necessitates only a weak base such as sodium carbonate or even sodium 
bicarbonate [18]. Nevertheless, this likewise allows the preparation of the phosphorane and 
the subsequent Wittig olefination in one pot [19], where even protic solvents can be used, such 

Scheme 2. General reaction mechanism of the HWE reaction.
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as water. Similarly, semi-stabilized phosphoranes can be obtained in situ from their respective 
phosphonium salts, also even in aqueous medium, where LiCl promotes the Wittig olefina-
tion and suppresses the decomposition of the phosphoranes [14, 15]. Furthermore, all the 
catalytic Wittig reactions (see below) rely on the fact that the phosphorane is produced in situ.

Perhaps more interesting is the one-pot reaction of an alkyl halide, a phosphine and a carbonyl 
compound (Scheme 3). This can be achieved by consecutive addition of the components, 
when one or more of the components are sensitive, or by mixing of all components simultane-
ously. A consecutive addition of components in one pot was pursued by McNulty and Das 
who reacted air-sensitive triethylphosphine with benzyl bromides to the respective benzyltri-
ethylphosphonium bromides, which were transformed to the phosphoranes with aq. NaOH, 
before being reacted with benzaldehydes to give (E)-stilbenes in an aqueous Wittig olefina-
tion [20]. Here, the triethylphosphine oxide by-product is water soluble. This reaction pro-
cedure has been diversified further by a one-pot preparation of benzyltriethylphosphonium 
bromides from the air-stable triethylphosphine hydrobromide and benzyl alcohols and sub-
sequent Wittig olefination with aromatic aldehydes in aqueous medium [21]. Simultaneous 
mixing of alkyl halide such as α-haloesters (e.g., 13), α-halonitriles, α-halocarbonyl com-
pounds and α-alkyl-α-halocarbonyl compounds, triphenylphosphine (12), and carbonyl com-
pound (e.g., 11, 15, 18) in the presence either of a base [17, 22–26] or an alkene [27] was shown 
to give α,β-unsaturated esters [17, 22–27] (e.g., 14, 17, 19), α,β-unsaturated nitriles [23, 26] and 
enones [27], respectively (Scheme 3). Epoxides are stable under these reaction conditions as 
can be seen in the transformation of 18 to 19 (Scheme 1). A one-pot, fluoride catalyzed Wittig-
olefination has also been devised, where ethyl bromoacetate is reacted with carbaldehydes in 
the presence of tri-n-butylphosphine and tetrabutylammonium fluoride (Bu

4
NF) to give (E)-

configured α,β-unsaturated esters in good yield [28]. The synthesis of α,β-unsaturated esters 
has also been achieved from their alkyl halide and aldehyde constituents using tributylarsine 
[29] or a substituted triarylarsine instead of triphenylphosphine [30]. The use of tributylarsine 
in the presence triphenyl phosphite [29] led to the creation of a catalytic system which was 

Scheme 3. In situ preparation of phosphoranes and subsequent Wittig olefination.
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developed further with one-pot transformations that were managed with catalytic amounts 
(2 mol%) of poly(ethylene glycol) and (PEG)-supported tellurides in the presence of K2CO

3
 

as base [31–34]. Also, micellar reaction systems such as micellar solutions of sodium dodecyl 
sulfate (SDS) in water have been used, in which Wittig olefinations were carried out between 
aldehydes and phosphoranes, synthesized in situ [35, 36]. A. Galante has per Wittig reactions 
in the fluorous phase with in situ pre-formed perfluorinated ylides [37].

Traditionally, stabilized halophosphoranes have been prepared by the halogenation of the 
nonhalogenated parent phosphoranes and a subsequent dehydrohalogenation of the halo-
genated phosphonium salt obtained. Karama et al. have combined this in situ halogenation: 
dehydrohalogenation step with the Wittig reaction itself. Additionally, an in situ alcohol oxi-
dation to provide the aldehyde starting material was integrated into many of these reaction 
sequences (Scheme 4) [38–42].

3. In situ alcohol oxidation—Wittig/HWE reactions; other in situ  

aldehyde preparations run with subsequent Wittig/HWE  
sequences in one pot

The tolerance of stabilized phosphoranes towards mild oxidants allows for the oxidation 
of an alcohol to an aldehyde and its Wittig reaction in one-pot (Schemes 5 and 6). As oxi-
dants, activated MnO2 [43–46], barium permanganate [47, 48], tetra-n-propylammonium 
perruthenate (TPAP)/N-methylmorpholine N-oxide (NMO) [49–54] and TPAP/N,N,N′,N′-
tetramethylenediamine dioxide (TMEDAO2) [55], o-iodoxybenzoic acid (IBX) [56–58], 
Dess-Martin periodinane [59–61], DMSO-oxalyl chloride (Swern conditions) [62–64], DMSO-
SO

3
-pyridine (Parikh-Doering oxidation) [38, 39] or DMSO-SO

3
-triethylamine [65], pyridinium 

chlorochromate (PCC) or PCC/celite [66–69] as well as pyridinium dichromate (PDC) [70] such 
as PDC encapsulated in sol gel [71] have been used. In addition, metal catalyzed aerobic oxi-
dation reactions of aldehydes with concomitant olefination reactions are known, where [(eta-
p-cymene)RuCl2]2 (27) [72], nanoparticulate ruthenium supported on highly porous aluminum 
oxyhydroxide [73] or on silica gel [74], and nickel nanoparticles [75, 76] (Scheme 6) have been 
used as catalyst in the case of a concomitant Wittig reaction and gold/palladium bimetallic 
nanoparticles in the case of a concomitant Horner-Wadsworth-Emmons (HWE) reaction [77], 
Cu(I)-phenanthroline as a catalyst in an oxidation: HWE: sequential procedure [78].

Taylor et al. give a good overview of the tandem oxidation-Wittig processes developed until 
2005, focusing especially on the tandem oxidation process (TOP) developed by his group [43–46], 

Scheme 4. One-pot oxidation, halogenation, and Wittig reaction to 2-haloacrylates.
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using activated MnO2 [79]. Over the years, this process has been used more often [40, 80–97] than 
the other processes shown above. Recently, also MnO2 derived molecular sieve material such as 
OMS-2 [KMn4+Mn3+O

16
·nH2O] has been used with success in aerobic, catalytic one-pot oxidation 

Wittig reactions of benzylic and allylic alcohols to the respective cinnamates [98]. Overall, the 

Scheme 5. One-pot MnO2-mediated oxidation—Wittig olefination.

Scheme 6. One-pot metal catalyzed oxidation of alcohols utilizing oxygen—Wittig reaction.
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Wittig transformations of the aldehydes produced in situ allows for the manipulation of alde-
hydes that are inherently instable such as of silyl substituted aldehydes, propargyl aldehyde 
[97], and chiral γ-aminoaldehydes, the latter without loss of stereochemical integrity (Scheme 5) 
[89]. In the case of Wittig transformations of chiral α-aminoaldehydes, β-aminoalcohols were 
oxidized to α-aminoaldehydes with NaOCl in the presence of AcNH-TEMPO, where the crude 
α-aminoaldehydes gained from the oxidation were subjected directly to olefination to give 
Wittig products without loss of stereochemical integrity [99–101].

Other preparation methods of aldehydes in conjunction with Wittig olefinations or HWE 
reactions have been reported. Thus, an oxidative cleavage of a glycol can be carried out in 
combination with a subsequent Wittig-olefination [102–105] (Scheme 7). Also a one-pot car-
boxylic acid to aldehyde reduction and Wittig reaction is known [106]. Finally, a Domino 
hydroformylation/Wittig olefination procedure has been developed, starting from allylamines 
(Scheme 8). The aldehyde is not isolated [107]. Domino/hydroformylation/Wittig olefination 
protocols have been introduced with other olefinic starting materials, also [108–110].

Scheme 7. Oxidative glycol cleavage—Wittig reaction.

Scheme 8. Hydroformylation—Wittig reaction.

Tandem-, Domino- and One-Pot Reactions Involving Wittig- and Horner-Wadsworth-Emmons...
http://dx.doi.org/10.5772/intechopen.70364

9



4. Wittig- and HWE reactions and C─C-coupling reactions in one-pot 
procedures

Wittig- and Horner-Wadsworth-Emmons reactions can be combined with C─C-coupling 
reactions such as Suzuki cross-coupling [111–113], Mizoroki-Heck reaction [113–118] and 
Sonogashira-reaction [119]. Initially, it was observed that conjugated phosphoranes were 
stable under reaction conditions used for Heck- or Suzuki reactions (Scheme 9). Thus, phos-
phoranes themselves could be functionalized by Suzuki- [120], Mizoroki-Heck- [121], or 
Sonogashira-type [119] cross-coupling reactions, either in solution or when polymer-bound 
[122]. These phosphoranes could then be subjected to normal Wittig-olefination reactions with 
ketones or aldehydes [120–122]. The one-pot Wittig-Heck-reaction strategy can be extended 
to include an O-alkylation, where the Wittig reaction of a p-hydroxybenzaldehyde (43) with 
methylenetriphenylphosphorane, obtained in situ from phosphonium salt 44 provides the 
p-hydroxystyrene as the olefin component in the Mizoroki-Heck reaction in the presence of 
an alkyl bromide (e.g., 45), which O-alkylates the phenoxy-function to give alkoxystilbenes 
46 (Scheme 9) [123].

5. One-pot Wittig- and HWE olefination/cycloaddition reaction

One can easily visualize that an alkene prepared by a Wittig olefination can easily be used as a 
2-pi component in cycloaddition reactions, in one pot (Scheme 10). A typical such cycloaddi-
tion is [4+2]-cycloaddition, such as the classical Diels Alder reaction, which can be performed 
both inter-[69, 124] and intramolecularly [125–132] in tandem with a Wittig-reaction.

Hilt and Hengst have published a cobalt(I)-catalyzed Diels Alder reaction of alkynyltriphe-
nylphosphonium and 1,3-dienes with a consecutive Wittig reaction of the cycloadduct with 

Scheme 9. One-pot Heck cross-coupling/Wittig reaction.
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various aldehydes in one pot that lead after a further dehydrogenative step to substituted 
stilbenes and styrenes (Scheme 11) [133].

Interesting is the cycloaddition of in situ produced benzyne (55) to 1,4-diphenylbutadiene, 
prepared in situ by HWE reaction from cinnamaldehyde, (15) give 1,4-diphenylnaphthalene 
(56) (Scheme 12) [134].

The transformation sequence Diels-Alder/Wittig can be part of a more complex reaction 
chain. Thus, Ramachary and Barbas III [135] have forwarded a Domino Wittig/Knoevenagel/

Scheme 10. Oxidation—Wittig-olefination—Diels-Alder reaction sequence.

Scheme 11. Cobalt (I)-catalyzed Diels Alder reaction—Wittig reaction.

Scheme 12. One-pot HWE reaction—cycloaddition of in situ produced benzyne.
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Diels-Alder sequence to spirotriones 58 (Scheme 13) and a Wittig/Knoevenagel/Diels-Alder/
Huisgen cycloaddition sequence to polysubstituted triazoles 61 (Scheme 14).

Oxidation of benzyl alcohols to benzaldehydes can be incorporated into a Wittig-Diels Alder 
sequence [69]. Also, hetero-Diels-Alder reactions can be run in tandem with a Wittig olefination 
as shown by Ramachary et al. in their synthesis of tetrahydropyrans 64 (Scheme 15) [136]. Here, 
diamine 63 is used as a catalyst. The reaction, however, gives the product only in low enantio-
meric excess (Scheme 15).

Huisgen type [3+2]-cycloaddition reactions can be run also in a simple tandem process 
rather than incorporated in a more complex reaction chain (see above). A typical example is 
shown in Scheme 16, where azidoethyl-tetrahydro-hydroxyfuran 66 is treated with phos-
phorane 21 to give triazoline 68 alongside diazoamine 69 [137]. Further such approaches are 
known [138, 139].

Scheme 13. Domino Wittig/Knoevenagel/Diels-Alder sequence.

Scheme 14. Wittig/Knoevenagel/Diels-Alder/Huisgen cycloaddition sequence.
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6. One-pot Wittig- and HWE olefination/addition reaction

Electrophiles can be added to the alkene function obtained, in a one-pot reaction with the Wittig 
olefination. A typical example is the stereoselective bromination of the Wittig product with 
oxalyl bromide (71), where triphenylphosphine oxide (70) as side product of the olefination 
step acts as a catalyst in the bromination (Scheme 17) [140]. Hamza and Blum have devel-
oped a sol–gel entrapped tertiary phosphine by co-polycondensation of tetramethoxysilane, 
2-diphenyl(phosphino)ethyltri(ethoxy)silane and N-2-(aminoethyl)-3-aminopropyltri(methoxy)
silane. This could be reacted in a Wittig type olefination with benzyl chlorides (e.g., 76) and 
benzaldehydes, prepared in situ from benzyl alcohols (e.g., 75). The strategy allows for the 
combination of the process with a bromination step in one pot by addition of sol–gel-bound 
pyridinium hydrobromide perbromide after completion of the Wittig reaction (Scheme 18) [71].

Alternatively, the process can be combined with a hydrogenation step by the addition of 
hydrogen in the presence of an added heterogenized Wilkinson catalyst (Scheme 19) [141]. 
A further Wittig olefination—hydrogenation sequence was developed by Zhou et al. who 
obtained α-CF

3
-γ-ketoesters 82 by adding trichlorosilane to the reaction mixture where tri-

phenylphosphine oxide (again as side product of the Wittig olefination) acts as a Lewis base 
and activates the silane as hydrogenating agent (Scheme 20) [142]. The routine was expanded 
to other aldehydes including alkanals as educts [143]. This reaction was also carried out with 

Scheme 15. Wittig-reaction/hetero-Diels Alder reaction.

Scheme 16. Wittig reaction—intramolecular Huisgen type [3+2]-cycloaddition.
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Scheme 17. Wittig olefination—Ph
3
PO-catalyzed addition of bromine.

Scheme 18. Wittig olefination—addition of bromine.

glyoxal derivatives 84 as starting materials, where after conjugate addition of trichlorosilane 
a few drops of methanol were added to the solution resulting in conversion of the trichlorosi-
lylenol ether (86) to the keto compound 87 while at the same time generating HCl, which then 
promoted a Paal-Knorr reaction of 87 to the furan 88 (Scheme 21) [144].

Scheme 19. Wittig olefination—hydrogenation.
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Lu and Toy showed that the Wittig-olefination—trichloromethylsilane conjugate addition 
sequence can be coupled with the initial preparation of the phosphorane in one pot [145]. 
The conjugate addition to furnish the silyl enol ether can be combined with a reductive Aldol 
reaction, where for the Wittig reaction and for the reductive Aldol reaction two separate alde-
hydes can be used (Scheme 22) [145]. The reactions above can be run with a triarylphosphine-
tertiary amine bifunctional polymeric reagent (Rasta-Resin-PPh

3
-NBniPr2), where the polymer 

bound triarylphosphine oxide also exerts a catalyzing effect on the addition of Cl
3
SiH while 

making it possible to recycle the polymer [146].

As many Wittig olefinations can be performed in aqueous medium, it is possible to combine 
the reaction with an enzymatic step. One such sequence is the enzymatic reduction of the ole-
finic moiety by a recombinant enoate reductase from Gluconobacter oxydans, carried out with 
an enzyme-coupled in situ cofactor regeneration with a glucose dehydrogenase as enzyme 
component and d-glucose as co-substrate (Scheme 23) [147].

Interestingly, a Wittig reaction can also be run in combination with an enzymatic reduction, 
where the in situ prepared enone 93 is transformed to the alkenol 94 (Scheme 24) [148].

Scheme 20. Wittig reaction—triphenylphosphine oxide catalyzed hydrogenation.

Scheme 21. Furan synthesis by one-pot Wittig olefination—hydrogenation—Paal-Knorr reaction.
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Scheme 22. Wittig olefination—reductive Aldol reaction.

The possibility of a combination of a Wittig/HWE olefination and a Michael addition has 
been studied by a number of research groups. Thus, Piva and Comesse have added phos-
phonoesters to copper enolates derived from the 1,4 addition of cuprates 97 to enones 96 

with the idea that the enolate would deprotonate the phosphonoester 98 producing the 
reactive ketone and phosphonate, which undergo HWE reaction. Products 99 of the tan-
dem Michael-HWE reaction are produced in acceptable yield (Scheme 25) [149, 150]. This 
strategy was used with p-methylcinnamaldehyde (100) as carbonyl component in the total 
synthesis of (±)-ar-turmerone (105), a bisabolane-type natural product found in Zingiber and 
Curcuma species (Scheme 26) [151].

Scheme 23. Wittig-olefination—enzymatic ene-hydrogenation.

Scheme 24. Wittig-olefination—enzymatic keto-reduction.
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7. One-pot Wittig-olefination/functional group interconversion

Wittig reactions can be performed with alkoxycarbonylmethylidenetriphenylphosphorane 
(21) in aq. NaOH, where the cinnamates formed are hydrolysed in situ to cinnamic acids 106 

(Scheme 27) [152]. After completion of the reaction, triphenylphosphine oxide can be filtered 
off from the strongly basic, aqueous solution, and the cinnamic acids are isolated by simple 
filtration after acidification of the filtrate. Pinacol-acetal tripropylphosphonium salt 107 has 
been reacted in aq, 1 M NaOH with different benzaldehydes 37; the cinnamaldehyde O,O-
pinacol acetal can be hydrolyzed directly to the cinnamaldehydes 108 with 25w% aq. H

3
PO

4
 

(Scheme 28) [153].

This procedure provides a nice alternative to the reaction of benzaldehydes with triphenylphospho-
ranylideneacetaldehyde, which often produces dienals and trienals as side-products. A tandem 
Wittig-cyanosilylation was developed by Zhou et al., where again Ph

3
PO as side product of the 

Wittig olefination acts as Lewis base to catalyze TMSCN in the cyanosilylation step. Chiral salen 

Scheme 25. One-pot Michael addition—HWE reaction.

Scheme 26. Synthetic route to utilizing a one-pot Michael addition—HWE reaction.
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aluminum catalyst 109 was used as Lewis acid to activate the keto function in the cyanosilylation. 
Products were obtained with high enantioselectivity [68–93%ee]. TMSCN and chiral catalyst 109 

were added after completion of the Wittig reaction, albeit in one pot (Scheme 29) [143].

As Wittig reactions can be carried out in aqueous medium, enzymatic reactions can be inte-
grated into the process (vide supra). In this regard, M. Krauβer et al. showed that 4-phen-
ylbut-3-en-2-ones (93), obtained by Wittig olefination, are reduced to the corresponding 
4-phenylbut-3-en-2-ols (94) in >99 ee(%) using (S)-alcohol dehydrogenase [(S)-ADH] from 
Rhodococcus sp. or (R)-ADH from Lactobacillus kefir [148].

8. One-pot Wittig- and HWE olefination/cyclization

Michael type cyclization—cyclic hemiacetals can be used efficiently as substrates in Wittig olefi-
nation reactions with stabilized Wittig reagents. After the Wittig reaction, the tethered alcohol 

Scheme 27. One-pot Wittig reaction—ester hydrolysis.

Scheme 28. One-pot Wittig reaction—acetal hydrolysis.

Scheme 29. Wittig reaction—cyanosilylation.
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function induces a cyclization through a Michael reaction. This reaction sequence has been 
used especially in the construction of functionalized C-glycosides such as in the stereospecific 
synthesis of ω-amino-β-d-furanoribosylacetic acid derivative 115 (Scheme 30) [154].

In their synthesis to C-glycoside amphiphiles, Ranoux et al. followed a similar strategy, react-
ing non-protected sugars with HWE reagents in aqueous or solventless conditions, leading to 
C-glucosides 117 and 121 (Scheme 31) [155].

A different mechanism to C-glucosides operates when 5,6-dideoxy-5,6-anhydro-6-nitro-d-glu-
cofuranose 122 is reacted with an excess of phosphorane 21. Here, 21 acts as a base and 122 

experiences an anion driven ring opening to 123, which undergoes an oxy-Michael addition 
to 124 with concomitant Wittig reaction, resulting in C-vinyl glycoside 125 (Scheme 32) [156].

A highly stereoselective tandem Wittig-reaction-Michael addition has been developed by 
Liu et al. [157] when reacting 3-carboxy2-oxopropylidene)triphenylphosphorane 126 with 

Scheme 30. Synthesis of ω-amino-β-d-furanoribosylacetic acid derivative 115 utilizing a Wittig olefination-ring closure 
reaction en route.

Scheme 31. Synthesis of C-glucosides with a HWE—ring closure reaction.
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enaldehydes (e.g., 15), using a chiral pyrrolidine-based catalyst such as 128 (Scheme 33). 
Most likely, the asymmetric Michael addition proceeds by the reaction of 15 with the imin-
ium compound 129 (Scheme 33), formed from 15 with catalyst 128.

Beltrán-Rodil et al. have elaborated a retro-aldol initiated Wittig-olefination-Michael addi-
tion sequence leading to an exchange of the hydroxyl function in 130 for a carbalkoxymethyl 
group in 134. The retro-aldol reaction is effected by the commercially available trimethyl-
amine N-oxide (TMAO, 131) [158] (Scheme 34).

Electrocyclizations, incl. photocyclizations, and pericyclic reactions: Electrocyclization can be 
run in concert with Wittig reactions. One such example is shown in Scheme 35, where 
allylic bromide 135, the product of a Morita-Baylis-Hillman transformation, is converted 
with triphenylphosphine to the corresponding phosphonium salt, which is reacted 
with benzaldehyde (11) to give triene 136. 136, heated under aeration, undergoes a 
6π-electrocyclization—base catalyzed aerobic oxidation to o-terphenyl derivative 137 

(Scheme 35) [159].

Scheme 32. Tandem oxy-Michael addition—Wittig reaction.

Scheme 33. Asymmetric Michael-addition-Wittig-olefination.
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Similarly, Hamza and Blum [71], who developed a Wittig olefination with a sol-gel entrapped 
tertiary phosphine derived phosphorane (vide supra, Schemes 18 and 19) showed that the 
Wittig reaction can be run in concert with a photochemical cyclization under aerobic condi-
tions to produce phenanthrene (138) (Scheme 36) [71].

A number of tandem Wittig/HWE reaction—Claisen/Cope rearrangements have been 
reported [160–173]. A typical example is shown in Scheme 37, where neat (4-fluorophenoxy-
acetyl)cyanomethylene)triphenylphosphorane 139 is subjected to microwave irradiation at 
450 W in a sealed tube to undergo an intramolecular Wittig reaction—Claisen rearrangement 
to furnish benzofuran 134 (Scheme 37) [173].

Mali et al. achieved the synthesis of seselin and angelicin derivatives (e.g., 148 and 150) 
by a tandem Wittig-olefination—Claisen rearrangement from propargyl and chloroalkyl 
ethers of 2,4-dihydroxybenzaldehyde and 2,4-dihydroxyacetophenone (e.g., 146 and 149) 
(Scheme 38) [164].

Nevertheless, sometimes, these reactions are not easy to control. Thus, a cascade of Wittig reac-
tion and double Claisen and Cope rearrangements starting from 2,4-prenyloxybenzaldehyde 

Scheme 34. Retro-aldol-Wittig-olefination-Michael addition cascade.

Scheme 35. One-pot phosphorane synthesis—Wittig-reaction—6π-electrocyclization—oxidative dehydrogenation.

Scheme 36. Wittig olefination—photocyclization—oxidative dehydrogenation.
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151 leads to a plethora of products through the range of reactions that are possible with the 
intermediate 153, itself produced through the Wittig reaction and a first Claisen rearrange-
ment. The final products found include gravelliferone (154, 10%), balsamiferone (155, 5%), and 
6,8-diprenylumbelliferone (156, 15%) (Scheme 39) [169].

Less common is the tandem Wittig and ene reaction. Tilve et al. have published such a com-
bination of Wittig and ene reaction in their total synthesis of (±)-kainic acid (160), an amino 

Scheme 37. Intramolecular Wittig reaction—Claisen rearrangement.

Scheme 38. One-pot syntheses of seselin and angelicin derivatives.
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acid found in different species of red algae [174]. Here, the product was formed in 65% 
yield as a mixture of diastereoisomers 1598a/159b in a ratio of 1:5. Previously, the authors 
had synthesized (±)-kainic acid (160) utilizing a Wittig—Michael reaction as the key step 
(Scheme 40) [175].

Finally, the possibility of a tandem Wittig-olefination—aza-Wittig rearrangement should be 
mentioned—this combination was carried out on 2-benzoylaziridine 161 to give stereoiso-
meric dehydropiperidines 163/164 (Scheme 41) [176].

Scheme 39. Wittig reaction—double Claisen and cope rearrangements.

Scheme 40. Wittig-ene cascade as a key step towards the synthesis of kainic acid (160).
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9. Other transformations

A wealth of further transformations have been found to be possible in combination with 
Wittig/HWE reactions. Thus, cyclopropanation of alkenes using sulfur-ylide reagent 166 can 
be run in tandem with a Wittig reaction with a conjugated phosphorane such as 21. This com-
bination of reactions can be performed with the preparation of the aldehyde as the Wittig sub-
strate by oxidation of the corresponding alcohol 165 with MnO2 in one pot (Scheme 42) [177].

Generally, non-stabilized phosphoranes are basic. This basicity has been used by Knüppel et al. 
in the transformation of α,α-dibromoenone 168 with excess methylenetriphenylphosphorane, 
where the phosphorane induces a Corey-Fuchs-reaction-type dehydrobromination/debromina-
tion to generate a terminal alkyne, which together with the concomitantly run Wittig-olefination 
delivers 169, an intermediate to the trisnorsesquiterpene (−)-clavukerin A (171) (Scheme 43) 

Scheme 41. Tandem Wittig-olefination—aza-Wittig-rearrangement.

Scheme 42. One-pot oxidation—Wittig-olefination—cyclopropanation.

Scheme 43. Wittig-olefination—Corey-Fuchs-reaction-type dehydrobromination/debromination.

Alkenes24



[178]. A metathesis reaction completes the sequence to 171. In this case, the metathesis reaction 
is not run in one pot with the previous transformations.

Nevertheless, one-pot Wittig—metathesis reactions are well known from the literature [179–181]. 
A typical example is shown in Scheme 44, where catalyst 174 serves both as a catalyst for the 
metathesis as well as for the Wittig olefination, when the in situ produced aldehyde 175 is treated 
with triphenylphosphine and ethyl diazoacetate (176) in one pot (Scheme 44).

10. Conclusion

Due to the fact that phosphoranes and phosphonates are stable under more diverse conditions 
than was initially realized, it has become possible to perform reaction cascades and one-pot reac-
tions with Wittig- and HWE reactions as an integral part of the reaction sequence. Frequently, 
Wittig olefination reactions are carried out with in situ prepared phosphonium salts and phos-
phoranes [17, 22–27]. One-pot oxidation—Wittig olefination reactions are also quite common [40, 
43–110], especially when the carbonyl component is labile [89, 97]. Often, the oxidant of choice is 
MnO2 [40, 43–46, 79–97], although a number of reactions are known where transformations were 
carried with air oxygen using metals and metal oxides as catalysts [72–78]. As many Wittig- and 
HWE reactions tolerate metal catalysts, this allows the running of Wittig/HWE reactions in com-
bination with metal catalyzed cross coupling reactions and olefinations such as Heck [114–123], 
Suzuki [111–113], Sonogashira [119–121], and metathesis reactions [179–181]. The alkenes gained 
in the olefination reactions can be submitted to cycloaddition reactions, including Diels Alder 
reactions [69]. Furthermore, the alkenes lend themselves to 1,2-addition reactions [71, 140] in 
one-pot procedures. In cases where enones or enaldehydes are produced in the olefination reac-
tion, a 1,4-addition becomes a possibility; this includes the Michael addition [149–151]. Also, the 
combination of ring opening of cyclic hemiacetals or acetals, olefination reaction and a 1,4-addi-
tion leading to ring closure is quite common [154–156]. The outcome of one-pot sequences of 
olefination reaction—electrocyclic rearrangement can be predicted less easily. Nevertheless, 
one-pot Wittig olefination—Claisen- [173], Wittig olefination—Cope- [169], and Wittig olefina-
tion—aza Wittig [176] rearrangement reactions have been published. Lastly, Wittig olefination 
and HWE reactions have been combined with functional group transformations, including the 
hydrolysis of an ester function [152] and the reduction of a carbonyl group [148].

Scheme 44. One-pot Wittig—Metathesis reaction.
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The prospects of multi-step, one-pot reactions and reaction cascades incorporating Wittig 
reagents can be seen in the rich chemistry of ketenylidenetriphenylphosphorane (178) 
(Scheme 45) [182–185], which has been reviewed earlier [182, 186, 187]. Lastly, catalytic 
Wittig reactions can be seen as a subset of tandem reactions involving phosphoranes. Further 
research in specifically this area will help make the Wittig olefination more atom-economical 
and environmentally sustainable, so that this reliable alkene forming reaction will remain a 
competitive olefination strategy of choice.
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