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Abstract

Multidrug-resistant bacteria (MDR) are increasing rapidly and posing a global threat to 
mankind. Alternative strategies other than antibiotics have to be explored urgently. In 
this chapter, we review the current status of nonantibiotics strategies including antibody-
based therapy and vaccine development for targeting Gram-positive strains (methicillin-
resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium) and MDR 
Gram-negative strains (Acinetobacter baumannii and Pseudomonas aeruginosa). Biologics-
based clinical progress against these bacterial infections is updated.

Keywords: multidrug-resistant bacteria, MDR, MRSA, VRE, A. baumannii, P. aeruginosa, 
infection, biologics, antibody, vaccine

1. Introduction

Antibiotics treatment for bacterial infections has been extensively used for over half century. 

This is coupled with increasing reports of bacteria drug resistance to almost all available 

classes of antibiotics.

The antibiotics multidrug resistance (MDR) situation is particularly severe in clinics and 

community for the designated ESKAPE notorious bugs (Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter 

spp.) [1, 2].

Given the prevalence of antibiotic resistance to these bacteria-associated infections, alternative 

strategies are urgently needed. This chapter reviews the current status of nonantibiotics-based 
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strategies including antibody-based therapy and vaccine development for Gram-positive strains 

methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium 

(VRE) and MDR Gram-negative strains (A. baumannii and P. aeruginosa). Figure 1 shows the basic 

Figure 1. Bacterial cell and detailed cell wall architecture. Gram-positive bacterial cell (A1), the detailed Gram-positive 

bacterial cell wall (A2), Gram-negative bacterial cell (B1) and the detailed Gram-negative bacterial cell wall (B2) are 

shown.

Physiology and Pathology of Immunology200



Drug name Sponsor (s) Target Product class Indication Development 

stage

Ref.

Altastaph Nabi Biopharmaceuticals CP5/CP8 S. aureus 

antibody

Treatment of bacteremia and 

continuing fever

Phase I/II [48]

Aurexis 

(Tefibazumab)
Bristol-Myers Squibb ClfA S. aureus 

antibody

Treatment of bacteremia Phase II [68]

Aurograb NeuTec Pharma ABC transporter 

GrfA

S. aureus 

antibody

Treatment of severe, deep-seated 

infections

Phase III, failed [189]

Pagibaximab Biosynexus Inc./

GlaxoSmithKline

Lipoteichoic acid S. aureus 

antibody

Prevention of staphylococcal sepsis 

in very low birth weight infants

Phase II/III, failed [190]

MEDI4893 MedImmune LLC α-toxin S. aureus 

antibody

Prevention of pneumonia Phase II [36]

SAR279356 (F598) Sanofi PNAG S. aureus 

antibody

Prevention of pneumonia Phase II, 

terminated

[191]

Veronate Bristol-Myers Squibb ClfA and SdrG S. aureus 

antibody

Prevention of infections in neonates Phase III [192]

SA3Ag Pfizer CP5/CP8/ClfA S. aureus vaccine Prevention of infections Phase I/II [92]

StaphVAX Nabi Biopharmaceuticals CP5/CP8 S. aureus vaccine Prevention of infections Phase III, failed [50]

STEBVax National Institute of Allergy 

and Infectious Diseases

SEB S. aureus vaccine Treatment for toxic shock syndrome Phase I [193]

V710 Merck IsdB S. aureus vaccine Prevention of infections Phase III, failed [194]

SA4Ag Pfizer CP5/CP8/ClfA/ 

MntC

S. aureus vaccine Prevention of infections Phase I, II, IIb [195]

4C–Staph GSK HlaH35L/EsxAB/

FhuD2/Csa1A

S. aureus vaccine Prevention of infections Phase I [196]

MEDI3902 MedImmune LLC PcrV/Psl P. aeruginosa 

antibody

Prevention of pneumonia Phase II [197]

KB001-A KaloBios Pharmaceuticals PcrV P. aeruginosa 

antibody

Prevention of infections Phase II, failed [198]
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Drug name Sponsor (s) Target Product class Indication Development 

stage

Ref.

PseudIgY Immunsystem AB Unknown P. aeruginosa 

antibody

Prevention of infections Phase I/II [199]

KBPA-101 Kenta Biotech Ltd O-polysaccharide P. aeruginosa 

antibody

Treatment of infections Phase I/II [200]

IC43 Valneva Austria GmbH OprF/OprI P. aeruginosa 

vaccine

Prevention of infections Phase II/III [201]

Aerugen Crucell O-polysaccharide P. aeruginosa 

vaccine

Prevention of chronic CF infection Phase III, failed [140]

Flagella Subtype-a and 

subtype-b flagellin
P. aeruginosa 

vaccine

Prevention of chronic CF infection phase III [131]

MEP Univax Biologics MEP antigen P. aeruginosa 

vaccine

Prevention of chronic CF infection Phase I [142]

Pseudostat Provalis PLC Inactivated P. 

aeruginosa strain 385

P. aeruginosa 

vaccine

Prevention of chronic CF infection Phase I [145]

CP5/8: serotype 5/8 capsular polysaccharides; ClfA: clumping factor A; PNAG: poly-N-acetyl glucosamine; SdrG: serine-aspartate repeat-containing protein G; SEB: 

Staphylococcal enterotoxin serotype B; IsdB: iron-regulated surface determinant protein B; MntC: manganese transport protein C; HlaH35L: α-Hemolysin H35L; EsxAB: 
ess extracellular A/B; FhuD2: ferric hydroxamate-binding lipoprotein; Csa1A: conserved staphylococcal antigen 1A; PcrV: Low calcium response locus protein V; OprF/

OprI: Major outer membrane porin F/I; MEP: mucoid exopolysaccharide.

Table 1. Antibodies and vaccines for S. aureus and P. aeruginosa in clinical development.

Physiology and Pathology of Im
m

unology
202



structures of Gram-positive and Gram-negative bacteria that are a key for design and develop-

ment of antibodies and vaccines to target against these MDR bacterial infections.

Monoclonal antibodies (mAbs) have advantages over traditional chemotherapy in that 

(1) mAbs can bind target antigen specifically and thus reduce off-target side effects asso-

ciated with traditional chemotherapy; (2) through Fc neonatal receptor (FcRn) recycling 

mechanism, mAbs have long serum half-life (ranges in days to weeks) when compared to 

chemotherapy (ranges in minutes to hours); (3) mAbs can recruit effectors for antibody-
dependent cell-mediated phagocytosis (ADCP), antibody-dependent cellular cytotoxic-

ity (ADCC), and complement-dependent cytotoxicity (CDC) through its Fc region, which 

functions are missing in chemotherapy [3]. By 2015, more than 60 monoclonal antibodies 

(mAbs) have been approved by the United States Food and Drug Administration to treat 

cancer, autoimmune disorders, and infections [4].

To conquer the serious antibiotic resistance from bacterial pathogens, passive immunization 
(mAb treatment against bacterial pathogen) and active immunization (vaccine against bacte-

rial pathogen), as alternative strategies, are being actively explored.

In this chapter, we focus on the current status of antibody and vaccine development against 

Gram-positive strains (S. aureus and Enterococci) and Gram-negative strains (P. aeruginosa and 

A. baumannii). Antibodies and vaccines under clinical trials are summarized in Table 1.

2. Antibody and vaccine development against S. aureus

S. aureus establishes infection through a variety of complicated mechanisms. S. aureus pro-

duces cell envelope-associated proteins, nonprotein glycopolymers, a collection of secreted 

toxins that mediate host-microbe adhesion, host cell lysis, antibody function interference, 

complement activation inhibition, and invasion of immune nonprofessional phagocytes [5, 6].

2.1. Antibodies against staphylococcal-secreted virulent factors

2.1.1. Staphylococcal superantigens as antibody targets

S. aureus is a round-shaped, facultative anaerobe, which can produce an array of superantigens 

(SAgs), including staphylococcal exotoxins, enterotoxins, and toxic shock syndrome toxin 1 

(TSST-1). These toxins exert their hyper-stimulatory properties and cause food poisoning, toxic 

shock syndrome, acute lung diseases, and autoimmune diseases [7–10]. The superantigenicity 

of SAgs is largely achieved by the activation of APCs and T cells, leading to a massive release 

of cytokines, including IL-1β, IL-6, and TNFα [11].

Staphylococcal enterotoxin serotype B (SEB) was classified as a category B select agent by the 
Centers for Disease Control and Prevention (CDC) due to its high toxicity to human and poten-

tial use as a biological weapon [12]. Several mAbs targeting on SEB are under investigation. A 

high-affinity SEB-specific mouse mAb, 20B1, was investigated in mouse models with superfi-

cial skin, sepsis, or deep-tissue infections [13]. Treatment of 20B1 significantly increased the 
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survival in the sepsis model, whereas it reduced bacterial burden and dissemination of bacteria 

in the superficial skin model. Moreover, 20B1 was shown to decrease pro-inflammatory cyto-

kine levels and T cell proliferation. Remarkably, their following work further showed that iso-

type switching from original IgG1 to IgG2a, without changing of SEB binding affinity, greatly 
enhanced the protective ability in S. aureus sepsis models [14]. This is consistent with a recent 

report in which humanized anti-SEB mAbs attenuated virulence of exogenous SEB expressing 
S. aureus in a mouse pneumonia model [15].

In addition, Tilahun and colleagues explored the use of combined mAbs targeting on dif-

ferent epitopes of SEB, as well as co-administration of mAb and antibiotic, both of which 

showed synergistic protection in S. aureus infection mouse model [16, 17]. This strategy seems 

promising as synergistic protection by co-administration of two mAbs recognizing distinct 
SEB epitopes was also observed independently in another study [18]. To date, there are not 

any anti-SEB mAbs being tested in clinical trials. Of note, a phase I clinical study of safety of 

a recombinant SEB vaccine (STEBVax) against toxic shock syndrome has been completed [19].

TSST-1 is a 22 kDa monomeric protein, of which the N-terminal domain binds to the MHC-II 

on APCs and the C-terminal domain is implicated in β-chain variable region of TCR (TCR-Vβ) 
interaction [20, 21]. In a recent report, human single chain variable fragments (scFvs) against 

recombinant TSST-1 were panned out from synthetic human scFv library by phage display 

technology [22]. The scFvs were demonstrated to be able to inhibit TSST-1–mediated T cell 

activation and pro-inflammatory cytokine production. Besides, a recombinant TSST-1 vaccine 
(Biomedizinische Forschungs gmbH) has been completed in phase I clinical study and proved 
to possess a good safety profile with no observable severe adverse events occurred [23, 24].

2.1.2. α-Hemolysin as antibody target

S. aureus releases a number of cytolytic toxins, among which the pore-forming α-hemolysin 
(Hla, α-toxin) is the most studied one. Hla is secreted as a 33 kDa monomer consisting almost 
entirely of β-strands by circular dichroism [25]. It exerts cell lytic activity through a mem-

brane perforating mechanism, which is initiated through binding to membrane lipid or/and 

its proteinaceous receptor, a disintegrin and metalloprotease 10 (ADAM10) [26]. In detail, Hla 

monomers assemble into a heptameric structure on susceptible host cell membrane and form 

a central pore of approximately 1–3 nm in diameter [27, 28]. This allows rapid egress of Ca+, 

ATP, and low molecular weight molecules through the pore, resulting in alteration of cellular 

signaling pathways and cell lysis [29–31].

Therapeutic anti-Hla mAbs have been actively developed due to the key role of Hla in 

Staphylococcal pathogenesis. In a study in which a recombinant Hla, AT62, was used as a vaccine, 

the study also showed that passive immunization of anti-AT62 IgG reduced wound infection and 
tissue damage in a mouse model [32]. In a S. aureus dermonecrosis model, combined administra-

tion of Hla-targeting mAb, MEDI4893*, with frontline antibiotic linezolid or vancomycin, exhibited 
enhanced protection by reduced lesion size, reduced tissue damage, and accelerated healing in a 
synergistic manner [33]. Furthermore, MEDI4893 (MedImmune) was generated from MEDI4893* 

by introducing three amino acids substitution (M252Y/S254 T/T256E) [33]. The YTE mutation 
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has been shown to extend half-life by two- to fourfold without affecting distribution properties 
[34]. MEDI4893 not only abrogated Hla-host cell interaction but also potentially blocked oligo-

mer formation due to steric hindrance [35]. Recently, a phase I clinical trial was completed by 

evaluating the safety, tolerability, and pharmacokinetics of MEDI4893 in healthy adult subjects 

[36]. Currently, a phase II study is ongoing to evaluate the safety and efficacy of MEDI4893 in the 
prevention of S. aureus pneumonia [37].

2.2. Antibodies against staphylococcal surface-associated components

2.2.1. Capsular glycopolymer as antibody target

Bacterial capsule is a polysaccharide layer lying outside of the cell wall found in both Gram-

positive and Gram-negative bacteria. Capsule produced by pathogens has been involved in 

promoting adherence, resisting bacterium from host immune attack, and mediating release of 
virulent factors [38]. Encapsulation of S. aureus prevents bacterial phagocytosis by interfering 

with effective opsonization [39].

Serotype 5 (CP5) and serotype 8 (CP8) capsular polysaccharides predominate among S. aureus 

clinical isolates, representing 75–80% of total isolates [40]. While several CP5 or CP8-specific 
mAbs were studied [41, 42], serum containing antibodies that recognize the shared epitope of 
CP5 and CP8 were recently developed [43, 44]. The cross-reactivity was confirmed in vitro and 

the sera were demonstrated to promote opsonophagocytic killing of both CP5 and CP8 S. aureus 

strains. There are no reports on therapeutic antibodies targeting staphylococcal polysaccharide 

in clinical trials. However, two vaccines, StaphVAX and Altastaph (Nabi Biopharmaceuticals), 

have been completed for their clinical studies for safety and immunogenicity evaluation [45–48]. 

Although Altastaph was able to induce significant elevation of anti-CP5 and anti-CP8 antibody 
levels, unfortunately, it failed to show efficacy in a phase II clinical trial [49]. StaphVAX also 

showed ineffectiveness in the reduction of S. aureus in patients on hemodialysis and thus failed 

in a phase III trial [50].

Bacterial poly-N-acetyl glucosamine (PNAG) is another major class of surface polysaccharide 

that has been evaluated as a vaccine. PNAG, which is synthesized by enzymes encoded in 
intercellular adhesin (ica) locus, contributes to biofilm formation, colonization in host tissue, 
and immune evasion [51, 52]. Recent work showed that deacetylation of PNAG (dPNAG) by 

surface protein, IcaB, is a critical step for PNAG association to cell wall and plays key roles 

in colonization and resistance to host immune defense [53]. Indeed, antibodies specific to 
dPNAG were better in opsonic killing than that specific to PNAG [54]. In consistence, passive 

immunization of mice with antisera raised to dPNAG showed efficient clearance of S. aureus, 

compared with that raised to acetylated form [55].

2.2.2. Staphylococcal protein A as antibody target

Staphylococcal protein A (SpA) is anchored to S. aureus cell wall by sortase A through amide 

linking of its C-terminal threonine of LPXTG motif to pentaglycyl crossbridge within pepti-

doglycan [56]. SpA interferes with immunoglobulin (Ig) function by binding to Fcγ domain 
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of Ig and prevents the bacterium from opsonophagocytic killing [57]. It also interacts with B 

cell receptor through binding with VH3-clan of antigen-binding fragment (Fab) region and 

induces supraclonal B cell responses, resulting in insufficient adaptive responses against 
infection [58–60].

Based on the mechanistic studies, a mutated form of SpA, SpA(KKAA), was generated to 

abolish both Fcγ and Fab binding abilities [61]. Vaccination of SpA(KKAA) was able to elicit 

robust antibody responses against multiple staphylococcal antigens in a MRSA-infection 

mouse model. In their following studies, passive immunization of antibodies specific for 
SpA(KKAA) significantly promoted opsonophagocytic clearance, reduced abscess formation, 
and decreased the mortality [62]. Furthermore, a humanized version successfully conferred 
protection against S. aureus sepsis in neonatal mice [63].

2.2.3. Clumping factor A as antibody target

Microbial adhesion to host tissue is crucial to infection initiation in most of the bacterial infec-

tions. Microbial surface component recognizing adhesive matrix molecules (MSCRAMM), 
such like clumping factor A (ClfA), plays a vital role in this process [64]. ClfA, a fibrinogen-
binding protein, is required for establishing early infection, abscess formation, protection 

against phagocytosis, as well as bacterial persistence in host [65, 66].

Tefibazumab, a humanized anti-ClfA mAb, was developed and exhibited high affinity and 
specificity for ClfA [67]. In vitro study showed that tefibazumab inhibited fibrinogen-binding 
ability of ClfA and protected against MRSA infection in murine septicemia and rabbit infec-

tive endocarditis models. Safety and pharmacokinetic profile of tefibazumab were evaluated 
in phase II clinical trial [68]. Unfortunately, it failed to show significant differences between 
treatment and placebo groups in overall adverse clinical events. A detailed analysis of ClfA-

fibrinogen structure observed a modest IC50 value of binding between ClfA and tefibazumab, 
which might partly explain the unsatisfactory clinical outcome [69].

2.2.4. Autolysin as antibody target

Autolysin (Atl) is a cell wall-associated enzyme with various functions. The major S. aureus 

autolysin (AtlS) contains two distinct domains, amidase and glucosaminidase, which are 

responsible for enzyme localization to cell wall and peptidoglycan hydrolysis, respectively 
[70, 71]. Atl participates in biofilm formation, separation of daughter cells after cell division 
and attachment to host matrix [72]. Moreover, AtlS is highly conserved among strains of 

S. aureus and other Staphylococci. These features together make AtlS an attractive target for 
anti-S. aureus mAb and vaccine investigation.

To test it, a mAb, 1C11, was generated to inhibit AtlS glucosaminidase domain and its effect in 
animal model was assessed [73, 74]. The mAb was shown to impair cell growth and cause cell 

aggregation and sedimentation in in vitro assay. Following this study, administration of 1C11 

reduced severity of implant-associated osteomyelitis in a mouse model by decreased abscess 

numbers and efficient internalization of antibody-opsonized S. aureus.
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Immunodominant staphylococcal antigen A (IsaA) is another highly conserved Atl. Similarly, 

protection was conferred by a mAb specific to IsaA in a mouse model [75]. The mode of action 

of mAb is mainly through activation of professional phagocytes and induction of oxidative 

burst activity of neutrophil.

2.3. Antibodies against staphylococcal cell wall components

2.3.1. Lipoteichoic acids as antibody target

Most Gram-positive bacteria produce teichoic acids (TAs) to facilitate their survival under dis-

advantageous conditions. Teichoic acids covalently link to either peptidoglycan or cytoplas-

mic membrane, known as wall teichoic acids (WTA) and lipoteichoic acids (LTA), respectively 

[76]. The roles of TAs in pathogenic bacteria include adherence to host cells [77], activation of 

complement [78], and cytokine induction [79].

Since structures of LTA are highly conserved across many clinical isolates, including 

Enterococci, Staphylococci, and several Streptococci, LTA is considered as a promising target 

for vaccine and therapeutic antibody development [80]. In a recent report, antibodies against 

E. faecalis LTA were used to test cross-activity with other Gram-positive bacteria, including 

S. aureus [80]. The in vitro data showed that the antibodies were also able to bind with LTA 

purified from S. aureus. Remarkably, the antibodies exhibited 60–90% opsonophagocytic 

killing activity across a variety of S. aureus strains, and great protection against MRSA infec-

tion in a mouse peritonitis model. In accordance with the observation, immunization with 
a BSA-conjugated LTA fragment, containing a conserved minimal structure in majority of 

Gram-positive bacteria, was able to induce opsonic killing of E. faecium E1162 and S. aureus 

MW2 [81]. Besides, immunization of WTA also elicited an anti-WTA immune response, 
illustrated by complement-dependent opsonophagocytosis [82, 83].

2.3.2. Peptidoglycan as antibody target

Peptidoglycan (PG) is composed of cross-linked polysaccharide and peptide chains, which 

forms the backbone of bacterial cell wall. So far, reports on therapeutic antibody or vaccine 

targeting on PG are scarce. A mAb against deacetylated peptidoglycan, ZBIA5H, was screened 

with best protective property in mouse models [84]. Surprisingly, ZBIA5H did not show the 

highest affinity to PG, compared with other mAbs. The superior property of ZBIA5H may 
be attributed to the unique epitope it recognizes. This study highlights that besides antigen 
binding affinity, other factors, such as epitope, should also be taken into consideration in 
therapeutic antibody discovery.

2.4. Antibodies against nutrient transporter proteins

Nutrient acquisition is one of the most basic and essential process virtually in all forms of life. 

Vertebrate host has evolved powerful strategy, termed nutritional immunity, to limit prolif-

eration of invading pathogens by sequestering essential nutrients [85]. One of the best char-

acterized examples of nutritional immunity is transition-metal-ion sequestration in which 
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metal ions are predominantly trapped by host metal-binding proteins [86]. To combat with 

host defensive system, microorganism employs mechanisms to maintain intracellular metal 

homeostasis. Therefore, these mechanisms could be suitable targets for therapeutic antibody 

development. For example, an Fab was screened to inhibit acquisition pathway for Mn(II), 

which is essential for detoxification of reactive oxygen species (ROS) [87, 88]. The mAb is 

bound to manganese transporter C (MntC) of an ATP-binding cassette (ABC) transporter sys-

tem and thereby blocks the metal delivery to the channel. In vitro assay showed that the Fab 

increased the sensitivity of S. aureus to ROS by over 10-fold.

An earlier report identified ABC transporter as the most commonly associated protein with 
IgG from the sera of 26 patients suffered with septicemia [89]. ScFvs against the conserved 

peptides from the ABC transporter were then panned from a phage display library and were 

shown to reduce the bacterial burden in a mouse model.

2.5. Multicomponent vaccines

So far, neither passive nor active immunization has shown potent efficacy on humans. The failure 
from basic research to clinical practice could partly be attributed to the limited understanding 
of the sophisticated events associated with every stage of infection. Prior strategies targeting on 

single virulent factor showed efficacy only in certain experimental settings. In this regard, novel 
vaccine formulations targeting on multiple pathogenic components are proposed to offer protec-

tion from distinct aspects through a synergistic working mode.

Recently, efficacy of a combination vaccine, 4C–Staph (four-component S. aureus vaccine), 

was evaluated [90]. 4C–Staph is composed of detoxified α-Hemolysin, a fusion of ess extracel-
lular A (EsxA) and ess extracellular B (EsxB), two staphylococcal surface proteins, which are 

ferric hydroxamate-binding lipoprotein (FhuD2) and conserved staphylococcal antigen 1A 

(Csa1A). 4C–Staph induced broad and synergistic protection against several Staphylococcal 

clinical isolates in different models. In addition, mechanistic study showed that the protection 
was mainly antibody dependent.

SA3Ag (Pfizer), a tri-component vaccine, consists of CP5 and CP8 individually linked with 
a nontoxic form of diphtheria toxin, and a recombinant mutant form of clumping factor A 

(rClfAm) [91]. A phase I clinical trial was completed to evaluate safety, tolerability, and effect 
of SA3Ag [92]. This vaccine showed a relatively safe profile among older and young adults.

In order to further enhance protection against S. aureus, another component, MntC, was added 

to SA3Ag to form a four-component vaccine SA4Ag (Pfizer) [93]. In phase 1/2 clinical trials, sin-

gle-dose administration of SA4Ag was well-tolerated among young and older adults, shown by 

mild or moderate local reactions and comparable systemic events with placebo control [94, 95]. 

More excitingly, SA4Ag induced a rapid, robust, and sustained functional antibody response.

2.6. Antibody-antibiotic conjugate

While S. aureus has classically been considered as an extracellular pathogen, a growing body 

of evidence reveals that it is capable to survive and persist within host cells, including phago-

cytic cells, which are responsible for bacterial clearance [96, 97]. Although phagocytic cells, 
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particularly neutrophils and macrophages, can efficiently kill majority of invading bacteria, a 
small population of persisters can however turn the circulating phagocytes to “Trojan horses” 

to facilitate bacterial dissemination via bloodstream [98]. Meanwhile, intracellular persistence 

allows bacteria to escape from antibiotic and immune attack. Indeed, most of the current anti-
biotics are less efficient in intracellular S. aureus killing, which may partly explain the poor 

response to treatment and the high frequency of recurrence in clinical practice [99, 100].

Based on these findings, therapies specifically targeting on intracellular pathogen may pro-

mote clinical outcome. Similar to antibody-drug conjugate (ADC), which has been successfully 

applied for cancer therapy, antibody-antibiotic conjugate (AAC) was first proposed and evalu-

ated by Lehar and his colleagues in 2015 [101]. The AAC is composed of three building blocks: an 

antibody to target on bacteria, a highly bactericidal antibiotic payload, and a linker to attach anti-
biotic payload to the antibody. The AAC was designed with no antibacterial activity as antibiotic 

serves as a prodrug when covalently linked. However, when planktonic AAC-tagged bacteria 

are internalized by host cells, the antibiotics can be efficiently released in their active form by 
cleavage from host protease. Thus, the AACs take bacteria as “Trojan horses” to deliver potent 

antibiotics to cytoplasmic compartment and resulting in intracellular antibacterial effect. To 
their anticipation, the AAC was shown to efficiently restrict intracellular S. aureus growth when 

treatment was initiated several hours after intravenous infection. In contrast, poor efficacy was 
observed by delayed treatment of vancomycin. This result is particularly interesting as majority 

of bacteria were found to associate with neutrophils within 10–15 minutes [97]. Moreover, the 

AAC was able to limit metastasis of S. aureus to brain in an intravenous infection model.

3. Antibody and vaccine development against E. faecium

Different from S. aureus, which produces an array of virulent factors, pathogenesis of 

Enterococci is largely determined by their adherence to host tissue mediated by surface adhe-

sion components. Several most-studied components include aggregation substance proteins, 

collagen adhesins, enterococcal leucine-rich repeat-containing proteins, pili, polysaccharides, 

and glycolipid [102], which are potential targets for antibody and vaccine development.

3.1. Enterococcal pili as antibody target

Enterococcal surface pili are filamentous proteins with Ig-like folds and LPXTG motifs, 
which have been implicated in biofilm formation, endocarditis, and catheter-associated 
urinary tract infections (CAUTIs) [103, 104]. Endocarditis and biofilm-associated pilus A 
(EbpA), one of the most-studied pili in Enterococci, is widely present among Enterococcal 

species and highly conserved in N-terminal domains [105]. In detail, N-terminal domain 

of EbpA (EbpANTD) binds to host fibrinogen deposited on urinary catheter to facilitate 
Enterococcal colonization [106]. Sera against EbpANTD was recently shown to provide 

universal protection in a murine model by reducing bacterial titers of a broad spectrum of 

Enterococcal isolates, including E. faecalis, E. faecium, and VRE [105]. Consistently, vaccina-

tion of EbpA or EbpANTD, but not its carboxyl-terminal domain, diminished biofilm forma-

tion and prevented CAUTIs in E. faecalis infection model [106].
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3.2. Polysaccharide antigens as antibody targets

Based on a previous serotyping analysis, about 60% of E. faecalis isolates fall into four sero-

types from CPS-A to CPS-D [107]. CPS-C and CPS-D can express capsular polysaccharide, 

whereas CPS-A and CPS-B are nonencapsulated due to deficiency of essential gene locus 
[108]. In an early study, antibodies raised against LTA from CPS-A strain only opsonized 
acapsular CPS-A and CPS-B strains, but not encapsulated ones [109, 110]. To develop antibod-

ies against capsule-bearing CPS-C and CPS-D strains, a novel diheteroglycan was identified 
from capsular polysaccharide [110]. As a result, passive immunization of anti-diheterogly-

can antibodies successfully protected CPS-C and CPS-D E. faecalis bacteremia mouse model. 

However, it was observed that considerably lower susceptibility of CPS-C and CPS-D strains 

to opsonic killing by naturally acquired antibodies was present in healthy human sera as 

compared with CPS-A and CPS-B [111]. Therefore, capsule may be a natural barrier to access 

therapeutic antibody by masking antigens underneath.

3.3. Lipoproteins as antibody targets

A transcriptomic analysis from an E. faecalis infection mouse model identified two ABC 
transporter substrate-binding lipoproteins upregulated upon infection: PsaAfm for manga-

nese transport and AdcAfm for zinc transport [112]. Treatment of antibodies raised from 

recombinant proteins showed increased opsonic killing in vitro and reduced colony counts 

in a mouse bacteremia model. Protective role was also seen in treatment with antibodies 

against distinct ABC transporter proteins [113], suggesting the potential of ABC transporter 

as a therapy target in enterococcal infection.

4. Antibodies and vaccines against P. aeruginosa

Effective control of P. aeruginosa infections remains a challenging problem due to its remark-

able ability to evolve resistance to many antibiotics. Antibodies and vaccines are considered to 

be a promising and alternative strategy to treat or prevent P. aeruginosa infections in susceptible 

populations. The identified P. aeruginosa antibody and vaccine targets include the lipopolysac-

charide (LPS) O-antigens, pilus, flagella, alginate, outer membrane proteins (OMPs), mucoid 
exopolysaccharide (MEP), and antigens from the type III secretion system (T3SS) [114].

4.1. Antibody and vaccine development against T3SS translocation protein PcrV

Type III secretion system (T3SS), as a key virulence determinant in P. aeruginosa, is encoded 

by at least 42 genes and assembled as a needle-like apparatus that can directly inject bacte-

rial effector proteins into host cell to elicit pathological response [115]. PcrV is located at the 

tip of needle-like apparatus and closely involved in translocation of effector proteins from 
P. aeruginosa to host cell [115].

Fab 1A8, a human Fab antibody fragment, can specifically target against P. aeruginosa PcrV 

antigen and elicit protective effects for mice with lethal pulmonary P. aeruginosa challenge 
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[116]. KB001, a PEGylated anti-PcrV Fab fragment in clinical phase-2a trial for ventilator asso-

ciated and P. aeruginosa colonized but not for infected patients in intensive care units (ICUs), 
showed good safety, tolerability, and pharmacokinetic profile. Although statistical signifi-

cance was not observed for patients with KB001 treatment and placebo treatment, incidence 

of P. aeruginosa pneumonia was decreased in KB001 treatment group (31%) as compared to 

that of placebo treatment group (60%) [117]. Identification of anti-PcrV IgG from human sera 
confirms that PcrV is a vaccine target [118]. Moreover, human high titer anti-PcrV sera clearly 

have prophylactic effect for mice with lung P. aeruginosa infection [118].

4.2. Antibody and vaccine development against PsI

By construction and phenotypic screening of human scFv phage display libraries from periph-

eral blood B cells of healthy individuals and patients recovered from recent P. aeruginosa 

infections, mAbs against one epitope of Psl, the exopolysaccharide important for P. aeruginosa 

attachment to host cell and biofilm maintenance, was identified to show potent protection in 
several animal P. aeruginosa infection models [119]. Also, this finding suggests that PsI can 
be used as a vaccine target. However, most patients suffered from P. aeruginosa bloodstream 

infection (BSI) had low anti-PsI titer that showed nonprotective to P. aeruginosa BSI infection 

[120]. MEDI3902, the combination of anti-PsI and anti-PcrV in a bispecific format, showed 
synergistic protection against P. aeruginosa murine pneumonia models as compared with each 

parental mAb [121]. Moreover, MEDI3902 can synergize several classes of antibiotics for the 
treatment of clinical antibiotics resistant isolates [121].

4.3. Antibody and vaccine development against outer membrane proteins (OMPs)

OMPs form porins and other structural and functional components on the bacterial cell sur-

face. CFC-101, a mixture of OMPs from P. aeruginosa, was used to immunize healthy human 
volunteers in a phase I/IIa clinical trial [122]. CFC-101 was safe and immunogenic in eliciting 

human mAbs after immunization that can passively protect mice from lethal P. aeruginosa 

challenge [122].

OprF and OprI are the major OMPs that are surface-exposed and conserved in wild-type 

strains of P. aeruginosa [123]. In phase I human trials, OprF-OprI vaccine (IC43) conjugating 

with aluminum hydroxide was safe and induced specific antibodies in healthy volunteers 
and burn patients by intramuscular administration [124, 125]. Intranasal immunization of 
OprF-OprI vaccine followed by systemic boost elicited a long-lasting systemic and local lung 

mucosal antibody response in patients with chronic pulmonary diseases [126]. Recently, 

phase II study on ICU P. aeruginosa infection showed that IC43 also produced a significant 
immunogenic effect without mortality or safety concerns [127].

4.4. Antibody and vaccine development against flagellins and pilins

Flagella are essential for motility, chemotaxis, invasiveness, and adhesion of P. aeruginosa to 

activate host inflammatory responses [128]. Flagellin is the primary protein component of 

flagella and consists of subtype a and subtype b [129].
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A monovalent P. aeruginosa flagella vaccine was safe and immunogenic in healthy human 
adults by intramuscular immunization and showed high and long-lasting serum antibody 
(IgG and IgA) titers against flagella positive P. aeruginosa [130].

Then, a bivalent flagella vaccine, containing some of the flagella subtype antigens (a0a1a2 and 
b), was evaluated over a 2-year period on cystic fibrosis (CF) patients not colonized with P. aeru-
ginosa in phase III trial. The vaccine lowered the risk of patients for initial infection as compared 

with that from the placebo group, though not statistically significant. Therefore, multivalent 
vaccine against P. aeruginosa flagella subtypes a and b is needed to improve overall efficacy 
of vaccine to more flagella subtypes [131]. A multivalent protein fusion vaccine consisting of 

flagellin subtype a and b, Oprl and OprF epitope 8, was used to immunize mice that induced 
specific IgGs against each individual antigen [132]. Although these IgGs elicited potent ADCC 

and increased clearance of nonmucoid P. aeruginosa, which reflect the initial colonization of 
P. aeruginosa, they were less effective for mucoid P. aeruginosa, which represent the colonized 
and chronic P. aeruginosa biofilm formation [132]. Conjugation vaccine of flagellin subtype a 
(FLA) with polymannuronic acid (PMA) built from mannuronic acid, the major component of 

alginate and biofilm, induced protection against mucoid P. aeruginosa in mice and rabbits [133].

Pili, as one key virulent factor, are filaments of pilin polymers located at the pole of  

P. aeruginosa and are responsible for adhesion of P. aeruginosa to host epithelial surfaces and 

twitching motility [134, 135]. A disulfide loop (DSL) at the C-terminal of pilin is the major 
epitope in bridging adherence of P. aeruginosa to host cell [134, 135]. Single copy of DSL 

was not an effective immunogen in mice, whereas multi-copy of DSL peptides increased 
IgG response 1000 times [136]. Immunization of mice with full length pilin of P. aeruginosa 

induced mAbs that inhibited pili-mediated epithelial cell adhesion [137].

4.5. Antibody and vaccine development against LPS

LPS is the major component of the outer membrane of P. aeruginosa. LPS has two types, 

smooth or S-type and rough or R-type. S-type LPS consists of O-polysaccharide (O-antigen) 

repeats linked with a core-conserved oligosaccharide and a lipid A moiety, while R-type LPS 

lacks O-antigen and only contains the core oligosaccharide [138]. The S-type LPS is involved 

in nonmucoid and in early stage of P. aeruginosa infection in CF patients, whereas the R-type 

LPS is associated with mucoid and late stage of P. aeruginosa infection in CF patients [139]. 

The O-antigen is immunogenic in the host for the induction of protective antibodies, whereas 

lipid A is the core endotoxic component for induction of inflammatory responses [138]. More 

than 20 serotypes of O-antigens have been identified [138].

Pseudogen, a heptavalent O-antigen vaccine, showed efficacy in nonrandomized trials among 
adult cancer and burn patients in preventing fatal P. aeruginosa infections but no benefit in leu-

kemia and CF patients [139]. Furthermore, Aerugen, an octavalent vaccine, was developed by 

conjugating purified O-antigens from eight P. aeruginosa strains with exotoxin A. This vaccine 

induced high levels of specific opsonizing antibodies in CF patients and significantly reduced the 
frequency of chronic infection for 10 years without apparent adverse effects in a nonblind trial. 
However, a subsequent double blind, randomized, placebo-controlled phase III trial failed to con-

firm the initial positive results and the further development of this vaccine was suspended [140].
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4.6. Antibody and vaccine development against alginate

Alginate or mucoid exopolysaccharide (MEP), a linear polymer of partially acetylated 

D-mannuronic acid and L-guluronic acid, is the major component of the P. aeruginosa biofilm 
matrix and thus critical in persistence of the bacteria in the CF lung [141]. MEP is relatively 

conserved between strains, which makes it an attractive vaccine antigen for CF patients. A 
high molecular weight MEP vaccine elicited long-lived opsonic antibodies in 80–90% of the 

volunteers in phase I trial [142]. MEPs conjugated to various carrier proteins successfully 

enhanced the MEP-specific immune responses and elicited opsonizing antibodies against het-
erologous MEPs in mice and rabbits [143]. However, a successful clinical product has not yet 

been developed, indicating that vaccine of MEP alone may not be sufficient for potent immu-

nization in human and conjugation with other vaccine targets may be considered.

4.7. Inactivated whole-cell vaccine and antibody development against P. aeruginosa

Whole cell-inactivated vaccines contain multiple bacterial antigenic components and thus can 

potentially induce diverse immunologic responses against various targets of P. aeruginosa. 

Oral immunization of bronchiectasis patients with an enteric-coated whole-cell killed vac-

cine resulted in significant reduction of P. aeruginosa in the sputum by specific lymphocyte 
responses [144]. Oral immunization of healthy volunteers with killed Pseudomonas vaccine 

was safe and increased Pseudomonas-specific serum antibodies, most notably IgA, and pro-

moted phagocytosis elimination of P. aeruginosa [145]. Whole cell inactivation by X-ray irradi-

ation kept antigen expression functional but inhibited replication in P. aeruginosa [146]. Mice 

immunized with this vaccine showed statistically significant protection against P. aeruginosa 

challenge in acute pneumonia model via opsonic killing, recruitment of CD4+ T lymphocytes 

and neutrophil cells [146].

4.8. Antibody and vaccine development against exotoxin

Exotoxin A is a key virulence factor secreted by around 90% P. aeruginosa clinical isolates and 

around 10,000 times more lethal than LPS [147, 148]. Exotoxin A is an ADP-ribosyltransferase 

and can kill macrophages, polymorphonuclear leukocytes, and other immune-related cells by 

receptor-mediated endocytosis and inhibition of protein synthesis elongation factor 2 [148].

mAbs against two epitopes of exotoxin A after immunization of rabbits showed potent inhibi-
tion of exotoxin A-induced cytotoxic activity in vitro [149]. Furthermore, these mAbs showed 

protective effects against P. aeruginosa infection for mice after immunization and enhanced 
the survival rate of mice model when antibiotic amikacin was combined [150]. Similarly, 

immunization of mice with exotoxin A showed 93.8% protection efficacy against mice burn 
and P. aeruginosa-challenged models when compared with unimmunized mice group that all 
died within the 70-day period [151].

Chimeric vaccine composed of a nontoxic (active-site deletion) exotoxin A and a key pilin frag-

ment sequence was used to immune rabbits subcutaneously [152]. The produced antibodies could 

target against both pilin to weaken P. aeruginosa adherence and exotoxin A to neutralize its cyto-

toxic activity in vitro [152]. Intranasal immunization of chimeric vaccine (pilin and exotoxin A) in 
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mice elicited serum and saliva immune responses [153]. Moreover, saliva samples contain anti-

bodies that can inhibit pilin-dependent P. aeruginosa adherence and neutralize exotoxin A [153]. 

This approach of immunization may be useful to provide protection against P. aeruginosa early-

stage adhesion and infection via oropharyngeal airway [153].

5. Antibody development against A. baumannii

5.1. Iron-regulated outer membrane proteins (IROMP) as antibody and vaccine target

Iron is essential for bacteria to survive within host. Bacteria have evolved several ways to 

compete with host for iron uptake. Expression of iron-regulated outer membrane proteins 

(IROMPs) in bacteria is one such way. IROMPs, with molecular weight ranging from 77 to 

88 kDa, are a class of specific cell surface receptors that can bind iron chelator siderophore 
with high affinity and subsequently lead to the internalization of iron-loaded siderophore 
and iron assimilation in A. baumannii [154, 155]. Goel et al. [155] used IROMPs from A. bau-
mannii to immunize BALB/c mice and identified several mAbs of IgM isotype that can block 
interaction of siderophore with IROMPs and induce bactericidal and opsonizing activity 
in vitro.

5.2. Inactivated whole cell, outer membrane complexes (OMCs), and outer membrane 

vesicles (OMVs) as vaccine and antibody target

Immunization of mice with inactivated whole A. baumannii, prepared from formalin-treat-

ment, elicited protective antibody response against A. baumannii post-infection challenge in 

mice sepsis model [156]. Subsequently, these antibodies separated from immunized mice 
sera also showed passive protection against mice with A. baumannii infection [156]. As inac-

tivated whole A. baumannii vaccine contains LPS (endotoxin) that may complicate immune 

responses after immunization, LPS-deficient and inactivated whole A. baumannii cell was 

used to immune mice [157]. Similar humoral and cellular immune responses was observed as 

compared with wild-type inactivated whole A. baumannii vaccine in protection against differ-

ent mouse models with disseminated A. baumannii infections of various strains [157].

Vaccine made of outer membrane complexes (OMCs) from A. baumannii induced protective 

humoral and cellular immune responses against murine sepsis model [158]. Similarly, pas-

sive transfer of antiserum from immunized murine to naive mice rescued these mice from 
A. baumannii infection [158].

Outer membrane vesicles (OMVs), released from Gram-negative outer cell wall surface, have 

a diameter within the range of 50–250 nm and contain all constituents as Gram-negative 

outer cell wall, such as proteins, LPS, phospholipids, DNAs, and RNAs [159–161]. OMVs 

play important pathological roles by delivering virulence factors into host cell and coordinate 

group communications known as quorum sensing [160, 161]. High-dose challenging of mice 

with OMVs (200 μg) triggered a strong pro-inflammatory cytokine release that may be patho-

logical to host [162].
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Interestingly, immunization of mice with low dose OMVs (10 μg) from one clinical MDR A. bau-
mannii isolate induced clear protection against mice pneumonia and sepsis models after A. bau-
mannii challenge [163]. The protective mechanism is in part from specific anti-OMV antibody 
induced opsonophagocytic activity and suppressed pro-inflammatory cytokine release [163].

Recently, OMVs were engineered as a delivery vehicle to package and display Omp22 at the 

OMV surface [164]. The displayed Omp22-OMV can induce high-titer anti-Omp22 specific 
antibodies and protect mice from sepsis after lethal A. baumannii challenge [164].

5.3. Targeting outer membrane protein A (OmpA)

Outer membrane protein A (OmpA), previously known as Omp38, is a lethal and most abun-

dantly expressed surface virulence factor in A. baumannii [165, 166]. OmpA belongs to the 

porin family with low permeability that may be a key factor contributing to its multidrug 

resistance [167]. OmpA can bind with host cell directly, internalize within mitochondria and 
nuclei compartments of host cell, and induce host cell death [165, 166]. Moreover, OmpA is 

highly conserved within six clinical isolates (99% protein sequence identity) and 14 other 

NCBI GenBank deposited sequences from different isolates of A. baumannii (89% protein 

sequence identity), while OmpA shows no homology to human proteins [168].

Thus, OmpA from A. baumannii is a potentially ideal vaccine and antibody target.

In agreement with the sequence identity analysis, immunization of diabetic mice subcutaneously 
with recombinant OmpA induced markedly protective effect upon lethal, extreme drug resistant-
A. baumannii challenge; use of antibodies against OmpA also elicited similar protective effect 
on diabetic mice with lethal A. baumannii infection [168]. Interestingly, dosage of A. baumannii 

rOmpA vaccine correlates with various B cell epitopes and immunodominant T cell epitopes, 

emphasizing dosage needs to be taken into account for vaccine development [169]. Recently, 

intranasal immunization of mice with OmpA can trigger both mucosal and systemic protective 
antibodies against MDR A. baumannii infection [170].

Omp22 is an outer membrane protein with molecular weight of 22-kDa. Omp22 is more than 

95% conserved within 851 reported A. baumannii strains [171]. In contrast, there is no homol-

ogy with human proteins. This unique and conserved sequence makes Omp22 an ideal vac-

cine candidate. Immunization of mice with recombinant Omp22 induced clear protection 
from MDR A. baumannii infections, showing a potential vaccine candidate [171].

FilF is a highly conserved outer membrane protein predicted to be involved in pilus assem-

bly in A. baumannii [172]. Immunization of mouse pneumonia model induced high titer of 
antibody, decreased the bacteria lung burden, and rescued around 50% of mice from lethal 

A. baumannii infection [172]. These promising results may suggest that FilF is a promising vac-

cine candidate for further evaluation [172].

5.4. Biofilm related proteins as vaccine and antibody target

Biofilms are bacterial communities connected by a surface of extracellular matrix with 
complicated compositions that may vary based on different bacteria and different living 
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environments [173]. Identified biofilm components contain polysaccharides, proteins, and 
extracellular DNAs and play essential pathological roles in bacterial adhesion to host cell and 

shielding bacteria from nearby pressures such as antibiotics [173, 174].

Surface polysaccharide poly-beta-(1-6)-N-acetylglucosamine (PNAG), as a major component 

of biofilm, is a key virulence factor in A. baumannii [175]. Immunization of rabbit with conjuga-

tion of a synthetic oligosaccharide, mimicking PNAG, with tetanus toxoid induced antibodies 

that can opsonize clinical isolates of A. baumannii with surface expression of PNAG in vitro and 

protect A. baumannii challenged mice [176].

Biofilm-associated protein (Bap) in A. baumannii, 8620 amino acids in length, is one of the largest 

proteins identified within bacterial proteins and plays a vital role in biofilm formation [177]. Bap, 

containing seven tandem repeats of modules, is 41–66% conserved among clinical isolates and 

its expression is induced by low iron concentration [177, 178]. Immunization of mice with one 
region of Bap from A. baumannii elicited protective immunity against A. baumannii of different 
strains, suggesting that Bap is conserved and can be used as a potential vaccine candidate [179].

Ata, a trimeric transporter and a key virulence factor in A. baumannii, is essential in biofilm 
formation [180]. Rabbit sera from Ata vaccination can opsonize A. baumannii isolates effec-

tively in complement and polymorphonuclear cells dependent manners [181]. Moreover, the 

rabbit sera can significantly lower the burden of mice lung infection from MDR A. baumannii 

strains, showing that Ata is one more potential vaccine target [181].

5.5. Targeting K1 capsular polysaccharide

K1 capsular polysaccharides are an important virulence factor that helps A. baumannii to 

establish infections within host [182]. Immunization of mice with sub-lethal and K1 capsu-

lar polysaccharide positive A. baumannii induced generation of specific anti-K1 capsular 
polysaccharide IgM monoclonal antibody (13D6) [183]. Moreover, 13D6 can induce efficient 
neutrophil-mediated in vitro opsonization and in vivo passive protectivity in rat soft tissue 
infection model [183]. However, only 13% of 100 collected A. baumannii strains were positive 

against 13D6, suggesting other capsular polysaccharide serotypes that may be unexplored. 

Additionally, lack of immunoglobulin class switch from IgM to IgG may not effectively trigger 
adaptive long-term immune memory response. Failure of class switching may be the inher-

ent property of most capsular polysaccharides that only elicits a T cell independent immune 

response after immunization [184]. Thus, to target more A. baumannii strains effectively, identi-
fication of more capsular polysaccharide serotypes and conjugation of capsular polysaccharide 
with carrier proteins may be needed. As a matter of fact, this strategy has been successfully 
applied in clinics for the prevention of Streptococcus pneumoniae infection by the introduction 

of 23-valent nonconjugated and 13-valent conjugated capsular polysaccharide vaccines [185].

6. Concluding remarks

Antibody and vaccine are important treatment options in the mobilization of human immune 
system passively or actively to recognize, kill bacteria enemies, and moreover memorize these 
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enemies for the long-term protection. Antigen selection is the key for antibody and vaccine 

development, which needs to be immunogenic and conserved. Initially, antibody and vac-

cine development mainly focused on individual antigen. It is now clear that multivalent anti-

gens should be more potent in eliciting immune responses against bacteria. Combination of 

pan-genomics, proteomics, and reverse vaccinology analysis of bacteria revealed a list of con-

served antigens as potential vaccine or antibody targets and some of these antigens are already 

known as virulence factors of related bacteria [186, 187]. These bioinformatics-based “omics” 

analysis will undoubtedly facilitate effective vaccine and antibody target identification and 
development.

Other alternatives to antibiotics, including short antimicrobial peptides, antibiofilm peptides, 
and host defense peptides, are not covered in this chapter; readers can refer to a recent excel-

lent review and references therein for further information [188].
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