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Abstract

The two-parametric functional for weakly interacting fluctuations of liquid density and
composition is studied within the theory based on Landau potential for these fluctuations
in the kind of ensemble of phonons and compound clusters. Using the standard diagram
technique, the task for weak-interacting phonons and clusters is reduced to solving the
equations of proper-energetic functions of quasi-particle interaction by Neumann itera-
tions of Feynman diagrams in “bootstrapping” of Fourier images (propagators) for corre-
lation of the composition of liquid and its topological structure. It is shown that
composition fluctuations as clusters are induced by phonons when impurity atoms being
initially outside the dense part of liquid (introduction solution) become inherent constitu-
ents of the dense part (addition solution). By renormalizing parameters of the model, we
have transformed weakly interacting fluctuations to free “dressed” phonons and clusters
whose autocorrelation functions are characterized by various behaviors in small and large
scales in comparison with the atomic spacing. In the first case, density fluctuations of
liquid do not feel impurities. In the intermediate scale, the liquidmatrix is inhomogeneous
in the form of colloids, which is not observed at the large scales. Dynamics of such liquid
is characterized by diffusion modes of solvent and oscillations of impurities.

Keywords: liquid, density and composition fluctuations, Feynman diagram, bootstrap,
phonon, cluster, renormalization

1. Introduction

It is known that any liquid is characterized by a random chaotic packing of atoms. They are

easily rearranged by little thermal fluctuations in contrast to a crystal whose topological

structure is stable under any thermal fluctuations below the melting point [1].

At the same time, the topological structure of instantaneous dense part of any condensed

matter (liquid, crystal, and amorphous) is represented as configurations of closely packed
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particles in Delaunay simplexes (dense triangular pyramids with particles in their vertices)

that are connected by faces into ramified short-living tetrahedral clusters of density fluctua-

tions [2, 3]. Using the topological criterion [3] in molecular-dynamic (MD) simulation of deter-

ministic nonlinear system of many particles, one can exactly select these simplexes by defining

a maximal length of their edges over the maximal number of obtained simplex clusters in the

MD cell. The statistics of these clusters is gotten for any condensed matter [4] as their two-

dimensional (2D) discrete distribution on cardinality (number of simplexes in the cluster) and on

connectivity (number of their vertexes belonging also to other clusters).

For any crystal, these clusters consist of one and only one simplex, that is, their cardinality is

equal to 1, but their connectivity is distributed normally in the interval of 7–23 (15 on average).

In contrast to the crystal heated, the cluster cardinality of amorphous dense part achieves 10,

and the connectivity of such clusters is more than 3 but less than 20 (11 on average). It means

that the solid state (crystal and amorphous) is characterized by percolation of tetrahedral

dense-part clusters of structural fluctuations.

The topological features of a liquid: (1) the cardinality of liquid dense-part clusters reaches 37, that

is, almost four times more than the solid ones, and (2) there are almost 5% of dense-part clusters

with zero connectivity sufficient for breaking off the percolation of solid dense-part clusters,

providing a fluidity of liquid and forming long chains of liquid dense part. These clusters as dense

configurations of particles are dynamically changed but statistically preserve the multifractal

structure [3].

The existence in liquid metal of such chains with the fractal gyration radius of ~100 nm is

confirmed by the experiments [5] on small-angle-scattering of neutrons. These data are

obtained on the contrast of liquid-dense and nondense parts, which amount to 10–15% from

the contrast of liquid boundary in vacuum.

Thus, a liquid is characterized by existence of dense-part clusters with zero connectivity in

contrast to crystal and amorphous solid which have not such clusters. Moreover, the cardinal-

ity of dense-part clusters in any crystal is equal to 1, while amorphous solid occupies the

intermediate position between crystal and liquid on the discrete 2D distribution of dense-part

clusters [4]. At the same time, the tetrahedral clusters of dense-part open for impurity in

principle two topologically differing positions in liquid and amorphous solid: (1) outside the

dense-part simplexes and (2) in their clusters as compound constituents [6, 7]. The induced by

density-fluctuations polymorphic transition of impurity between these positions is the subject

of given theoretical consideration.

Revealing a mechanism of such self-organization of impurities in liquids will allow to have

found an approach to their structural modification over chosen attributes by impurities.

2. The method of Green function

The method of Green function used in physics of phase transitions allows so to have formu-

lated and disposed questions of theory that one can obtain topologically exact answers without
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knowing an explicit kind of the state equation [8]. This method bases on Landau potential [9]

which usually is represented by a functional of generalized variables expressing parameters of

the local order. Then, structural and phase changes are described by calculus variations of

these parameters [8]. They mean by topological and compound (chemical) order. The first is

understood as ordering of atoms regardless of the particles nature. The second is characterized

by spatial correlation of different atoms and is responsible for the microstratification and

clustering of the particles.

Besides the compound parameter of order (CPO), the two-parametrical fluctuation model of

liquid alloy includes the topological parameter of order (TPO) which can induce by density

fluctuations the clustering of impurity atoms far off from the phase change [10].

We consider the double system, A1�xBx, where x ¼ n2= n1 þ n2ð Þ is the average concentration of

impurity component, B; ni is the density of i-particles number (i = 1, 2) for representing Landau

potential, ΔF, of this system by the functional of two parameters n1; n2ð Þ [10]:

ΔF ¼

ð

V

f Δi, ∇
!
Δi, n, x

� �

d3rþ ΔF0 n; xð Þ (1)

Here, d3r is the differential of 3D space, f is the density of Helmholtz free energy, Δi ¼ ni � ni is

the density fluctuation of i-particles number, ∇
!

is the gradient, n is the average density of

particles, ΔF0 ¼ ΔF Δi ¼ 0ð Þ is the free energy of homogeneous system, and V is its volume.

The Δið r
!
Þ fluctuations are averaged in the neighborhood of point, r

!
, in a small volume which

however contains sufficiently great number of particles as well as a distance, where Δið r
!
Þ

function changes is appreciably more than the interatomic spacing, r0 [8]. In this case, the other

degrees of freedom (electronic, vibration et al) require a time far less than the configuration

field, Δið r
!
Þ, for reaching equilibrium. Therefore, one can apply the adiabatic approximation for

describing the fluctuations fields of CPO and TPO in double system.

Then, one can limit Taylor expansion of f(Δi) as a function of small parameter, Δi, by the

members of third-order infinitesimal: Δ3
1, Δ

2
1Δ2, and Δ1Δ

2
2, which correct the second and third

approximation of perturbation theory for F0. One can also neglect the members of fourth-order

infinitesimal: Δif g4, because the coefficients of Δ2
i in Taylor expansion of f(Δi) are positive, and

the Δi proportional members of Taylor series are equal to zero in (1) owing to the constant

number of particles in the system.

Further for the isotropic liquid, the first derivatives, ∇
!
Δi

!
, can come into Taylor expansion of

f ðΔi, ∇
!
ΔiÞ only in the scalar combination ð∇

!
Δi� ∇

!
ΔkÞ, and the second ones can be as prod-

ucts: const ∇2
!

Δi and Δi∇
2

!

Δk. The first of them gives the insignificant addition into the integral

(1.1), which for the second is transformed into integral of ð∇
!
Δi� ∇

!
ΔkÞ [11].

Thus, without limiting a task generality for liquid, one can present f as [10]
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  f ¼
1

2

∂μ1

∂n1
Δ
2
1 þ 2

∂μ1

∂n2
Δ1Δ2 þ

∂μ2

∂n2
Δ
2
2

� �

þ
1

6

∂2μ1

∂n21
Δ
3
1 þ 3

∂2μ1

∂n1∂n2
Δ
2
1Δ2 þ 3

∂2μ1

∂n22
Δ1Δ

2
2

� �

þ
K11

2n
ð∇
!
Δ1Þ

2 þ
K12

n
ð∇
!
Δ1� ∇

!
Δ2Þ þ

K22

2n
ð∇
!
Δ2Þ

2            

(2)

Here, μi (n, x, T) � (∂f/∂ni)TV is the chemical potential of i-component, T is Kelvin temperature,

Kik ¼ 2 Uik r0ð Þj jr20z, Uik r0ð Þ is the pair-interaction potential of nearest particles of kind: i and k, and

z is the average coordination number. Considering the homogeneous liquid of double system by

the model of ideal solution, one can present the chemical potential, μi (i = 1, 2), in the form

μ1 ¼ μ10 T; nð Þ þ Tln 1� xð Þ

μ2 ¼ μ20 T; nð Þ þ Tlnx

�

�

�

�

�

(3)

which, obviously, satisfies to Gibbs-Duhem relation

1� xð Þ
∂μ1

∂x
þ x

∂μ2

∂x
¼ 0 (4)

Then, we will obtain [7]

∂μ10

∂n
�
∂μ20

∂n
¼

1

n

dP

dn

� �

T

∂μ1

∂n1
¼

T

n
βþ

x

1� x

� �

∂μ1

∂n2
¼

T

n
β� 1
� �

∂μ2

∂n2
¼

T

n
βþ

1� x

x

� �

∂2μ1

∂n21
¼

T

n2
β0 �

x 2� xð Þ

1� xð Þ2

 !

∂2μ1

∂n22
¼

∂2μ1

∂n1∂n2
¼

T

n2
β0 þ 1
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(5)

at the condition that the first bracket in (2) is the quadratic form positively defined. Here,

β ¼ n=Tð Þ ∂μ10=∂n
� �

, β0 ¼ n2=T
� �

∂
2μ10=∂n

2
� �

, and P is the static pressure.

For simple liquids, β >> 1 and (∂P/∂n)Tweakly depends on the number density, n, of particles.

Therefore, one can accept β' ~ �β [7].

Transforming the quadratic forms in (2) to diagonal ones, one can present Landau potential as

a sum of free-field Hamiltonians and the weak-interaction potential. Then, we will have the

almost ideal Bose gas of two components [8].
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Using relations (3)–(5), one can do (2) by diagonal square form bymeans of linear transformation

Δ1 ¼ n a11φþ a12χð Þ

Δ2 ¼ n a21φþ a22χð Þ

�

�

�

�

�

(6)

Substituting (6) into (2), we will find parameters

a11 ¼ 1

a22 ¼ x

a12 ¼ �xα1 1� x α1 � α2=α1ð Þγ½ �

a21 ¼ x 1þ x 1� α1γ� 1� α2ð Þβ
� �	 


γ

�

�

�

�

�

�

�

�

�

�

(7)

for x < 1/γ and zero coefficients at (φ � χ) and ð∇
!
φ� ∇

!
χÞ [10]. Here, α1 ¼ K12=K11 � 1,

α2 ¼ K22=K11 � 1, and γ ¼ 1� 1� α1ð Þβ are the alternating-sign factor. As a result, Eq. (2) to

x2 becomes

f =βnT¼
1þxγð Þ2

2
φ2 þ

1þxα1γð Þ2

2

K11

βT
∇
!
φ

� �2

þ
x 1þx 1�α1ð Þ2β
h i

2β
χ2 þ

x2 α2�α2
1

� �

2

K11

βT
∇
!
χ

� �2

�
1þxγð Þ3

6
φ3 �

x 1�α1ð Þþx2 1�α2ð Þγ

2
φ2χ �

x2 1�α1ð Þ2

2
φχ2

(8)

Labeling a0¼1þ xγ, b0¼1þxα1γ, c¼ 1þ x 1�α1ð Þ2β
h i

=β, λ¼1�α1þx 1�α2ð Þγ, and

ρ
!
¼ r

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βT=K11

p

, we will obtain

ΔF φ;χð Þ ¼ nK11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K11=βT
q

ð

V βT
K11
ð Þ

3=2

d3ρ

"

a20
2
φ2 þ

b20
2

∇
!
φ

� �2

�
a30
6
φ3

þ x
c

2
χ2 þ x

α2 � α2
1

2
∇
!
χ

� �2

�
λ

2
φ2χ� x

1� α1ð Þ2

2
φχ2

 !#

(9)

What sense have the parameters of order, φ and χ? We obtain φ ≈ Δ1 þ Δ2ð Þ=n and

χ ≈ Δ2=x� Δ1ð Þ=n out of (6) when αi ≈ 1and x < 1. Then, φ is the reduced TPO of liquid, and χ

expresses the reduced CPO for clustering the initially homogeneous liquid alloy to microregions

of different composition, that is, the parameter, χ, describes the compound fluctuation field as

opposed to the parameter, φ, which describes the topological fluctuation field.

Each of these fields can be presented as a set of oscillations of averaged corresponding

collective modes that are Fourier images of topological and compound fluctuations of the

liquid alloy. They are defined by Green functions, G(φ) и G(χ) [12].
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In the integral (9), Hamiltonian (2) defines the change of free energy of weak-interacting long-

wave phonons and clusters in the double alloy. In the adiabatic approximation, one can take into

account only the given ordering (φ, χ) without caring of other variables of the system. Then, we

will define the equilibrium fields, φðρ
!
Þ and χðρ

!
Þ, in the minimum of ΔF(φ, χ) [8]. This condition

looks like Euler variation equation which for the entered parameters of order gives equations [10].

�b
2
0 ∇
!

2φþ a20φ� a30φ
2=2 ¼ x λφχþ x 1� α1ð Þ2χ2=2

h i

x α2
1 � α2

� �

∇
!

2χþ cχ� λφ2=2 ¼ x 1� α1ð Þ2φχ

�

�

�

�

�

�

(10)

Using the standard diagram techniques [11] for averaged collective variables, one can reduce the

task for weak-interacting phonons and clusters to solve the equations of proper-energetic func-

tions of interacting quasi-particles [10]. For this, we use an averaged correlator 〈ϕðρ
!
Þ � ϕðρ

! 0Þ〉

which is Green function at ρ
! 0 ¼ 0 [8]:

Gφ ρ
!

� �

¼ φ ρ
!

� �

� φ 0ð Þ
D E

(11)

In such case, one can present the effects of alloy fluctuation nonhomogeneity as the integrals

containing correlation functions, Gφðρ
!
Þ and Gχðρ

!
Þ or their spectral densities

φ k
!� �

� φ k
!

0
� �D E

¼ G
k
! φð Þδ k

!
� k

!
0

� �

χ k
!� �

� χ k
!

0
� �D E

¼ G
k
! χð Þδ k

!
� k

!
0

� �

�

�

�

�

�

�

�

(12)

obtained by Fourier conversion:

φ ρ
!

� �

¼

ð

ei k
!
ρ
!

φ k
!� �

d
3
k= 2πð Þ3

χ ρ
!

� �

¼

ð

ei k
!
ρ
!

χ k
!� �

d
3
k= 2πð Þ3

�

�

�

�

�

�

�

�

(13)

where φð� k
!
Þ ¼ φ∗ðk

!
Þ and χð� k

!
Þ ¼ χ∗ð k

!
Þ. According to Wiener-Khinchin theorem, Giðρ

!
Þ and

G
k
! ið Þ (i = φ, χ) are equivalent functions because they are connected by Fourier conversion

Gi ρ
!

� �

¼

ð

G
k
! ið Þei k

!
ρ
!

d
3
k= 2πð Þ3 (14)

Thanking δ-normalization of φð k
!
Þ and χð k

!
Þ, one can change the differential equations (10) to

the algebraic ones for Fourier-images of Green functions: G
k
!

�

φÞ ¼ 〈jφð k
!
Þj2〉. We will calculate

them in approximation of the perturbation theory by means of iterations and Neumann series

of Feynman diagrams [13].
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3. The formalism of Feynman diagrams

For “bare” phonon propagator G0

k
! φð Þ, determined by the first equation of system (10) without

the member on the right (x = 0), we have [10]

a20 þ b20k
2

� �

G0

k
! φð Þ ¼ a30=2

� �

F
k
! G0

φ ρ
!

� �h i

(15)

where F
k
!½G0

φðρ
!
Þ� is the iteration procedure presented by the chain

ð16Þ

which is converted into the recurrence form [12]

0( )
k
G (ϕϕ )

k
g

3
0

2

a
p

3
0

2

a

k k p k

ð17Þ

and has the analytic solution

G0

k
! φð Þ ¼ a20 þ b20k

2 � Σ0 k
!� �� ��1

> 0 (18)

under the condition: jΣ0ðk
!
Þj=ða20 þ b20k

2Þ < 1. Here, Σ0ðk
!
Þ is the proper-energetic function

expressed by the equation [10]

Σ0 k
!� �

¼
a60
8

ð

d3p

2πð Þ3
gp
! φð Þg

k
!
�p

! φð Þ (19)

and gp
!

φð Þ ¼ a20 þ b20p
2

� ��1
as the solution of (15) with unit on the right. From the second

equation of system (10) without the member on the right, we obtain the equation for “bare”

cluster propagator, G0

k
! χð Þ [10]:

cþ x α2 � α2
1

� �

k2
	 


G0

k
! χð Þ ¼

λ

2
F
k
! G0

φ ρ
!

� �h i

(20)

The solution of this equation converted into the recurrence form has the graphic form

0(χ)
k
G

2
p

2

k k p k

ð21Þ

and the analytic one under the conditions, jΠ0ð k
!
Þj=½cþ xðα2 � α2

1Þk
2� < 1 and j k

!
j < 1:
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G0

k
! χð Þ ¼ cþ x α2 � α2

1

� �

k2 �Π0 k
!� �h i�1

> 0 (22)

Here, Π0ðk
!
Þ is the phonon-proper-energetic function determined by the equation [10]

Π0 k
!� �

¼
λ2

8

ð

d3p

2πð Þ3
G0

p
! φð ÞG0

k
!
�p

! φð Þ (23)

The solution (22) of the Eq. (20) defines the propagator of induced compound field entering in

Hamiltonian (9), that is, the clusters are generated forcedly by phonons unlike their free field

with the propagator, G0

k
! φð Þ, whose fluctuations are formed spontaneously.

The natural development of this idea is the “bootstrap” hypothesis [14] which consists in the

following. The fluctuations of CPO, χ, arising at the interaction of phonons deform partially the

density-fluctuations field, φ, “dressing” the propagator, G0

k
! φð Þ, by the proper-energetic function

Σ1 k
!� �

¼ x2λ2

ð

d3p

2πð Þ3
G0

p
! φð ÞG0

k
!
�p

! χð Þ þ
x4 1� α1ð Þ4

8

ð

d3p

2πð Þ3
G0

p
! χð ÞG0

k
!
�p

! χð Þ (24)

defined by the members of the first equation of system (10) on the right. The graphic and

analytic solution of this equation is [10]

( )
k
G 0( )

k
G

1
( )kϕ ϕ

ð25Þ

and

G
k
! φð Þ ¼ 1=G0

k
! φð Þ � Σ1 k

!� �h i�1

> 0 (26)

This formula makes sense under the obvious condition jΣ1ð k
!
ÞjG0

k
!ðφÞ < 1.

Now, one can analytically express the first (topological) bootstrapping of deformed CPO field

by replacing function, G0

k
! φð Þ, in (23) by “dressed” phonon propagator, G

k
! φð Þ:

Π1 k
!� �

¼
λ2

8

ð

d3p

2πð Þ3
Gp

! φð ÞG
k
!
�p

! φð Þ (27)

and its substitution in the formula (22) instead of Π0ð k
!
Þ. It is possible under the condition:

jΠ1ð k
!
Þj=½cþ xðα2 � α2

1Þk
2� < 1. Taking into account the member in the second equation of

system (10) on the right gives for propagator, G0

k
!ðχÞ, the proper-energetic function in the

final form
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Π2 k
!� �

¼ x2 1� α1ð Þ4
ð

d3p

2πð Þ3
G0

p
! χð ÞG

k
!
�p

! φð Þ (28)

This is expressed in graphic and analytic forms by

( )
k
G 0( )

k
G

2
( )kχ χ

ð29Þ

and

G
k
! χð Þ ¼ 1=G0

k
! χð Þ �Π2 k

!� �h i�1

> 0 (30)

under the condition jΠ2ð k
!
ÞjG0

k
!ðχÞ < 1.

Thus, one can find the fluctuation fields of the liquid density and compound in the form of

autocorrelation functions of impurity concentration, x, and the parameters α1;α2; β
� �

by means

of the graphic, algebraic, and integral Eqs. (17)–(19) and (21)–(30).

4. The coherent propagators of phonons and clusters

One can find the solutions of the Eq. (10) in the form of phonons and clusters that are averaged

on ensemble of the casual states defined by Hamiltonian (9). The representation of own functions

of this Hamiltonian by flat waves with k = j k
!
j < 1 is a good approximation for the impurity

content far from the saturation of liquid alloy.

For dilute solutions (x << 1), one can restrict the proper-energetic functions (19), (24), (27), (28)

by the second degree of k and present the propagators (18), (22), (26), (30) in the form [10].

G0

k
! φð Þ ¼ a0 þ b0k2

� ��1

G
k
! φð Þ ¼ aþ bk2

� ��1

G0

k
! χð Þ ¼ u0 þ v0k2

� ��1

G
k
! χð Þ ¼ uþ vk2

� ��1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(31)

At such restriction, it is easy to find all the proper energetic functions. For this, we will

substitute (31) into (24), (27), and (28) and transform these multiple integrals to the kind

Ilm kð Þ ¼

ð

∞

0

σl þ τlp
2

� ��1
σm þ τmj k

!
� p

!
j2

� ��1

d3p= 2πð Þ3 ¼ arctg
ΛlΛmk

Λl þΛm

� �

=4πτlτmk (32)
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where Λl ¼
ffiffiffiffiffiffiffiffiffiffi

τl=σl
p

. Under the condition of k < 1=Λl þ 1=Λm, one can transform (32) into

Taylor expansion on k up to the second member [10]:

Ilm kð Þ ffi ΛlΛm

4πτlτm Λl þΛmð Þ 1� ΛlΛm

Λl þΛm

� �2
k
2

3

" #

(33)

Substituting (33) into (19), (24), (27), and (28), we will obtain

Σ0 kð Þ ¼ a50

64πb30
1� b

2
0k

2

12a20

� �

(34)

Σ1 kð Þ ¼ x2

4πv0
λ2

b
0 ffiffiffi

a0

b
0

p

þ
ffiffiffi

u0

v0

p� �þ x2 1� α1ð Þ2

16
ffiffiffiffiffiffiffiffiffi

u0v0
p

" #

� x2k
2

12πv0
λ2

b
0 ffiffiffi

a0

b
0

p

þ
ffiffiffi

u0

v0

p� �3
þ x2v0 1� α1ð Þ2

64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0ð Þ3v0
q

2

6

4

3

7
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(35)

Π1 kð Þ ¼ λ2

64π
ffiffiffiffiffiffiffi

ab
3

p 1� bk
2

12a

� �

(36)

Π2 kð Þ ¼ x2 1� α1ð Þ2

4πbv0
ffiffi

a

b

p þ
ffiffiffi

u0

v0

p� � 1� k
2

3
ffiffi

a

b

p þ
ffiffiffi

u0

v0
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 !

(37)

Now using formulas (18), (31), and (34), we will obtain

a0 ¼ a20 1� a0=b0ð Þ3
64π

 !

b
0 ¼ b

2
0 1þ a0=b0ð Þ3

768π

 !

�

�

�

�

�

�

�

�

�

�

�

(38)

The parameters u0; v0
� �

can be obtained by means of (22), (31), (36), and the comment to (27)

u0 ¼ c� λ2

64π
ffiffiffiffiffiffiffi

ab
3

p

v0 ¼ x α2 � α2
1

� �

þ λ2

768π
ffiffiffiffiffiffiffi

a3b
p

�

�

�

�

�

�

�

�

�

(39)

At last, the mutual solution of (26) and (30) gives the parameters of “dressed” phonon and

cluster propagators, G
k
! φð Þ and G

k
! χð Þ:

a ¼ a0 � x2

4πv0
λ2=b0
ffiffiffi

a0

b
0

p
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u0v0
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 !
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b
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ffiffiffi
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u ¼ u0 � x2 1� α1ð Þ2

4πbv0
ffiffi

a

b

p þ
ffiffiffi

u0

v0

p� �

v ¼ v0 þ x2 1� α1ð Þ2

12πbv0
ffiffi

a

b

p þ
ffiffiffi
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�

�

�

�

�

(41)

It means that the renormalization procedure of the model (9) parameters carries out isomor-

phic transformation of weak-interacting fields of TPO and CPO into the ensemble of free

“dressed” phonons and clusters with Hamiltonian

ΔF φ;χð Þ ¼ nK11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K11=βT
q

ð

V
βT
K11
ð Þ3=2

d
3ρ

a

2
φ2 þ b

2
∇
!
φ

� �2

þ x
u

2
χ2 þ v

2
∇
!
χ

� �2
� �� 


(42)

under the condition a > 0 and u > 0. In this representation, the correlation functions for TPO

and CPO functions look like:

Gφ ρ
� �

¼ βT
K11

� �3=2 exp � ρ
Λφ

� �

4πβρnb

Gχ ρ
� �

¼ βT
K11

� �3=2 exp � ρ
Λχ

� �

4πβρnv

�

�

�

�

�

�

�

�

�

�

�

(43)

where Λφ ¼
ffiffiffiffiffiffiffi

b=a
p

and Λχ ¼
ffiffiffiffiffiffiffiffi

v=u
p

. It is easy to see that Gi ρ
� �

∝ρ�1 at ρ < Λi, and this function

exponentially works for zero, when ρ > Λi.

It is clear that the Eq. (40) is obtained under the condition: k < 1=Λ0
φ ¼

ffiffiffiffiffiffiffiffiffiffiffi

a0=b0
q

, that is equivalent

to j ρ! j > Λ
0
φ, that is, the relation, Gφ ρ

!
� �

� j ρ! j�1, is valid for the interval, Λ0
φ < j ρ! j < Λφ.

Under the condition: j ρ! j < Λ
0
φ, it is necessary to replace the correlator, G

k
! φð Þ, by the “bare”

propagator, G0

k
! φð Þ, with the parameters (39).

Thus, the TPO fluctuations in the liquid alloy are characterized by various behaviors in small

and large scales in comparison with Λ
0
φ. In the case of j ρ! j < Λ

0
φ, density fluctuations of liquid

do not feel impurities. When Λ
0
φ < j ρ! j < Λφ, the liquid matrix is inhomogeneous in the form

of impurity colloids, and for j ρ! j > Λφ, such heterogeneity is not observed at all [10].

5. Stratification of impurity by density fluctuations of liquid alloy

The structural modification of the liquid alloy at varying the system parameters x;α1;α2; β
� �

is characterized by changing the correlation radii Λϕ and Λχ of Green functions (43). They
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define the characteristic ranges of observed TPO and CPO fluctuations [8]. Therefore, the

concentration dependence, Λi(x), is interested to consider for different x;α1;α2; β
� �

of the

model (9). At the same time, one should remember that this model is applied only in Taylor

expansion (2) of f ðΔi, ∇
!
ΔiÞ under the conditions [11]: x < 1=4j1þ αi � 1ð Þβj and jij2

� �

Λi
<< 1

that are reduced to:
ffiffiffiffiffiffiffiffiffi

b3=a
q

,
ffiffiffiffiffiffiffiffiffiffi

v3=u
p

>> e� 2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β T=2zjJ11jð Þ3
q

=e 1þ zð Þ [10].

The solutions of Eqs. (38)–(41) obtained under these conditions are illustrated in Figures 1–4 by

the graphs of functions, Λϕ(x) and Λχ(x), in logarithmic coordinates for the ranges: 0.095 < α2
1 <

α2 ≤ 1.4 and 10 ≤ β ≤ 150. The last one characterizes liquid metals where the alloy components

have a tendency for demixing at α2
1 < α2 in contrast to clustering at α2

1 > α2. The structural

features of such alloy are discussed below.

One can see that the correlation radius of phonons (Λϕ) is practically not changed with

growing the impurity concentration as opposed to the correlation radius of impurity demixing

(Λχ) which increases: the higher values of αi at α2
1 < α2, the more is. At the same time,

increasing β partially decreases this effect (compare Figures 3 and 4) [10].

Figure 1. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:31, α2 ¼ 0:1, and

β = 10.
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Figure 3. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 1:1, α2 ¼ 1:4, and β = 10.

Figure 2. The graphs of lgΛφ(1) and lgΛχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:89, α2 ¼ 0:8, and β = 10.
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6. Impurity clustering induced by alloy density fluctuations

At α2
1 > α2, the graphs of lg Λϕ(x) and lg Λχ(x) are shown in Figures 5–8 for α1 ¼ 0:6, α2 ¼ 0:3,

and for four values of β in the range of 10–150.

Figure 4. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 1:1, α2 ¼ 1:4, and

β = 150.

Figure 5. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and β = 10.
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Figure 6. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and

β = 50.

Figure 7. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and

β = 100.
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It turned out that Λχ decreases sharply at some critical point, x
c
. This indicates the decay of

CPO fluctuations of double alloy into compound clusters on the background of long-wave

density fluctuations of liquid. One can see that the range of impurity concentration of clusters

existence decreases with growing the rigidity, β, of condensed matter.

At the same time, x
c
does not practically change because this point is defined by the value of

α2
1 � α2 which is constant. The following sharp increase of the CPO correlation radius (see

Figures 7 and 8) is interpreted as aggregation of clusters [10]. The observed growing of TPO

correlation radius, Λϕ(x), can be caused by impurity precipitations that do more lengthy the

density fluctuations.

7. Conclusions

According to the two-parametric model represented above, density fluctuations of liquid

induce mono-ordering impurity in micro-regions at α2
1 < α2 (see Figures 2–4) and its clustering

with basic component at α2
1 > α2 (see Figures 5–8). Such self-organization of liquid alloy has

no thermodynamic singularities of the first-order phase transition because it has continuous

character without the potential jump and concerns only to change the impurity state in liquid

alloy, that is, it is interpreted as a component phase transition of the first order [15].

Figure 8. The graphs of lg Λφ(1) and lg Λχ(2) as functions of the impurity concentration, lgx, at α1 ¼ 0:6, α2 ¼ 0:3, and

β = 150.
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The scale of this transition increases with growing the concentration and bond force of impu-

rity particles and it decreases with growing the rigidity of condensed matter inclined to

stratification of components ðα2
1 < α2Þ. For opposite components inclined to clustering

ðα2
1 > α2Þ, the composition fluctuations of double alloy decay to local states in the form of

quasi-molecular fluctuations.

By renormalizing parameters of this model, we have transformed weakly interacting fluctua-

tions to free “dressed” phonons and clusters whose autocorrelation functions are characterized

by various behaviors in small and large scales in comparison with the atomic spacing. In the

first case, density fluctuations of liquid do not feel impurities. In the intermediate scale, the

liquid matrix is inhomogeneous in the form of colloids, which is not observed at the large

scales. Dynamics of such liquid is characterized by diffusion modes of solvent and oscillations

of impurities.

At the same time, any liquid can be composed from two structures. The first of them represents

finite and ramified clusters from almost tetrahedrons having common faces in pairs. The

second is locally less dense which includes micropores as elements of free volume of liquid.
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