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Abstract

We describe the main results previously studied concerning the thermal and electrical
tuning of photonic band gap structures and the temperature-dependent defect modes in
multilayer photonic liquid crystals using nematic liquid crystal slabs in a twisted con-
figuration. In addition to this, we present new results regarding the electrical control of
defect modes in such multilayer structures. In order to achieve this goal, we establish
and solve numerically the equation governing the twisted nematic configurations under
the action of the external electric field by assuming arbitrary anchoring conditions at the
boundaries. After this, we write Maxwell's equations in a 4 � 4 matrix representation
and, by using the matrix transfer technique, we obtain the transmittance and reflectance
for incident circularly polarized waves.

Keywords: photonic band bap, electrical and thermal tuning, nematic liquid crystal,
multilayer structure, defect mode

1. Introduction

Photonic crystals (PCs) are artificial structures with spatially periodic dielectric permittivity

whose interesting optical properties have attracted the attention of the scientific community

since the seminal works made by Yablonovitch [1] and John [2]. The most attractive attribute of

these periodic structures is the existence of photonic band gaps (PBGs) in which the propaga-

tion of electromagnetic waves is prohibited for a specific wavelength range. In one-

dimensional PCs, this phenomenon is usually called Bragg reflection. Liquid crystals (LCs)

are anisotropic intermediate phases between the solid and liquid states of matter that possess

positional and orientational order just like those of the solid crystals, and they can flow as a

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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conventional liquid [3]. For many decades, LCs have been used as optoelectronic substances

on account of easy tunability of their properties under the stimuli of external agents as

temperature, pressure and electromagnetic fields. This fact suggests the conception of new

artificial structures by making a convenient combination of LCs with PCs, whose most prom-

inent feature is the externally controlled PBG. First studies reported on this subject in three-

and two-dimensional structures are attributed to Busch and John [4] and Leonard et al. [5],

respectively. In [4], it was demonstrated the tunability of the PBG under the action of an

external electric field meanwhile the temperature tuning when a nematic LC is infiltrated into

the void regions of solid PCs is showed in [5].

Multilayer photonic liquid crystals (MPLCs) consisting of LCs alternated by transparent isotro-

pic dielectric films have been previously studied. In Ref. [6], Ha et al. demonstrated experimen-

tally simultaneous red, green and blue reflections (multiple PBGs) using the single-pitched

polymeric cholesteric LC films. Later, Molina et al. [7] investigated the strong dependence of

electric field on the PBG for incident waves of left- and right-circular polarization at arbitrary

incidence angles using nematic liquid crystal (NLC) slabs in a twisted configuration. In a recent

paper, Avendaño and Reyes [8] studied the optical band structure for reflectance and transmit-

tance considering that the dielectric matrix of a similar one-dimensional photonic structure to

that studied in Ref. [7] depends on temperature and wavelength. Twisted nematic LCs, where

the molecular orientation exhibits a 90� twist, have proven technological advantages to control

light flow. They have been used to switch effectively the pass of polarized light in nematic

displays by means of a normally applied low-frequency electric field.

Surface anchoring plays an essential role in the science and technology of LCs. The structure of

LCs in the bulk is different than that near the interface, and the boundary conditions established

from this interface structure influence the behaviour of the LCs in the bulk. There are two cases of

surface anchoring of particular interest. First, a strong anchoring case in which the molecules

near the surface adopt a rigidly fixed orientation, and the anchoring energies are very large.

Second, a weak anchoring case where the surface strengths are not strong enough to impose a

well-defined molecular orientation at the interface, and the expression for the anchoring energy

is some finite function that depends on the LC properties at the surface, the surface properties

and the external fields (e.g., electric and magnetic fields) and temperature [9, 10]. Anchoring

effects on the electrically controlled PBG in MPLCs were previously investigated by Avendaño

[11]. They considered a generalization of the model studied in [7] for which arbitrary anchoring

of the nematic at the boundaries is taken into account. They also found the nematic configuration

versus the anchoring forces and the PBG under the action of a strong enough external field

parallel to the periodicity axis, which is able to modify the configuration of the nematic-twisted

LC in the whole material including at the boundaries of each nematic slab. Later, Avendaño and

Martínez [12] theoretically exhibited that this system is able to produce an omnidirectional PBG

that can be electrically controlled for circularly polarized incident waves. An omnidirectional

PBG requires that there be no states in the given frequency range for propagation in any direction

in the material for both polarizations, which implies the total reflectivity for all incident angles.

Resonant transmittance peaks in the PBG can be induced in PCs when defects are introduced

in the periodic lattice. In this case, standing waves with a huge energy density are localized in
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the proximity of the defects (defect modes). Ozaki et al. [13] developed the first tunable PC/LC

hybrid structure by using a planar aligned NLC as a defect layer sandwiched between two

one-dimensional periodical multilayers (dielectric materials with high- and low-refractive-

index layers stacked alternatively) and demonstrated the electrical tuning of the defect modes.

Thermal tunability of one-dimensional PC/LC cells was demonstrated by Arkhipkin et al. [14].

Electrical-dependent defect mode in PC/LC hybrid structures using a twisted nematic LC as

defect layer was studied by Lin et al. [15] and Timofeev et al. [16]. Thermal tuning of defect

modes in MPLCs using twisted nematic LC was recently shown in Ref. [8].

In this chapter, we describe the main results previously studied concerning the thermal and

electrical tuning of PBG and the temperature-dependent defect modes in MPLCs using NLC

slabs in a twisted configuration. In addition to this, we present new results regarding the

electrical control of defect modes in MPLCs. In order to achieve this goal, we establish and

solve numerically the equation governing the twisted nematic configurations under the action

of the external electric field by assuming arbitrary anchoring conditions at the boundaries.

After this, we write Maxwell's equations in a 4 � 4 matrix representation and, by using the

matrix transfer technique, we obtain the transmittance and reflectance for incident circularly

polarized waves.

2. Nematic-twisted configuration

As said above, we are focused on a 1D structure consisting in N NLC slabs in a twisted

configuration alternated byN transparent isotropic dielectric films as it is illustrated in Figure 1

(a) and (b). For each of the NLC cells, the nematic is sandwiched between two dielectric layers

in such a way that its director is aligned parallel in both frontiers. A twist is then imposed on

the NLC by rotating an angle 2φt, one of the dielectric layers about its own normal direction.

Because of the possibility of molecular reorientation under the influence of external stimuli,

such as electromagnetic fields, the director n takes the general form

n � n α zð Þ;φ zð Þ½ � ¼ cosα zð Þ cosφ zð Þ; cosα zð Þ sinφ zð Þ; sinα zð Þ½ �, (1)

with α(z) and φ(z), the polar (zenithal) and azimuthal angles made by n with the xy plane and

the x-axis, respectively. For the present physical system and assuming small distortions in the

nematic [17], the expression that describes the elastic energy density of the nematic is

f el ¼
1

2
K1 ∇ � nð Þ2 þ

1

2
K2 n � ∇� nð Þ2 þ

1

2
K3 n� ∇� nð Þ2, (2)

where the positive elastic moduli K1, K2 and K3 refer to splay, twist and bend bulk deforma-

tions, respectively. At this point, it is important to mention that it has experimentally found

that when the nematic temperature is increasing to its transition temperature TNI (where the

NLC becomes isotropic), a reduction of the values of the elastic moduli is induced [3, 17]. On

the other hand, if we take into account the presence of an external electric field E, the interac-

tion of this field with the LC is described through the energy density f em ¼ � 1
2Re E �D∗f g,
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Figure 1. (a) Schematic of a MPLC consisting of N nematic LC slabs in a twisted configuration alternated by N transpar-

ent homogeneous isotropic dielectric films with thicknesses d and h, respectively. (b) Schematic of the polar α and

azimuthal φ angles made by the director n with the xy-plane and the x-axis, respectively, at the boundaries of each of

nematic LC slabs; the twist angle is given by ϕt and, at the middle of the slab, α=φ=0. (c) An obliquely incident

electromagnetic field with wave vector k0 impinges on the structure in the xz-plane and it makes an angle θ with respect

to the z-axis. Here, aL and aR represent the amplitudes of left- and right-circularly polarized components of incident wave,

respectively, and rL, rR, tL and tR correspond to those of the reflected and transmitted waves.
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where we have assumed that the nematic follows the constitutive relation D=ε0ε �E character-

ized by the uniaxial dielectric tensor

ε ¼ ε⊥δij þ εann, (3)

with εa=ε∥�ε⊥ the dielectric anisotropy of the medium and ε0 the permittivity of free space.

Here, δij is the Kronecker delta, ε⊥ and ε∥ denote the relative dielectric permittivity perpendic-

ular and parallel to the nematic axis, respectively, and they are related to the ordinary no and

extraordinary ne refractive indices by ε⊥ ¼ n2o and ε∥ ¼ n2e .

The study of confined nematic liquid crystals is strongly influenced by the physical properties

of the boundary walls [18]. From the macroscopic-geometrical and microscopic interactions

between the molecules of such surfaces and of the nematic, the alignment of the director n on

the boundary surfaces, known as anchoring, can be completely determined. Once the anchoring

conditions are established, the orientation of the NLC molecules at the substrate surface

determined the director in the bulk.

Several methods and techniques for surface alignment have been developed [19, 20]. In the

case of rubbed polymer films [21, 22], it has been observed that NLC molecules are strongly

anchored at the surface, and the alignment is parallel to the grooves produced by the rubbing

process. Also, the orientation of NLC molecules at the surfaces is preserved even if an external

field (electric or magnetic) is applied and removed.

On the other hand, photoalignment [23] and nanostructuring polymer surfaces [24] are

contact-free methods where it is induced a surface ordering that causes an anchoring of

controllable strength, which corresponds to a weak anchoring. For this anchoring condition,

alignment of the NLC molecules before and after the application of external fields is different.

Anchoring energy can be expressed in terms of the surface anchoring coefficients which are

related to the interaction strength between the NLC and the wall substrate for the deviation of

the easy axis along the correspondent directions. It is experimentally found that these coeffi-

cients are temperature dependent [18] and their values for specific NLCs can be obtained by

using the dynamic light scattering [25]. Thus, if we write the director in terms of α(z) and φ(z),

as in expression (1), the anchoring energy of each NLC slab can be expressed in terms of the

surface anchoring coefficients Wα and Wφ [26] as follows:

gL ¼ Wα sin
2αL

m þWφ cos
2αL

m sin 2 φL
m þ φt

� �

gR ¼ Wα sin
2αR

m þWφ cos
2αR

m sin 2 φR
m � φt

� �

,
(4)

which is an extension of the Rapini-Papoular model [9] and where αL
m αR

m

� �

and φL
m φR

m

� �

are the

polar and azimuthal angles at the left (right) boundary of each NLC, respectively, and φt the

twist angle. These anchoring coefficients are measured in energy per area units.

Thus, strong anchoring conditions are achieved when the anchoring coefficients are suffi-

ciently large and can be modelled by considering that Wα!∞ and Wφ!∞. In contrast, for

weak anchoring conditions, it is taken that Wα!0 and Wφ!0. Another criterion to establish

whether the anchoring is strong or weak is based on the extrapolation length [27].
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Thus, the equations governing the equilibrium configuration of the system are obtained by

considering specific anchoring conditions and by minimizing the total free energy

F ¼

ð

V

f el þ f em
� �

dV þ
1

2

ð

S0

gLdSþ
1

2

ð

Sd

gRdS, (5)

that can be achieved by considering strong or weak anchoring conditions.

2.1. Strong anchoring

Let us assume that the structure shown in Figure 1(a) is subjected to a DC electric field Edc=(0,

0,Edc) parallel to z-axis, and we consider that the orientation of the director at the surfaces of

each nematic cell are fixed and given by α=0�, φ zLm ¼ m� 1ð Þ dþ hð Þ
� �

¼ �φt and φ zRm ¼
�

m� 1ð Þ dþ hð Þ þ d� ¼ φt for m=1,2,3,… ,N. Here, zLm and zRm represent the positions of the left

and right boundaries of the N nematic layers, respectively. Under these circumstances and by

using a standard variational calculus procedure, the minimum free-energy condition δF=0

together with the restriction δn=0 at the surface of each slab generate the equations [12]

0 ¼ f αð Þ
d2α

dz2
þ
1

2

df αð Þ

dα

dα

dz

� �2

�
1

2

dg αð Þ

dα

dφ

dz

� �2

þ
1

2

σ

d

� 	2

sin 2α, (6)

0 ¼ g αð Þ
d2φ

dz2
þ
dg αð Þ

dα

dα

dz

dφ

dz
, (7)

where we have defined the dimensionless parameter σ2 ¼ ε0εaE
2
dc= K1=d

2
� �

which represents

the ratio between the electric and elastic energies. The functions f(α) and g(α) are defined as

f αð Þ ¼ cos 2αþ
K3

K1
sin 2α

g αð Þ ¼
K2

K1
cos 2αþ

K3

K1
sin 2α

� �

cos 2α:
(8)

In absence of the dc electric field, the polar angle α(z)=0� for any value of z and, the solution of

Eqs. (6) and (7) is simply

φm zð Þ ¼
2φt

d
z� m� 1ð Þ dþ hð Þð Þ � φt, (9)

where φm(z) represents the configuration of the mth layer in the region (m�1)(d+h)≤ z ≤(m�1)

(d+h)+d and the nematic director (1) is reduced to

n � n φ zð Þ½ � ¼ cosφ zð Þ; sinφ zð Þ; 0½ �: (10)

2.2. Weak anchoring

In this case, we consider a free-end-point variation for which the director orientation is affected

by the existence of finite anchoring coefficients [12]. This minimization procedure leads to the
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same set of coupled equations given by (6) and (7) subjected to boundary conditions at each

layer:

dα

dz













z¼zLm

¼
1

d Γα

1� Γ sin 2 φþ φt

� �� �

sin 2α

f αð Þ













z¼zLm

, (11)

dα

dz













z¼zRm

¼ �
1

d Γα

1� Γ sin 2 φ� φt

� �� �

sin 2α

f αð Þ













z¼zRm

, (12)

dφ

dz













z¼zLm

¼
Γ

d Γα

sin 2 φþ φt

� �

cos 2α

g αð Þ













z¼zLm

, (13)

dφ

dz













z¼zRm

¼ �
Γ

d Γα

sin 2 φ� φt

� �

cos 2α

g αð Þ













z¼zRm

, (14)

With Γα=1/γa,Γ=γφ/γa, γa=Wαd/K1 and γφ=Wφd/K1.

3. Electromagnetic propagation in a layered medium

The interaction between electromagnetic fields and matter is governed by Maxwell's equations

and their corresponding constitutive equations. Optical propagation in layered media can be

studied by conveniently writing Maxwell's equations in a 4�4 matrix representation. In this

matrix representation, the boundary conditions of waves impinging on material can be

imposed in such a way that the transfer and scattering matrix formalism to obtain the trans-

mittances and reflectances can be used in a natural way [28, 29].

3.1. 4 � 4 matrix representation

In systems where boundary conditions cannot be avoided, Maxwell's equations require the

continuity of tangential components of electric E and magnetic H fields at the boundaries. In

studying the optical properties of dielectric layers which are confined between parallel walls, it

is useful to write the set of Maxwell's equations in a representation where only appears, at the

same time, the transversal components of E and H (two components for E and two compo-

nents for H). This formalism is frequently referred to as Marcuvitz-Schwinger representation

[30]. If we consider that the optical properties of a multilayer structure depends only on spatial

variable z, we define the time-harmonic transversal four-vector

Ψ x; y; zð Þ ¼ ψ zð Þeikxx�iωt ¼

ex zð Þ
ey zð Þ
hx zð Þ
hy zð Þ

0

B

B

@

1

C

C

A

eikxxe�iωt, (15)

with ω the angular frequency of the propagating wave and kx the transversal component of the

wave vector. Maxwell's equations, inside a nonmagnetic medium, can be written in the follow-

ing matrix form:
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∂ψ zð Þ

∂z
¼ iA zð Þ:ψ zð Þ, (16)

for which the 4�4 matrix A(z) is given by

A zð Þ ¼

�
kxεzx
k0εzz

�
kxεzy

k0εzz
0 1�

k2x
k20εzz

0 0 �1 0

�εyx þ
εyzεzx

εzz

k2x
k20

� εyy þ
εyzεzy

εzz
0

kxεyz

k0εzz

εxx �
εxzεzx
εzz

εxy �
εxzεzy

εzz
0 �

kxεxz
k0εzz

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

(17)

where εij (i , j=x ,y,z) represents the elements of dielectric matrix in the structure, k0=2π/λ=ω/c

is the wavenumber in free space, λ is the wavelength and c denotes the speed of light in

vacuum. Also the fields e(z)=(ex(z), ey(z), ez(z)) and h(z)=(hx(z), hy(z), hz(z)) are related to the

electric E(z) and magnetic H(z) fields by the following expressions e zð Þ � Z
�1=2
0 E zð Þ and

h zð Þ � Z
1=2
0 H zð Þ, with Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

μ0=E0
p

the impedance in vacuum, ε0 and μ0 the permittivity and

permeability of free space, respectively.

For a homogeneous and isotropic dielectric medium, the matrix ε(z) is diagonal and indepen-

dent of the position, whereas for a nematic slab, ε(z) depends on the local orientation of the

principal axis of the liquid crystal molecules characterized by expression (3).

3.2. Boundary condition

Let us consider a multilayer structure where each of the layers is confined between two planes,

and the whole structure is surrounded by air. An electromagnetic wave impinging from the

left side of the multilayer structure will propagate through the sample, and it will be transmit-

ted and reflected outside the medium (see Figure 1 (c)).

The general solution of the differential equation (16) for electromagnetic waves propagating in

homogeneous media is the superposition of four plane waves: two left-going and two right-

going waves. With this in mind, we state the procedure to find the amplitudes of the transmit-

ted and reflected waves in terms of incident ones (at plane z=0). This implies the definition of

the following quantities [31]:

(i) The propagation matrix U(0,z) that is implicitly defined by the equations

ψ zð Þ ¼ U 0; zð Þ:ψ 0ð Þ, U 0; 0ð Þ ¼ 1, (18)

where 1 is the identity matrix andU(0,z) satisfies the same propagation equation (16) found forψ:

∂zU 0; zð Þ ¼ iA zð Þ:U 0; zð Þ: (19)
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This propagation matrix gives the right-side field amplitudes of the multilayer structure as

function of the left-side ones.

(ii) For a specific value z=z0, the transfer matrix is defined as U(0,z0).

(iii) The scattering matrix S giving the output field as function of the incident one. The matrix S

is defined through the relation αout=S �αin, where αin and αout are the amplitudes of the in-

going and out-going waves.

To find out S, the field must expressed, in any one of the external media, as a superposition of

planes waves by setting:

ψ ¼ T � α; Uα 0; z0ð Þ ¼ T
�1 �U 0; z0ð Þ � T, (20)

where α ¼ aþ1 ; aþ2 ; a�1 ; a�2
� �T

.

The relation ψ=T �α can be interpreted as a basis change in the four dimensional space of the

state vectors ψ. The columns of T are the ψ vectors representing the four plane waves generated

by the incident waves in the two external media (assumed as identical). The elements of vector

α are the amplitudes of the four plane wave. The choice of the new basis could be different

depending on the particular problem. By setting

U αð Þ ¼
U ff Ubf

U f b Ubb

 !

, (21)

the scattering matrix writes:

S ¼
U ff �UbfU

�1
bb U f b UbfU

�1
bb

�U
�1
bb U f b U

�1
bb

 !

: (22)

where the symbols + and f (� and b) mean forward (backward) propagating waves.

We point out that the methods of transfer and scattering matrices are very useful in studying

the plane wave transmission and reflection from surfaces of multilayer structures.

Differential equation (16) can be formally integrated over a certain distance z0 of the medium

ψ z0ð Þ ¼ e
i
Ð z0

0
A z0ð Þdz0

�ψ 0ð Þ, (23)

and by straight comparison of Eqs. (18) and (23), the transfer matrix U(0,z0) is defined as:

U 0; z0ð Þ ¼ e
i
Ð z0

0
A z0ð Þdz0

, (24)

where plane waves are incident and reflected in the half-space z < 0, and plane waves are

transmitted on the half-space z > z0.
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It can be seen immediately that the problem of finding U(0,z0) is reduced to find a method to

integrate expression (24) on the whole multilayer structure. Because of the non-homogeneity of

the medium proposed here, we consider it as broken up into many very thin parallel layers,

each of them with homogeneous anisotropic optical parameters [32]. In this way, U(0,z0) is

obtained by multiplying iteratively the matrix for each sublayer from z = 0 to z = z0.

3.3. Transmission and reflection by multilayer structures

As said above, the general solution of the differential equation (16) for electromagnetic waves

propagating in homogeneous media is the superposition of forward and backward propagating

waves. The obliquely incident and reflected electromagnetic fields in free half-space z ≤ 0 (Figure 1

(c)), for an arbitrary polarization statewhich are solutions of equation (16), can be expressed as:

e

h

 !

inc

¼ aL iu� vþð Þ � aR iuþ vþð Þ½ � exp ik0zzð Þ
�i aL iu� vþð Þ þ aR iuþ vþð Þ½ � exp ik0zzð Þ

� �

(25)

and

e

h

 !

ref

¼ � rL iu� v�ð Þ � rR iuþ v�ð Þ½ � exp �ik0zzð Þ
i rL iu� v�ð Þ þ rR iuþ v�ð Þ½ � exp �ik0zzð Þ

� �

, (26)

where k0=(k0x, k0y, k0z)=k0(sinθ,0,cosθ) is the wave vector of the incident wave making an angle θ

with respect to the z-axis, aL and aR represent the amplitudes of left- and right-circularly polar-

ized (LCP and RCP) components of incident wave, respectively, and rL and rR correspond to

those of the reflected wave (see Figure 1(c)). The unit vectors u and v are defined as

u ¼ uy
ffiffiffi

2
p , v� ¼ ∓ cosθux þ sinθuz

ffiffiffi

2
p , (27)

with ux ,uy,uz the triad of Cartesian unit vectors. In the region z ≥ z0, the transmitted electro-

magnetic field is

e

h

 !

tr

¼ tL iu� vþð Þ � tR iuþ vþð Þ½ � exp ik0z z�N dþ hð Þ � hð Þð Þ
�i tL iu� vþð Þ þ tR iuþ vþð Þ½ � exp ik0z z�N dþ hð Þ � hð Þð Þ

� �

, (28)

where tL and tR are the amplitudes of LCP and RCP components, respectively, of transmitted wave.

As the tangential components of e and h must be continuous across the planes z=0 and z=z0, the

boundary values ψ(0) and ψ(z0) can be fixed as:

ψ 0ð Þ ¼ P
ffiffiffi

2
p �

aR
aL
rR
rL

0

B

B

@

1

C

C

A

and ψ z0ð Þ ¼ P
ffiffiffi

2
p �

tR
tL
0
0

0

B

B

@

1

C

C

A

, (29)

with
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P ¼

cosθ cosθ cosθ cosθ

�i i i �i

i cosθ �i cosθ i cosθ �i cosθ

1 1 �1 �1

0

B

B

B

B

@

1

C

C

C

C

A

: (30)

By using Eqs. (23), (24) and (29), the problem of reflection-transmission can be established as

follows

tR

tL

0

0

0

B

B

B

@

1

C

C

C

A

¼ M �

aR

aL

rR

rL

0

B

B

B

@

1

C

C

C

A

, (31)

where M=P�1�U(0,z0) �P and U(0,z0) are defined in (24). Notice that the matrix equation (31)

gives a set of coupled equations relating the amplitudes aL, aR, rL and rR (from z ≤ 0) to the

transmitted amplitudes tL and tR (for z ≥ z0).

The scattering matrix S relates the amplitudes tL, tR, rL and rR to the known incident ampli-

tudes aL and aR. This relation can be expressed in terms of matrix M as [33]

tR

tL

rR

rL

0

B

B

B

@

1

C

C

C

A

¼ S �
aR

aL

 !

: (32)

where

S ¼

tRR tRL

tLR tLL

rRR rRL

rLR rLL

0

B

B

B

B

@

1

C

C

C

C

A

¼ Q1 �MQ2ð Þ�1
MQ1 �Q2ð Þ (33)

and

Q1 ¼

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0

B

B

B

B

@

1

C

C

C

C

A

, Q2 ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0

B

B

B

B

@

1

C

C

C

C

A

: (34)

Co-polarized coefficients have both subscripts identical meanwhile cross-polarized coefficients

have different subscripts. The square of the amplitudes of t and r is the corresponding trans-

mittance and reflectance, respectively; thus, TRR=|tRR|
2 is the co-polarized transmittance

corresponding to the transmission coefficient tRR, TRL=|tRL|
2 is the cross-polarized transmittance
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corresponding to the transmission coefficient tRL, and so forth. In the absence of dissipation of

energy inside the sample, the principle of conservation of energy must be satisfied from which

we have that

TRR þ TLR þ RRR þ RLR ¼ 1 and TRL þ TLL þ RRL þ RLL ¼ 1: (35)

Before ending this section, we mention that an alternative way to find the transmission and

reflection coefficients is using the expressions given by (21) and (22). Also, the system of

equations (31) can be solved numerically to find the scattering matrix.

4. Numerical results and discussion

In previous sections, we have presented in detail a general mathematical formalism to deter-

mine the reflectances and transmittances by multilayer structures. In this section, we apply this

formalism to MPLCs using NLC slabs in a twisted configuration considering that circularly

polarized light impinges on the structure in order to analyse the optical spectra and their

dependence on external agents. In particular, we describe the main results previously studied

concerning the thermal and electrical tuning of optical spectra and the temperature-dependent

defect modes. In addition to this, we present new results regarding the electrical control of

defect modes.

4.1. Electrical tuning of band structure and defect mode

In this section, we present the influence of the electric field on the optical band structure and

defect mode by considering arbitrary anchoring conditions at the boundaries. To this aim, the

equilibrium configuration of each NLC layer as a function of σ is obtained by solving the

second order differential equations (6) and (7) for α(z) and φ(z) subjected to the conditions

expressed in Eqs. (11)–(14). Then, this configuration is substituted into Eq. (23) in order to

obtain the transfer matrixM as function of σ for circularly polarized incident waves.

Numerical calculations were performed by considering a NLC phase 5CB for which K1=0.62�
10�11

N, K2=0.39�10�11
N, K3=0.82�10�11

N [17] and refractive indices at optical frequencies

no ¼
ffiffiffiffiffi

ε⊥
p

¼ 1:53 and ne ¼
ffiffiffiffiffi

ε∥
p

¼ 1:717. The twist angle is taken 2φt=90
�, and the homoge-

neous isotropic dielectric medium is zinc sulphide (ZnS) with refractive index nd=2.35. The

MPLC consists of N=11 NLC layers alternating with N=11 dielectric slabs with the same

thickness. Finally, we report our results parameterizing all the spatial variables by the NLC

thickness d. In this way, the dimensionless thickness of each NLC cell is h'=d/d=1, whereas for

each ZnS slab is h'=h/d=1, and so forth.

Due to the competition between orientation produced by influence of the external electric field

and by surface anchoring effects, we expect a deformation in the NLC only above a certain

critical value σc. This critical electric field is expected to be maximum for the case of strong

anchoring conditions, whereas for the weak anchoring case, σc will decrease as the surface

forces get smaller [7, 11].
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4.1.1. Strong anchoring conditions

For strong anchoring conditions, the orientation of the nematic molecules at the walls of each

NLC is specified in Section 2.1. The curves for α(z) and φ(z) are shown in Figure 2(a) and (b),

respectively, as function of dimensionless variable w = z/d above the critical value σc = 3.26. As

it can be noticed in Figure 2(a), an increment in the electric field involves the augmentation in

the polar angle α. Owing to the influence of the external field, the nematic molecules tend to be

aligned parallel to it (z-axis). As expected, for σ < σc, α=0
� for all values of w, which means that

the director in this case is perpendicular to the z-axis. In Figure 2(b),we observe that for σ < σc,

the curves for azimuthal angle φ are reduced to straight lines with slope equal to 2φt=90
�, that

corresponds to the configuration of a pure twisted NLC. Above the critical value, the strong

anchoring condition is really dominant on the parameter φ as the electric field increases.

Indeed, most of molecules tend to spread far from xz plane.

Figure 3 exhibits the co-polarized and cross-polarized transmittances and reflectances for LCP

and RCP waves impinging normally on the structure as function of the dimensionless param-

eter d/λ for continuous values of the electric field above the critical value σc (it is worth to

mention that below this value, the not-shown curves are very similar to that of σ = σc). Note the

strong influence of σ on the transmission and reflection spectra in enhancing and extinguishing

bands. Indeed, Figure 3 clearly shows that for σ = σc, the curves for transmittances exhibit

several stop bands of different widths in the plotted interval and, as σ increases, each stop

band gets wider for co-polarized transmittances TRR and TLL. Also, cross-polarized transmit-

tances TLR and TRL are totally absent for high enough values of the electric field. On the other

hand, at the critical value, co-polarized reflectances RRR and RLL exhibit narrow-reflection

bands with relatively high amplitudes and cross-polarized reflectances RLR and RRL show

one-dominant high-reflection band. In this case, co-polarized reflectances reduce their band

amplitudes practically to zero, and reflection bands of cross-polarized reflectances are highly

enhanced for larger values of σ. These optical properties allow us to use this MPLC as an

electrically shiftable universal rejection filter for incident RCP and LCP waves where, by
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Figure 2. (a) Curves of the polar angle α as function of dimensionless variable w at different values of σ: σ=σc+0.005 (solid

line), σ=3.5 (dashed line), σ=4.5 (dotted line), σ=8 (dot-dashed line) and σ=13.5 (large dashed line). Below the critical

value σc, α=0
�

. (b) Curves of the azimuthal angle φ at the same values of σ as in (a). Below the critical value σc, the curve is

a straight line with slope 2φt=90
�

.
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increasing the electric field, one can highly enhance the cross-polarized reflection bands and

supress the co-polarized ones.

In [7], it is shown that for a fixed value of σ the band structure of the reflectances and trans-

mittances are shifted towards smaller wavelength regions as the incident angle θ increases.

This behaviour results from the fact that for plane electromagnetic waves propagating

obliquely with respect to the layer interfaces, only the normal component of the wave vector

is involved in the photonic band formation. Hence, as the incident angle augments, the relative

position of the bands is moved towards smaller wavelengths.

If one of the layers possesses a different size compared with the remaining ones, this layer can

act as a defect, and an optical defect mode can be induced. Here, we specifically consider that

the middle NLC-ZnS stack of the MPLC has a different size compared with the remaining

ones. We choose specific values dd=2d
' and hd=2h

', where dd and hd are the dimensionless

thicknesses of the NLC and ZnS defect layers, respectively. Figure 4(a) and (b) displays the

defect mode induced in the photonic band of the co-polarized transmittance TRR and cross-

polarized reflectance RLR, respectively, by LCP waves impinging normally on the MPLC. We

notice that as the parameter σ increases two important facts occur: (i) two defect modes with

small amplitude are induced within the first stop band (see Figure 3) which gradually merge

into only one; the position of the defect mode possessing the largest wavelength moves toward

regions of smaller wavelengths, keeping fixed the position of the other one and (ii) the ampli-

tude of the defect modes gets larger. Physically, the origin of the defect mode is the phase

change due to the variation in the optical path length caused by the defective medium. Once

the defect mode is created at specific position, it can be controlled by inducing reorientation in

the nematic molecules by means of an external electric field [7]. Indeed, since the refractive

index of the LC depends on the angle β between the wave vector k of the electromagnetic wave

in the LC and the local orientation of the director n, the refractive index (and the optical path

length) can be changed by varying β. At normal incidence and σ < σc, β = 90� for all positions z.

Figure 3. (a)–(h) Plots of co-polarized and cross-polarized reflectances and transmittances for LCP and RCP waves

impinging normally on a MPLC as function of the dimensionless parameter d/λ and continuous values of σ within the

interval σc < σ < 13.
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Nevertheless, as σ increases, most of the molecules tend to be aligned parallel to z-axis (see

Figure 2(a)) and β!0�. These results show that the amplitude of defect mode and its position

can be tuned by a DC electric field.

4.1.2. Weak anchoring conditions

It is experimentally found that for a LC phase 5CB, the polar anchoring γα is of the order of 10
1,

and this value is one or two orders stronger than the azimuthal anchoring γφ [34]. Under these

considerations, the values of the dimensionless anchoring parameters are taken as Γ=Γα=0.1.

The curves for α(z) and φ(z) are shown in Figure 5(a) and (b), respectively, as function of

dimensionless variable w=z/d above the critical value σc=2.86. In Figure 5(a), we can notice that,

as σ augments, the values of α increase, getting a maximum at the middle of the cell. Because of

the influence of external electric field, the polar angle at both borders enlarges by increasing σ

highlighting the fact that even at the borders, the field is able to distort the configuration. Figure 5

(b) shows two interesting phenomena: (i) for σ < σc, the curves are reduced to straight lines with

slope equal to 2φ0c, where φ0c represents the azimuthal angle adopted by the MPLC at the walls

of each NLC cell for values of electric field below the critical field; (ii) above the critical value,

most of the molecules tend to acquire an angle φt=�45� for 0< w < 0.5 and φt = 45
� for 0.5 < w<1.

Figure 6 shows the co-polarized and cross-polarized transmittances and reflectances for LCP

and RCP waves impinging normally on the structure as function of the dimensionless param-

eter d/λ for continuous values of the electric field above the critical value σc (below this value,

the not-shown curves are very similar to those corresponding to σ=σc). Although, the optical

properties shown in Figure 6 are qualitatively similar to those of Figure 3 where strong

anchoring conditions were considered, we notice that in the case of weak anchoring condi-

tions, the behaviour of transmittances and reflectances in Figure 6 is enhanced in comparison

with Figure 3. Because of the strong influence of the electric field on the molecular orientation

Figure 4. (a) At normal incidence, plots of co-polarized transmittance TRR for LCP incident waves as function of the

dimensionless parameter d/λ and continuous values of σ. (b) At normal incidence, cross-polarized reflectance RLR for LCP

incident waves at the same values of σ as in (a).
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for all values of z (including the walls of each cell), the alignment of most of the nematic

molecules parallel to z-axis occurs at smaller values of electric field unlike for strong anchoring.

Hence, the phenomenon of extinguishing and enhancing bands is present at smaller values of σ.

Now, we induce a defect mode in the photonic band structure by generating a defect in the

MPLC in the same way as explained in Section 4.1.1. Figure 7(a) and (b) displays the defect

mode induced in the photonic band of the co-polarized transmittance TRR and cross-polarized

reflectance RLR, respectively, for LCP waves impinging normally on the MPLC. Similar to the

case of strong anchoring conditions, we can observe that when the parameter σ augments the

amplitude of the defect modes gets larger, and the position of the defect mode possessing the

largest wavelength moves toward regions of smaller wavelengths, while the position of the

other defect mode remains fixed. These facts are enhanced in comparison to those of strong

anchoring assumptions because of the strong influence of the electric field on the molecular
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Figure 5. (a) Curves of the polar angle α as function of dimensionless variable w at different values of σ: σ=σc+0.005 (solid

line), σ=3.5 (dashed line), σ=4.5 (dotted line), σ=8 (dot-dashed line) and σ=13.5 (large dashed line). (b) Curves of the

azimuthal angle φ at the same values of σ as in (a).

Figure 6. (a)–(h) Plots of co-polarized and cross-polarized reflectances and transmittances for LCP and RCP waves

impinging normally on a MPLC as function of the dimensionless parameter d/λ and continuous values of σ within the

interval σc<σ<13. Here, we consider weak anchoring conditions at the walls of each NLC.
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orientation for all values of z, including the walls of each NLC slab in the MPLC. This implies

that the defect-mode amplitude gets larger for smaller values of σ in comparison to that of the

strong anchoring case.

4.2. Temperature-dependent band structure and defect mode

Here, we assume that the orientation of the director at the surfaces of each nematic cell is

strongly anchored at the boundaries. In order to obtain the band structure, we apply the same

mathematical procedure as depicted in Section 4.1, but in this case, we have to take into

account that the director n is given by expressions (9) and (10) and the elements of dielectric

tensor ε(z) depend on the wavelength and temperature [8]. By considering E7 LCmixture slabs

and ZnS dielectric layers, it is found that in the interval of temperatures [15�C,50�C] and for

RCP waves impinging normally, the position of the photonic bands of the co-polarized trans-

mittance TRR and cross-polarized reflectance RLR (analogous to those of Figure 3with σ=0) can

be shifted from regions of small wavelengths toward regions of higher wavelengths by increas-

ing the thickness d of the NLC layers. In addition to this, bandwidth increases for thicker

layers, and new narrower transmission bands are created in regions of smaller wavelengths.

In summary, the position, the width, and the number of bands augment as the thickness d is

increased. Physically, when the magnitude of d gets larger, the optical path lengths increase,

and hence, the wavelength zones of destructive or constructive interference are shifted

towards higher wavelength regions. For constant thickness and temperature, it is observed

that as the incident angle θ augments, the photonic bands undergo a shift towards smaller

wavelengths and their widths get narrower. As said previously, this behaviour results from the

fact that for plane electromagnetic waves propagating obliquely with respect to the layer

interfaces, only the normal component of the wave vector is involved in the photonic band

formation. Thus, as the incident angle augments the relative position of the bands moves

towards smaller wavelengths, and the overall band is always closed up. On the other hand,

for constant thickness and a fixed incident angle, as the temperature augments, the photonic

Figure 7. (a) At normal incidence, plots of co-polarized transmittance TRR for LCP incident waves as function of the

dimensionless parameter d/λ and continuous values of σ. (b) At normal incidence, cross-polarized reflectance RLR for LCP

incident waves at the same values of σ as in (a). Here, we consider weak anchoring conditions at the walls of each NLC.
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bands move towards the short-wavelength region. Physically, since the average refractive

index of the liquid crystal decreases as the temperature gets larger, the optical path length

diminishes, and thus, the wavelength regions where the waves are able to undergo construc-

tive or destructive interference shift towards smaller wavelengths zones.

In a similar way as demonstrated above, a defect mode can be induced by considering that the

middle layer of the homogeneous and isotropic slabs (ZnS) has a different size compared with

the remaining ones. If we consider normal incident RCP waves, for hd=1.991h
' and temperature

values in the interval [15�C, 50�C], the position of the defect mode induced in the photonic

band of the co-polarized transmittance TRR and cross-polarized reflectance RLR (analogous to

those of Figure 4 with σ=0) shifts from larger wavelengths toward smaller ones as the temper-

ature gets increasing. Because the origin of the defect mode is the phase change due to the

variation in the optical path length caused by the defective medium, the defect wavelength can

be shifted towards smaller wavelength regions as the temperature is increased by taking into

account that the average refractive index of the NLC decreases as temperature increases.

5. Conclusion

We presented a series of results concerning the thermal and electrical tuning of photonic band

gaps and defect modes in multilayer photonic liquid crystals consisting of liquid crystal layers

alternated by transparent isotropic dielectric films using nematic liquid crystal slabs in a twisted

configuration. We exhibited that the position and width of the band gaps can be electrically and

thermally controlled. When one of the homogeneous and isotropic slabs has a different size

compared with the remaining ones, a defect mode is induced in the band structure whose

wavelength can be tuned. Tuning of the transmission and reflection bands and the defect mode

investigated here could be useful in the implementation of tunable optical filters and waveguides.
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