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Abstract

Immune regulation is an essential feature of immune responses. The failure of such
regulation results in allergic reactions and debilitating autoimmune diseases that can be
fatal. Furthermore, the recent increase in the prevalence of the latter as well as the medi-
cal severity makes this a subject of great medical interest. Autoimmunity results from
a breakdown in or the failure of the self-tolerance mechanisms. Many genes have been
identified in which mutations cause the predisposition to autoinflammation and autoim-
munity in human and in animal models. The relatively small number of genes explored to
date unquestionably shows the challenges of identifying the associated genes in outbred
populations of humans. One chief contributing gene family to both autoinflammatory and
autoimmune diseases is the nucleotide-binding and oligomerization domain (NOD)-like
receptor (NLR) family. Ever since their discovery, NLRs have drawn considerable atten-
tion for their ability to form multiprotein complexes called inflammasomes and also for
their roles as NLRs, independent of inflammasome complexes. We herein first revisit gen-
eral characteristics of NLRs and inflammasomes. We then couple this knowledge with the
most recent findings related to autoinflammatory and autoimmune diseases, while high-
lighting some unanswered questions and future perspectives in elucidating NLR roles in
health and disease.

Keywords: NOD-like receptor signaling, inflammasomes, PAMPs, DAMPs, HAMPs,
SAMPs, autoinflammation, autoimmunity

1. Inflammasomes and NOD-like receptors (NLRs)

Inflammasomes are nucleotide-binding and oligomerization domain (NOD)-like recep-
tor (NLR) multiprotein complexes that activate the cysteine protease caspase-1 (IL-1 beta-
converting enzyme) and then lead to the maturation of pro-IL-1( and IL-18. Even though they
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are the component of the innate immune system, their ability to regulate the adaptive immune
system have been previously suggested (Figure 1) [1]. The immune system in mammals com-
prises a germline-encoded innate immune system and an acquired adaptive immune system
that is able to eradicate pathogenic microorganisms with a sophisticated specificity and a
long-term memory. The innate immune system is a primary role player in shaping host resil-
ience. This system is armed with a broad portfolio of pattern recognition receptors (PRRs) that
convert microbial and danger recognition into rapid host defenses as well as convey signals to
prime the adaptive immune responses for a long-lasting protection. Nucleotide-binding and
oligomerization domain (NOD)-like receptors (NLRs) are a class of evolutionarily conserved
intracellular PRRs that play an important role in innate immunity and host physiology and
also most recently in regulating and shaping adaptive immunity as predicted by their preva-
lence in organisms [2]. To date, there are 22 known NLRs in humans, and the single nucleo-
tide polymorphisms (SNPs) in their genes as well as the association of mutations with human
diseases emphasize their critical role in host defense.

Of the number of genes involved in the development of autoinflammatory and autoimmune
diseases, some affect the cells of the immune system directly, changing the immunoreactivity
of their host. These genes are mostly not disease-specific. This type of genes has been identi-
fied in mouse models as well. An excellent example for such a gene family is NLR-encoding
gene family. NLRs are a special group of cytosolic proteins that play an important role in
the regulation of host innate immune responses. They are expressed in lymphocytes, mac-
rophages, dendritic cells (DCs) as well as in some non-immune cells such as epithelium [3].
In the most general terms, NLRs are classified into four subfamilies based on the structural
similarities of their proteins: NLRA, acidic domain containing; NLRB, baculoviral inhibitory
repeat (BIR) domain containing; NLRC, caspase activation and recruitment domain (CARD)
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Figure 1. Activation of the inflammasome and its connections between the innate and adaptive immune system.
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containing; NLRP, pyrin domain (PYD) containing; NLRX, with no strong homology to the
N-terminal domain of any other NLR subfamily member [4]. After describing the subfamilies
of NLR family members, based on the N-terminal region domain, we now describe the other
essential domains. A typical NLR protein is composed of three domains. These domains are
effector domains in N-terminal (PYRIN, CARD or BIR domains) as just been discussed, a
central nucleotide-binding domain (NACHT or NOD domain) and a C-terminal leucine-rich
repeats (LRRs). N-terminal effector domains are responsible for interacting with signaling
molecules in downstream pathway [5]. The NACHT or NOD domain is responsible for oligo-
merization of protein and LRRs are required for identification of ligand molecules when there
is a potential ligand. LRR domain, on the other hand, acts as a suppressor of NLR activation
by preventing activation of the N-terminal domain when no ligand present in the environ-
ment, therefore playing a role in the autoregulation of these proteins [6]. Following ligand
binding, the auto-regulatory LRR undergoes a conformational change, which then exposes
the N-terminal domain, therefore, its interaction with downstream signaling adaptor proteins
or effectors and finally the multiprotein complex formation [7, 8].

NLRC4, NLRP3, NLRP6, NLRP1, NLRP12, NLRP7 and the PYHIN family member AIM2 have
been shown to form inflammasomes that play a critical role in recognizing pathogen-associated
molecular patterns (PAMPS) and danger-associated molecular patterns (DAMPs) and most
recently homeostasis altering molecular processes (HAMPs) triggering the immune response
[9-11]. Caspase-1is necessary for the maturation of inflammatory cytokines IL-1 and IL-18 from
their pro-forms and eventually the induction of a cell death called as pyroptosis [9, 12]. During
activation, the NLR triggers caspase-1 activation either directly by CARD-CARD interaction or
indirectly through the adaptor molecule apoptosis-associated speck-like protein containing a
caspase recruitment domain (ASC). Caspase-1 then cleaves pro-IL-1p and pro-IL-18 leading to
their activation and secretion [13]. Although NLRs, including NLRC4, NLRP3, NLRP6, NLRP1,
NLRP12, NLRP7 and the PYHIN family member absent in melanoma 2 (AIM2) are suggested
to function by forming inflammasomes, other NLRs such as NOD1, NOD2, NLRP10, NLRX1,
NLRC5 and CIITA do not function through the formation of inflammasomes but act via the
activation of nuclear factor-kB (NF-kB), interferon (IFN) regulatory factors (IRFs) and mitogen-
activated protein kinases (MAPKSs) to induce innate immune responses [3].

As we will further discuss in the next topic, NLRs have the ability to recognize PAMPs and
DAMPs which makes them remarkable molecules to set the activation threshold in case of an
infection. Added to these mechanisms of recognition, HAMPs have strikingly, been postu-
lated to have roles in the regulation of inflammasomes. According to the HAMP hypothesis,
the pyrin domain (PYD) of a NLR protein is kept inert by a molecular pathway wherein the
small GTPase RAS homologue gene family member A (RHOA) activates serine/threonine pro-
tein kinase N1 (PKN1) and PKN2, resulting in the subsequent phosphorylation of pyrin on
serine 242 [14]. 14-3-3 proteins are a conserved protein family that play roles in many different
cellular signaling pathways. They bind pyrin following its phosphorylation, maintaining its
inactivated state. In the presence of a PAMP, such as Clostridium difficile toxin B (TedB) pyrin
is activated; however, this activation does not result in the activation of the immune system,
because pyrin activation is dependent on the function of the toxin, not its structure. TcdB dis-
rupts the RHOA phosphorylation pathway thereby leads to the removal of the 14-3-3, allowing
the activation of pyrin (dephosphorylated state). By this mechanism, pyrin can respond to any
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microbe infection that changes the RHOA, PKN1 and PKN2, as well as 14-3-3 activity. On the
basis of pyrin’s ability to sense the alterations in phosphorylation balance which is an altered
homeostasis, pyrin is proposed to function not only as a universal sensor of extensive cellular
changes, but also as a sensor for a single PAMP or DAMP [9]. This toxin function-based detec-
tion mechanism overrides the structural restrictions of the conventional PAMP recognition
model. On the other hand, the model of HAMP recognition has some ramifications. A non-
pathogenic agent might also alter the cellular phosphorylation processes which will lead to
pyrin activation. Defective prenylation causes the inactivation of RHOA and therefore pyrin
activation. These individuals with deficient protein prenylation develop hyper-IgG syndrome,
which is considered as an auto-inflammatory disease [15, 16]. Sensing HAMPs through pyrin
constitutes an example for the ability of NLRP1, NLRP3 and NLRP6 to respond to broad and
diverse molecular stimuli. Although the most studied of these sensors is NLRP3, the complete
molecular mechanism of action for NLRP3 activation is largely unknown. One of the most
recent report demonstrated that NLRP3 is phosphorylated in a similar way to pyrin, suggest-
ing that NLRP3 activation might require the detection of phosphorylation [17]. Furthermore,
IL-1B plays a role as an effector molecule as well as a HAMP sensor. Inactive forms of IL-13
is cleaved by caspase-1 after the inflammasome assembly is complete. However, it should be
noted that IL-1p3 can also be cleaved by bacterial proteases. This notable adaptation aids in the
efficient clearance of the bacteria. However, the mutations that were acquired by the patho-
gens can hinder the maturation of IL-13 via cleavage by bacterial proteases [18], therefore
they might enhance the invasion by bacteria. The use of IL-13-inhibiting drugs during infec-
tions, does not let the rise of such mutations. In this case, it is clear that activation of innate
immune response depends on the detection of protease activity, meaning that the function
but not the structure is the determinant of the inflammatory responses, another supporting
evidence for the HAMP model. In contrast to the non-mammalian-derived PAMP detection
point of view, HAMPs and DAMPs would most likely be generated in the absence of a patho-
gen, hence would increase the risk of inflammatory diseases and may theoretically contribute
to the pathophysiology of inflammatory diseases. The nutrients, growth factors, oxygen and
neighboring other cells, surrounding extracellular milieu maintain the homeostasis of cells.
The alteration in the components of the environment such as pH, oxygen levels, tempera-
ture, concentration of certain molecules disturbs the physiological basal state of cells (i.e. the
homeostatic balance) [19]. Altered homeostasis triggers a cellular stress response, resulting
in the release of DAMPs as well as HAMP detection by pyrin. Recognition of stress by tissue
macrophages activates signaling pathways, including inflammasomes, inducing an inflam-
matory response to recover tissue functionality during homeostatic imbalance. The inflam-
mation dependent on the tissue-resident macrophages that induces an adaptive response is
termed “para-inflammation” [20]. It has been proposed that the para-inflammation is of great
importance to the chronic inflammatory responses that are associated with modern human
diseases, like autoinflammatory and autoimmune diseases as well as the acute inflammatory
responses that will damage the tissue [21]. Although the development of inflammatory dis-
eases resulting from HAMP detection as a pathogen recognition system require more exper-
imental data, ER stress-induced NLRP3 inflammasome activation in chronic liver diseases
has been reported [22]. The new discoveries of inflammasome associations with inflamma-
tory diseases remain to be of great interest, however; despite the incremental data, negative
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regulation of inflammasome activation is still poorly understood. As the controlled inflam-
mation is crucial to health, the mechanisms of inflammasome inactivation was evaluated and
reported that NLRP3 inflammasome activation was dampened by protein kinase A (PKA),
which phosphorylated NLRP3 and hindered its ATPase function. PKA phosphorylation was
mediated by prostaglandin E, (PGE,) signaling upon binding the PGE, receptor E-prostanoid
4 (EP4) [17]. In the negative regulation of NLRP3, Ser295 in human NLRP3 was found to be
significant for immediate inhibition and PKA phosphorylation. The NLRP3-5295A mutation
displayed a phenotype similar to the human cryopyrin-associated periodic syndrome (CAPS,
an autoinflammatory disease) mutants. These data suggest that negative regulation at Ser295
is essential and important for restricting the NLRP3 inflammasome and define a molecular
basis for NLRP3 mutations associated with CAPS [17]. Mutations and variations of NLR pro-
teins are found to be significantly associated with autoinflammatory and autoimmune dis-
eases (Figure 2). Another inflammasome is absent in melanoma 2 (hereafter AIM2). AIM2
recognizes dsDNA in a way that does not require a specific sequence. However, to be able to
recognize the dsDNA, its length should be at least 80 base pairs [23]. Following DNA binding,
AIM2 forms an inflammasome complex with ASC adaptor molecule and caspase-1, resulting
in the maturation of pro-IL-13 and pro-IL-18. Uncontrolled recognition of self dsSDNA con-
tributes to the development of autoinflammatory and autoimmune diseases such as psoriasis
and dermatitis [24]. Importantly, polymorphisms or changes in expression of AIM2 have been
associated with systemic lupus erythematosus (SLE) in humans [25]. In mice prone to lupus,
inefficient degradation of self-DNA immune complexes in the lysosome let DNA enter the
cytoplasm, which then activates the AIM2 inflammasome in macrophages [26, 27]. Vascular
damage is one symptoms of SLE, and expression of AIM2 and IL-18 have been reported to
increase in endothelial cells from patients with SLE as well as in a mouse model of SLE [28].
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Figure 2. NOD-like receptor subfamilies associated with autoinflammatory and autoimmune diseases.
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2. Pattern-associated molecular patterns (PAMPs)

The molecular characteristics of antigen recognition are remarkably different between adap-
tive and innate immune systems. In the adaptive immune system, random genomic recombi-
nation generates antigen receptors that recognize a wide range of antigens, while the innate
immune system recognizes pathogens via a set of 2040 pattern recognition receptors (PRRs)
that are germline encoded. Each of these PRR proteins is specialized to recognize a relatively
limited collection of pathogen-associated molecular patterns (PAMPs). The PRRs include
the toll-like receptor (TLR), NOD-like receptor (NLR), RIG-I-like receptor (RLR) and C-type
lectin receptor (CLR) families. Therefore, they are fixed and their ability to recognize rap-
idly evolving pathogens is quite limited [29, 30]. Sole reliance on recognition of the highly
conserved PAMPs by PRRs constitutes a dangerous situation for the host. The past decade
has seen a remarkable refocusing in immunology on the cells of the innate immune system,
especially macrophages and dendritic cells. A preponderance of evidence suggests that the
innate immune system holds more sophisticated recognition mechanisms than originally pre-
dicted. In addition to PAMPs, the alternative recognition system involves danger-associated
molecular patterns (DAMPs); however, the DAMP molecules, such as ATP, uric acid crystals
[31] and extracellular ATP, originate from self. This mechanism basically allows the innate
immune system to sense cell death, bypassing the PAMPs [32]. Homeostasis-altering molecu-
lar processes (HAMPs) [9] are a newly emerging mechanism, distinct from DAMPs, proposed
by Liston et al. Even though both DAMPs and HAMPs are specific to the host’s own cells,
DAMPs are recognized by PRRs in the same manner as the PAMPs. One important distinction
of HAMPs is that, unlike PAMPs and DAMPs, they are not recognized by PRRs. They are the
output of an alteration in homeostasis in a living cell, in which case, the innate immune sys-
tem detects a cellular imbalance rather than a pattern. Intracellular inflammasome complexes
provide excellent examples of this mechanism in action, as we discuss later in this chapter.

In contrast to foreign pathogen recognition through PAMPs by PRRs, there is an alternative
mechanism for HAMPs (or DAMPs) that can cause inflammation in a sterile manner, result-
ing in tissue injury in the absence of a pathogen. This generates a potential link between
HAMPs and (auto)-inflammatory diseases.

In addition to PAMPs, DAMPs and HAMPss, the term “SAMP” was introduced for self-associated
molecular patterns, which could be sensed by innate inhibitory receptors to maintain a steady
state level of immune cells and mitigate responses to self-molecule recognition (Figure 1) [12].
Host cells produce many different types of plasma membrane molecules that preclude comple-
ment reactions from occurring on their cell surfaces. The most important of these molecules is
the carbohydrate moiety sialic acid, a common component of cell-surface glycoproteins and
glycolipids. Given that they are abundant on cell surfaces and in the extracellular matrix, sialic
acid as a self-glycan is the best candidate that fulfills the requirement to be a SAMP molecule.
Other candidate SAMPs are glucose amino glycans (GAGs) such as sulfate heparin and derma-
tan sulfate [33]. As pathogens lack sialic acid, they are selected for destruction by complement
pathway, while host cells are protected in the process. Some pathogens, including the bacterium
Neisseria gonorrhoeae that causes the sexually transmitted disease gonorrhea, cover themselves
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with a sialic acid layer to evade from the complement system. Hence, to recognize SAMPs, there
might be self-PRRs (SPPRs). One suggested example is an innate component that inhibits the
alternative complement pathway, called factor H (FH), which is a serum protein. FH inhibits the
alternative complement pathway activation on host cell surfaces by detecting “self” in the form
of sialic acid-bearing patterns on cell surfaces. Important residues in the sialic acid binding site
are conserved from mouse to man, proposing a potential role for sialic acid as a host marker also
in other mammals and a key role in human complement homeostasis [34]. FH recognizes hepa-
rin/heparin sulfate GAGs as well as sialic aiding host-non host discrimination by complement
pathway [35]. Mutations in the critical residues that are involved in the binding of FH to the
sialic acid have been shown to result in the unintended innate immune reactivity [36]. Besides
FH, Siglecs (sialic acid recognizing Ig-like lectins) are considered second class of SPRRs for their
ability to recognize sialic acid and sending inhibitory signals to innate immune cells. In concert
with this observation, Siglec-G deficient mouse displayed overly activated response to DAMPs
and PAMPs [37] and mouse eosinophils with deficient Siglec-F gave a hyperactive response [38].
Abundance and dominance of PAMPs and DAMPs indicate that there will most likely be more
examples of SAMPs and SPRRs that are evolving to maintain self-glycan recognition.

3. Autoinflammatory diseases

The prevalence of a large group of autoimmune diseases is estimated 3-5% of the general
population [39, 40]. The immunological deficiencies are fundamentally driven by a broad
spectrum of genes and dysfunctional proteins that are not only limited to NLRs. According to
the current literature, immune system encompasses perplex and highly specific interactions
between numerous different cell types and molecules. Numerous events must occur prior to
a cell-mediated or a humoral immune response is activated, which make these series of events
vulnerable to disruptions at several stages by number of factors. Therefore, a broad defini-
tion of immune system would be “vast communication network of cells and chemical signals
distributed in blood and tissue throughout the human body, which regulates normal growth
and development of the organism while protecting against disease”.

Immunology emerged from the field of microbiology; hence, generations of immunologists
were trained by microbiologists and historically, research in both these fields has addressed
the relationship between host and microbe [41]. More than a century ago, Metchnikoff pos-
tulated that the primary task of the immune system is not attacking non-self but rather
“co-existing with self” or even generation of a multi-cellular organism, despite the internal
inconsistencies of its components. When functioning properly, the immune system detects
numerous external threats including viruses, bacteria, parasites and stress as well as internal
threats, such as tissue injuries, reactive oxygen species (ROS), uric acid crystals distinguishes
them from the body’s own healthy tissue. Hence, the deregulation of the immune system may
result in autoimmune diseases, inflammatory diseases and cancer. In humans, immunodefi-
ciency can result from a genetic disease such as severe combined immunodeficiency (SCID)
or can be an acquired condition such as acquired immunodeficiency deficiency syndrome
(AIDS), or else the use of immunosuppressive medication can cause immunedeficiencies. The
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other end of the spectrum includes autoinflammatory and autoimmune conditions. Michael
F. McDermott coined the term “autoinflammatory” at the end of the twentieth century to
explain a group of genetic disorders identified by ambiguous, repeated episodes of fever and
abnormal chronic inflammation which generally affect skin, eyes, joints, and gut [42]. In auto-
inflammatory diseases, the innate immune system is the main player, whereas in autoim-
mune diseases the adaptive immunity is suggested to be the main effector [43]. However,
a growing body of evidence shows that this comparison seems to be an over simplification
of the differences. A broader and more accurate definition suggested by Wekell and his col-
leagues is that “autoinflammatory diseases are defined by abnormally increased inflammation, driven
by dysrequlation of molecules and cells of the innate immune system with a host predisposition as
necessary and sufficient criteria, frequently associated with activation of the adaptive immune sys-
tem and potentially with immune dysfunctions such as susceptibility to infections, autoimmunity
or uncontrolled hyper inflammation” [44]. The host’s genetic background is critical in severe
inflammation, immune system-mediated tissue damage and even in recurrent episodes of
fever. New genes and proteins have been identified and the list of autoinflammatory diseases
is continually growing. Mutations in inflammasome-related proteins, especially in NOD-like
receptor (NLR) genes, have been reported to be significantly associated with autoinflamma-
tory diseases. Autoinflammatory diseases would be classified into monogenic and polygenic
diseases depending on the genes involved [45]. The examples of monogenic autoinflamma-
tory diseases with inflammasome-related proteins and/or NLR gene associations are Familial
Mediterranean Fever (FMF), cryopyrin-associated periodic syndrome (CAPS), familial cold
auto-inflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), Neonatal onset mul-
tisystemic inflammatory disorder (NOMID), NALP12-associated periodic fever, Blau’s syn-
drome and Crohn’s disease is an example of a polygenic autoinflammatory disease with a
NLR association [45, 46]. Therapeutic approaches to treat autoinflammatory diseases include
glucocordicoids and non-steroid anti-inflammatory drugs such as colchicine chloroquine,
cyclophosphamide, azathioprine, methotrexate, and more recently mycophenolate mofetile.
Especially, IL-1 targeting drugs are effective for many of these diseases [47]. The examples
of the IL-1 drugs are anakinra, rilonacept and canakinumab. Lastly, the exploration of the
multiple steps in the upstream of IL-1p release reveals a number of potential targets at dif-
ferent steps in the pathway. These drugs could be very effective at blocking several common
inflammasome-mediated disorders but may not be used in the treatment of autoinflamma-
tory disorders due to mutations in the inflammasome pathway resulting in hyperactive or
constitutive activation that is independent of upstream effectors.

4. Autoimmune diseases

Autoimmunity can be result of a hyperactive immune response, fighting against healthy tis-
sues by losing the ability to distinguish the foreign from self. Autoimmune diseases are a
large group of at least 80 chronic disorders in which the immune system mounts an immune
response against self-tissues and cells [48]. The concept of autoimmunity goes back to the
early twentieth century. Paul Ehrlich initially proposed this concept of horror autotoxicus,
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meaning that a “normal” body does not generate an immune response against its own tissues.
In retrospect, Ehrlich was proven wrong, as the presence of autoantibodies and autoreactivity
has become clear [49, 50]. Theoretically, autoimmunity is considered as a deficiency of B or
T cell selection, with abnormal cell responses to self-antigens [45, 51]. Autoimmune diseases
are regulated by a combination of host genes and environmental factors. Both these can con-
tribute to the predisposition to autoimmunity by altering the sensitivity and behavior of the
immune system cells. Therefore, it is reasonable to argue that antigen specificity, recognition,
expression, as well as the state and the response of the target tissues are influential in the
occurrence of autoimmune diseases [48]. There are many ways to classify the autoimmune
diseases. However, the most definitive and helpful way to group them would be according to
the target tissue or organs that are damaged by the immune system. A few examples of these
autoimmune diseases are listed: ((*) NLR-associated diseases)

1. Organ-specific autoimmune diseases: Liver (autoimmune chronic active hepatitis [52]),
muscle (myasthenia gravis [53]), blood (autoimmune hemolytic anemia*, autoimmune
leukopenia [54, 55]), Gastrointestinal (Crohn’s disease* (IBD-C)), food protein intolerance
enteropathies (such as gluten sensitive enteropathy celiac disease* [27]), atrophic gastritis
of autoimmune type [56] which leads to pernicious anemia [57], Nervous system (multiple
sclerosis®, amyotrophic lateral sclerosis [58]), kidney (immune complex glomerulonephritis
[59], skin (vitiligo* [60]).

2. Endocrine organ-specific autoimmune diseases: Adrenal gland (Addison’s disease [27]), ova-
ries (premature ovarian failure [61]), thyroid gland (Hashimoto’s autoimmune thyroiditis
[62]), Graves’ disease [63], pancreas (Type I diabetes* [64]).

3. Systemic autoimmune diseases (the “lupus group”): Lupus erythematosus*, rheumatoid
arthritis* [27]).

4. Other autoimmune diseases: Wegener’s granulomatosis, spontaneous male infertility [65].

In organ-specific autoimmune diseases, almost any organ in the body can be the specific target
for immune response because of the antigen expressed only in that organ. Likewise, in endo-
crine organ-specific autoimmune diseases, immune system directs its response at the organs that
are part of the endocrine system. However, in systemic autoimmune diseases, such as systemic
lupus erythematosus (SLE), immune response targets antigens broadly expressed throughout
the body including the central nervous system, kidneys, and heart. The sera from SLE patients
contain antibodies directed against various components in the nuclei of cells, including small
nuclear ribonucleoproteins (snRNPs); proteins of the chromosomes” centromeres; and, most
markedly, double-stranded DNA. Of all the autoimmune disease categories we discuss in
this chapter, there are notable commonalities at each end of the spectrum. As such, thyroid
autoantibodies are observed at high frequency in pernicious anemia patients who suffer from
stomach autoimmunity. These individuals have a higher prevalence of thyroid autoimmunity
than the healthy individuals. The group of rheumatologic diseases also display remarkable
common features at the other end of the spectrum. Characteristics of rheumatoid arthritis
have a number of resemblances with the clinical features of SLE. In these diseases, immune
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complexes are accumulated consistently in the kidneys, joints, and skin. Finally, other autoim-
mune diseases include the diseases that do not belong to any of the aforementioned groups.
This is by no means an entire listing of autoimmune diseases, and whether some diseases are
completely or partly autoimmune is controversial. Most of these diseases are either is a result
of serum antibody increase in host, immune-complex deposition in host tissues, high fre-
quency of tissue eosinophils, or elevated infiltration of lymphocytes to target tissues. Because
of these immune reactions that take place in host, target tissues are injured in way that may or
may not be preventable and moreover may or may not be reversible. Currently used therapies
involve glucocorticoids and non-steroid anti-inflammatory drugs. Chloroquine, cyclophos-
phamide, azathioprine, methotrexate, as well as mycophenolate mofetile, anti-TNF agents
(anti-TNF monoclonal antibody), and anti-inflammatory cytokines such as IL-10 and TGF-
beta are listed as autoimmune disease treatment approaches [66].

5. Autoinflammatory mechanisms in autoimmune diseases

Approximately 500-million-year-old adaptive immune system recognizes “non-self” sub-
stances through the immunoglobulins that are produced by plasma cells and/or T cell recep-
tor interactions with major histocompatibility complex (MHC)/peptide complexes. Cells of
the more ancient innate immune system carry receptors that recognize foreign glycans, cer-
tain motifs from pathogens [67]. The adaptive immune system is signaled into action by the
innate immune system for the optimal host defense [68], therefore it is reasonable to consider
the involvement of autoinflammatory mechanisms in autoimmune diseases. By and large, in
autoinflammatory diseases, tissue and organ destructions are mediated by cytokine produc-
tion by macrophages and granulocytes such as neutrophils, whereas in the pathogenesis of
autoimmune diseases, tissue and organ damage is mediated by hyper-activation of T and B
lymphocytes, and the production of autoantibodies. However, the innate immune system has
an effect on the differentiation of immune cells of the adaptive system. The inflammasome-
driven innate cytokines Interleukine-lbeta (IL-1f) and IL-18 play roles in the differentia-
tion of T helper subsets Th1 or Th17 by the upregulation of receptors like the IL-2 receptor,
expands the lifespan of T cells, and also augmentation of B cell proliferation and antibody
production. In the classical autoimmune disease systemic lupus erythematosus (SLE), auto-
inflammatory reactions have roles in a subset of SLE patients. TREX1 endonuclease gene
mutations leads to an increase in the levels of cytosolic DNA which is then recognized by
toll-like receptor 7 (TLR7) and TLRY, resulting in the expression of interferon-alpha (IFN-c)
[69, 70]. IFN-a enhances the dendritic cell (DC) maturation and activation which causes the
subsequent activation of B cells and antibody production [41]. Most recent studies underlie
the control of adaptive immunity by innate immune responses that activated DCs have been
shown to favor the Th17 cell differentiation from naive T helper cells through the activa-
tion of NLRP3 inflammasome complex [71]. Our understanding of immune deficiencies that
share the prefix “auto-"resulting from dysfunctional NLRs and inflammasomes has broad-
ened considerably over the past decade. In the next section, NLRs and inflammasomes will
be discussed in detail due to their involvement in the progression of autoinflammatory and
autoimmune diseases.
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6. NLRs in autoinflammatory diseases

Numerous autoinflammatory diseases have been strongly linked with gain-of-function
mutations or variations in inflammasome-forming NLRs (NLRP1, NLRP3, NLRP6, NLRP7,
NLRP12, NLRC4, and NAIPs) and non-inflammasome-forming NLRs (NOD1/2, NLRP10,
NLRX1, NLRC5, and CIITA) [72]. Here, we are going to examine NLR proteins individually
for the autoinflammatory diseases in which they are involved.

1. NLRA subfamily:

a. Class II transactivator (CIITA): CIITA is a human gene which encodes class II, ma-
jor histocompatibility complex (MHC), transactivator. MHC CIITA was discovered in
1993 as the gene associated with hereditary major histocompatibility complex Class II
deficiency, also mutations in CIITA gene were found to be responsible for the bare lym-
phocyte syndrome in which the immune system is highly compromised and cannot
effectively mount a counterattack against the infection [73]. Mainly lymphocytes, den-
dritic cells, macrophages, and other professional antigen presenting cells are known to
express CTIIA. To date, a number of autoimmune diseases but not autoinflammatory
diseases have been reported to be linked to CIITA gene. Later in this chapter, we will
revisit the CIITA involvement in the development of autoimmune diseases.

2. NLRPB subfamily:

a. Neuronal apoptosis inhibitory protein (NAIPs): The first discovered inhibitor of apop-
tosis protein (IAP) in mammals was NAIP. Mutations and deletions of the NAIP gene
have been associated with the spinal muscular atrophy (SMA) phenotype [74]. Like
CIITA protein, NAIP was speculated to be involved in autoimmune reactions rather
than autoinflammation. In mice different paralogues of NAIP determine the specificity
of the NLRC4 inflammasome assembly for distinct bacterial ligands. Innate immune
recognition of bacterial ligands by NAIPs determines inflammasome specificity, there-
fore NAIP has important contributions to the inflammatory reactions. Yet, the involve-
ment of NAIPs in autoinflammation requires further research.

3. NLRC/X subfamily:

a. NOD1/2: NOD1 and NOD2 are the protein products of CARD4 and CARD15 genes,
respectively. The studies focusing on NOD1 and NOD2 primarily involves their
signaling activities. The peptidoglycan components diaminopimelic acid (DAP) and
muramyl dipeptide (MDP) from Gram-negative and Gram-positive bacteria are rec-
ognized by NODs [75]. NOD1 and NOD2 have been associated in a multitude of
inflammatory diseases. Especially mutations and SNPs in CARD15 have been associ-
ated with Blau Syndrome which is characterized by arthritis, uveitis, and skin rash
[76, 77]. It is plausible to suggest that a gain of function mutation of NOD2 in Blau’s
syndrome is leads to a continuous pro-inflammatory state. Patients are treated with
oral steroids and immunosuppressive drugs such as cyclosporine, methotrexate with
variable results [46, 78].
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b. NLRCS3, 5, and NLRX1: Although, they are listed in this subfamily, their associations

or their functional contributions to the pathogenesis of autoinflammatory diseases
have not been reported yet. NLRC5, as one of the newest additions to the NLR fam-
ily; NLRX1 as a unique NLR in that it carries an N-terminal mitochondrial targeting
sequence [79], are known to be involved in inflammatory processes and the latter en-
hances the reactive oxygen species (ROS) production. However, their effect on human
health and diseases remains to be elusive.

. NLRC4: Interestingly, a de novo gain-of-function mutation in NLRC4 was found to co-

segregate with a disease. The disease is characterized by neonatal onset enterocolitis,
periodic fever, and fatal or near-fatal episodes of autoinflammation Over activating
mutation in NLRC4 leads to the constitutive production of IL-1FC and macrophage
cell death through pyroptosis. These results suggested a novel role for NLRC4 inflam-
masome in causing a debilitating but treatable autoinflammatory disease [80].

4. NLRP subfamily:
a. NLRP1: The NLRP1 protein has a distinct structure as compared to other NLRs. Hu-

man NLRP1 has a PYD on the N terminus and a CARD on the C-terminus, with ZU5
and UPA domains in the internal region which is attributed to proteolytic activity [81].
Most recently, it was demonstrated that cytosolic double-stranded (ds) DNA triggered
the activation of caspase-5 in keratinocytes and subsequent release of IL-13. Moreo-
ver, interleukin-17A enhanced caspase-5 function through priming of NLRP1-inflam-
masome. In the study, anti-inflammatory vitamin D have been shown to prevent the
IL-1P release and to suppress caspase-5 in keratinocytes and in psoriatic skin lesions.
The NLPR1-dependent caspase-5 activity in psoriasis was suggested by exploring po-
tential therapeutic targets in Th17-mediated skin autoinflammation [82]. Furthermore,
another group has recently demonstrated that human NLRP1 is involved in a novel
autoinflammatory disorder that researchers propose to call NAIAD for NLRP1-asso-
ciated autoinflammation with arthritis and dyskeratosis. This disease could be a novel
autoimmuno-inflammatory disease having both autoinflammatory and autoimmune
characteristics [83].

. NLRP3: Among all the NLRs, NLRP3 by far the most studied inflammasome. It is most-

ly expressed in the cells of innate immunity such as splenic neutrophils, macrophages,
monocytes, and dendritic cells [84]. NLRP3 has been linked to autoinflammatory diseas-
es by several research groups. Gain-of-function mutations in the NLRP3 inflammasome
lead to the increased production of IL-1p and cause (CAPS) [85]. CAPS are a large arsenal
of diseases classified as familial cold auto-inflammatory syndrome (FCAS), Muckle-Wells
syndrome (MW) and neonatal onset multisystem inflammatory disorder (NOMID).
These three CAPS are distinguished from one another based on their phenotypic severity.
These diseases are basically identified by inflammation affecting skin, joints, eyes, bone,
muscles, and central nervous system as a result of increased IL-13 production. There
have been over 50 different NLRP3 mutations identified and supression of IL-1{3 by anak-
inra, rilonacept, or canakinumab help mitigate clinical symptoms [27]. IgA nephropathy
is another disease which is characterized by leukocyte and lymphocyte infiltration in the
glomerulus. It is demonstrated that NLRP3 inflammasome localization to mitochondria
in tubular epithelium has a crucial role in the progress of this pathology [86].
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c¢. NLRP12: NLRP12 gene mutations have been found in a group of patients with clini-
cal manifestations identifiable with CAPS, such as recurrent fever and cold sensitivity
associated with added symptoms such as neuronal hearing loss, lymphadenopathy,

abdominal pain, and acute phase response. These patients did not have mutations at
the NLRP3 locus [87].

7. NLRs in autoimmune diseases

To date, many genes have been reported to operate in the development of autoimmunity
and modification of inflammation of specific tissues; however, we will continue to focus on
the NLR family members that are significantly associated with autoimmune diseases. As dis-
cussed in the previous section, it is essential to note that there are overlapping NLRs in the
development of both autoinflammatory and autoimmune diseases.

1. NLRA subfamily:

a. CIITA: Genome-wide association studies (GWAS) and whole exome sequencing stud-
ies have found SNPs in CIITA that are linked to celiac disease [88], which is character-
ized by destruction of the lining of the small intestine by T cells reactive to certain di-
etary molecules [27]; rtheumatoid arthritis which is caused by chronic inflammation of
the synovial membrane in the joints [89]; multiple sclerosis (MS) in which autoreactive
T cell infiltration in central nervous system results in the destruction of myelin sheaths
covering the nerve cells [90]; SLE, a disease where immune response (autoantibodies)
against self-antigens affect multiple organs and tissues [91], and type-1 diabetes which
is characterized by infiltration of T cells to the pancreatic islets resulting in the destruc-
tion of {3 cells that are responsible for insulin production [92]. Despite the presence of
several studies on the association of CIITA gene to a variety of autoimmune diseases,
these results were not always reproducible. These variations among the studies were
suggested to be related to the age-dependent variation in CIITA gene [92, 93].

2. NLRB subfamily:

a. NAIP: Itis a critical component of the NLRC4 inflammasome and important for the de-
tection of bacterial components, as well as the scaffolding of the NAIP-NLRC4 inflam-
masome. The expression of the IAP family of anti-apoptotic protein encoding genes in
peripheral blood samples and brain tissues from MS patients suggest a role for differ-
ential regulation of these proteins in the pathology of MS. As a member of IAP family,
NAIP mRNA was found to increase in whole blood [94].

3. NLRC/X subfamily:

a. NOD1/2: The most common mutation of NOD2 is a frameshift mutation in the LRR
region of the receptor that causes the Crohn’s disease [88]. The disease is caused by
autoreactive T cells against intestinal flora antigens, while the mutations conferring sus-
ceptibility to Blau syndrome were reported in the NOD region of the same receptor [76].

b. NLRC3 and NLRX1: Despite the absence of reports on the association of NLRC3 and
NLRXI1, there are studies that focused on these 2 NLRs in the context of SLE. The
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mitochondrial anti-viral signaling protein (MAVS) is required for anti-viral defense of
innate immunity. Melanoma differentiation-associated protein 5 (MDADJ) is a retinoic
acid inducible gene-I (RIG-I) receptor that recognizes viral dsSRNA and undergoes a con-
formational change which then induces the activation of MAVS, resulting in the type
I interferon production [95]. A considerable fraction of patients who suffer from SLE
display MAVS aggregation in their peripheral blood cells and that the type-I interferon
production contributes to the SLE development. It has been suggested that NLRC3 plays
inhibitory roles during inflammation and it may interact with the RIGI-MAVS pathway
through stimulator of interferon genes (STING) [96]. Thus, the authors compared and
found the same levels of NLRC3 and NLRX1 in the aggregates-positive and aggregates-
negative groups of SLE patients, suggesting no involvement of NLRC3 and NLRX1 in
SLE development [97].

4. NLRP subfamily:

a. NLRP1: GWAS and candidate gene analysis studies provided data regarding the as-

sociation of NLRP1 variants with vitiligo alone and vitiligo-associated multiple au-
toimmune diseases. This disease is characterized by the absence of melanocytes in
the epidermis which is observed as white patches on the skin. Mutations of NLRP1
were detected in the promoter and/or coding regions of NLRP1 [98]. The function-
al role of SNPs in NLRP1 is not clear, so the processes linking NLRP1 variations
and vitiligo remains unclear. However, the expression of NLRP11 in T cells and
Langerhans cells suggest a role for NLRP1 in skin autoimmunity [99]. In addition
to vitiligo, NLRP11’s involvement in other autoimmune diseases has been noted,
including Addison’s disease that is characterized by destruction of adrenal cortex
and type-1 diabetes [100], celiac disease [101], autoimmune thyroid disorders (aka
Hashimoto’s Thyroiditis) results from the destruction of thyroid tissue that leads
to hypothyroidism [62, 102], systemic lupus erythematosus (SLE), and rheumatoid
arthritis [103].

. NLRP3: Given the abundance of studies conducted to decipher the roles of NLRP3,

more evidence-based report is available for the associations of NLRP3 both in autoin-
flammatory and autoimmune diseases. SNPs in the NLRP3 gene have been linked to
a wide variety of autoimmune diseases among which are type-1 diabetes and celiac
disease [104], psoriasis [105].

. NLRP2, 9, 11: SNP array analysis in 50 patients with systemic Juvenile Idiopathic Ar-

thritis (s-JIA) showed many disease-related copy number variations (CNVs). Notably,
most of them were inherited from either of normal-phenotype parents. In one patient,
authors were able to identify two de novo micro-duplications at 19q13.42. The duplica-
tions span NLRP2, NLRP9, and NLRP11, also IL-11 and HSPBP1, all of which function
in inflammatory pathways. These genes have been suggested be involved in the patho-
genesis of s-JIA11 [106].
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8. Concluding remarks and future perspectives

Our understanding of how NLRs drive autoimmunity has advanced tremendously in the last
decade. Even so, many questions remain unaddressed, mainly because a plethora of different
parameters are responsible for the predisposition to autoimmune diseases and the precipitation
of such illnesses. In this chapter, we discussed the subject of autoimmunity with respect to NLRs
in an attempt to clarify their connection to autoimmunity. The molecular genetics of inflamma-
somes have been intensively studied in both autoinflammatory and autoimmune diseases and
these studies identified mutations in genes encoding NLRs or polymorphisms that cause the
development of such diseases. With the advent of new technologies such as genome-wide screen-
ing and next generation sequencing, we can now evaluate the pathogenesis of autoinflammation-
related diseases from a more holistic point of view. The potency of NLRs in mounting an immune
response is crucial for the host, but can also be the reason for life-threatening health problems
when inappropriate responses occur. Ever increasing new data from large scale studies deepen
our current knowledge on the roles of NLRs, however the function of several of the NLRs remains
unclear. In particular, a long-standing question is how NLRs interact with a variety of structurally
different ligands. Furthermore, the presence of layers of regulatory pathways and different bind-
ing partners make it even more perplexing. Our hope and expectations are that discovery of the
complete portfolio of hidden cellular activities that NLRs mediate will tell us how these innate
immune molecules function to regulate immunity and will ultimately lead to new, more effective
life-saving therapeutic drugs for treatment of autoinflammatory and autoimmune diseases.
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