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Abstract

Trapdoors are a two-face key concept in modern cryptography. They are primarily related
to the concept of trapdoor function used in asymmetric cryptography. A trapdoor function
is a one-to-one mapping that is easy to compute, but for which its inverse function is
difficult to compute without special information, called the trapdoor. It is a necessary
condition to get reversibility between the sender and the receiver for encryption or
between the signer and the verifier for digital signature. The trapdoor mechanism is
always fully public and detailed. The second concept of trapdoor relates to the more subtle
and perverse concept of mathematical backdoor, which is a key issue in symmetric cryp-
tography. In this case, the aim is to insert hidden mathematical weaknesses, which enable
one who knows them to break the cipher. Therefore, the existence of a backdoor is a
strongly undesirable property. This book deals with this second concept and is focused
on block ciphers or, more specifically, on substitution-permutation networks (SPN).
Inserting a backdoor in an encryption algorithm gives an effective cryptanalysis of the
cipher to the designer.
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Preface

1. Introduction

Despite the fact that in the late 90s/early 2000s, citizens have partially obtained the freedom for

using cryptography, the recent years have shown that more than ever, governments and intelli-

gence agencies still try to control and bypass the cryptographic means used for the protection of

data and of private life. Snowden leaks have been a first upheaval. A tremendous number of

secret projects conducted by NSA and GCHQ have been revealed to the public opinion. They

have shed a new light on the permanent attempt to control the use of cryptography by a growing

number of governments.

The recurring approaches and attempts consist in making the implementation of backdoors

mandatory. The simplest and naive approach consists in enforcing key escrowing at the opera-

tors’ level. But point-to-point encryption solutions like telegram, signal or proton mail enable to

prevent it. A number of different backdoor techniques are regularly mentioned or proposed.

The most critical aspect in embedding backdoors lies on the fact that hackers or analysts may

find them more or less easily and worse may exploit them. This is the reason why operators or

developers are very reluctant to accept backdoors until now. In case of leak, they inevitably

lose users’ confidence and favor the development of trusted services abroad. In fact, the

backdoor issue arises due to the fact that only implementation backdoors (at the protocol/

implementation/management level) are generally considered.

In this book, we address the most critical issue of backdoors: mathematical or by-design back-

doors. In other words, the backdoor is put directly in the mathematical design of the encryption

algorithm. While the algorithm is totally public, proving that there is a backdoor, identifying it

and exploiting it, is generally an intractable problem, unless you know the backdoor [1]. To some

extent, the RSA’s Dual_EC_DRBG standard case falls within this category [2]. Other nonpublic

examples are known within the military cryptanalysis community and partially revealed to the

public, thanks to the 1995 Hans Buehler case [3]. This kind of backdoor is the most difficult one

to address and there is quite no public work on that topic. It is generally the technical realm of a

few among the most eminent intelligence agencies, namely NSA and GCHQ, which moreover

have the ability and power to step in and to influence the international standardization pro-

cesses. Our objective is to explain that it is probably possible to design and put such backdoors.

In this book, we consider a particular case among many other possibilities of trapdoors.

This book is organized as follows. In the next section, we explore the concept of backdoors and

trapdoors and we identify two main categories. We also present the state-of-the-art, history

and previous work regarding backdoors, mostly in symmetric cryptography. The rest of this

book focuses on substitution-permutation networks (or SPN for short) which are a special class
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of block encryption systems, mapping a partition of the plaintexts to a partition of the cipher-

texts, independently of the round keys used.

Chapter 2 explores the concept of linear partitions and their relationships with substitution-

permutation networks. We show in Section 2 that in our case, the study of the full cipher can be

restricted to the substitution layer without loss of generality. Then in Section 3, we explore this

latter primitive and show that the problem can be restricted further to the study of a single S-box.

In Chapter 3, we discuss how to design a suitable S-box which preserves a linear partition and,

at the same time, which resists linear and differential cryptanalysis. From those theoretical

results, we have designed a full AES-like encryption system, called BEA-1, presented in

Chapter 4. Section 1 gives the full specifications of this cipher. Then Section 2 deals with the

design of its backdoor. In Section 3, we sketch the basic ideas underlying the BEA-1 cryptanal-

ysis while in Section 4, we present our cryptanalysis of BEA-1 under the assumption we have

the full knowledge of the backdoor.

Chapter 5 concludes this book and explore new ideas and trends in encryption backdoors. The

full description of cryptographic primitives used in BEA-1 is given in Appendix.

2. The concept of backdoor

2.1. Definition and classification proposal

Trapdoors are a two-face key concept in modern cryptography. They are primarily related to

the concept of trapdoor function used in asymmetric cryptography. A trapdoor function is a one-

to-one mapping that is easy to compute, but for which its inverse function is difficult to

compute without special information, called the trapdoor. It is a necessary condition to get

reversibility between the sender and the receiver for encryption or between the signer and the

verifier for digital signature. The trapdoor mechanism is always fully public and detailed. The

security and the core principle are based on the existence of a secret information, the private

key, which is essentially part of the trapdoor. In other words, the private key can be seen as the

trapdoor.

The second concept of trapdoor relates to the more subtle and perverse concept of mathematical

backdoor, which is a key issue in symmetric cryptography. In this case, the aim is to insert

hidden mathematical weaknesses which enable one who knows them to break the cipher.

Nonetheless, mathematical backdoors may be extended to asymmetric cryptography, see for

example the case of the DUAL EC_DRBG [2], or the case of trapdoor primes addresses recently

in [4]. Therefore, the existence of a backdoor is a strongly undesirable property.

In the rest of this section, we will oppose the term of trapdoor, the desirable property, to that of

backdoor, the undesirable one. While the term of trapdoor has been already used in the very

few literature covering the second face of this problem, we suggest however to use the term of

backdoor to describe the issue of hidden mathematical weaknesses. This would avoid ambi-

guity and maybe would favor the research work around a topic which is nowadays mostly

addressed by governmental entities in the context of cryptography control and regulations.
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Inserting backdoors in encryption algorithms underlies quite systematically the choice of

cryptographic standards (DES, AES…). The reason is that the testing, validation and selection

processes are always conducted by governmental entities (NIST or equivalent) with the tech-

nical support of secret entities (NSA or equivalent). So an interesting and critical research area

is: “how easy and feasible is it to design and to insert backdoors in encryption algorithms?”. In

this book, we intend to address one very particular case of this question. It is important to keep

in mind that a backdoor may be itself defined in the following two ways.

• As a “natural weakness” known, but none disclosed, only by the tester, validator or final

decision-maker. The best historic example is that of the differential cryptanalysis. Follow-

ing Biham and Shamir’s seminal work in 1991 [5], NSA acknowledged that it was aware of

that cryptanalysis years ago [6]. Most of experts estimate that it was nearly 20 years ahead.

However a number of non public, commercial block ciphers in the early 90s might have

been be weak with respect to differential cryptanalysis.

• As an intended design weakness put by the author of the algorithm. To the authors

knowledge, there is no known case for public algorithms yet.

As far as symmetric cryptography is concerned, there are two major families of cipher systems

for which the issue of backdoor must be considered differently.

• Stream ciphers. Their design complexity is rather low since they mostly rely on algebraic

primitives: LFSRs and Boolean functions which have intensely been studied in the open

literature Until the late 70s, backdoors relied on the fact that quite all algorithms were propri-

etary and hence secret. It was then easy to hide nonprimitive polynomials, weak-combining

Boolean functions… The Hans Buehler case in 1995 [3] shed light on that particular case.

• Block ciphers. This class of encryption algorithms is rather recent (end of the 70s for the

public part). They exhibit so a huge combinatorial complexity that it is reasonable to think

to backdoors. As described in [7] for a κ-bit secret key and an m-bit input/output block

cipher there are ðð2mÞ!Þ2
κ

possible such block ciphers. For such an algorithm, the number

of possible internal states is so huge that we are condemned to have only a local view of

the system, that is, the round function or the basic cryptographic primitives. We cannot be

sure that there is no degeneration effect at a higher level. This point has been addressed

in [7] when considering linear cryptanalysis. Therefore, it seems reasonable to think that

this combinatorial richness of block ciphers may be used to hide backdoors.

Since block ciphers are now the most widely used encryption algorithms by the general public

and the industry, we will focus on them in the rest of this book. Backdoors in stream ciphers

have quite never been exposed to the public.

2.2. Previous work

Regarding the previous work, we can consider two aspects. The first one relates to authors

who have considered structures on the input and output spaces of round functions to build

key distinguishing or key recovery attacks. In this case, it is possible to suppose that those

structures are “natural” structures. The second case is directly linked to the topic covered in

Partition-based Trapdoor Ciphers4



this book. It relates to the design of backdoors based on such structures. Exploiting these

hidden structures then leads to a tractable cryptanalysis. In this respect, we can see those

structures as “intended” and no longer “natural”.

2.2.1. Attacks using space structures

Among the very first previous works that have considered structures in the plaintext and

ciphertext spaces is the contribution of Evertse [8]. This paper introduced the linear structures

for block ciphers, which map a subspace of Fm
2 � F

κ
2 (the product of the plaintext and ciphertext

spaces) onto a subspace of Fm
2 (the ciphertext space). Then, the author showed that if such a

linear structure exists, then known-plaintext and chosen-plaintext attacks faster than exhaus-

tive search are possible.

Later, Leander et al. [9] developed a new cryptanalysis, called invariant subspace attack, breaking

the PRINTCIPHER [10] for a significant fraction of its keys. The general idea of this attack can be

outlined as follows. Let F denote the SP-layer of a substitution-permutation network, that is, the

round function without the key addition. Then, assume that Fmaps a coset of a given subspace V

to another coset of V. In other words, there exist a and b such that Fðaþ VÞ ¼ bþ V . Here, the

addition is made in F
n
2 and hence corresponds with the XOR operation. The round function

associated with the round key k is then defined by Fk : x↦Fðxþ kÞ. If the round key k belongs to

the coset a + b + V, then it holds that

Fkðbþ VÞ ¼ Fðbþ kþ VÞ ¼ Fðaþ VÞ ¼ bþ V ,

hence the name of invariant subspace. Therefore, if every round key lies in this particular coset, the

affine subspace b + V is preserved by the full encryption process. Such a property enables a very

efficient distinguisher. As additional results, they also showed that the invariant subspace attack

• implies a truncated differential attack to be possible (the probability of the truncated

differential characteristic is however highly key-dependent);

• implies the existence of strongly biased linear approximations for weak keys (indepen-

dently of the number of rounds).

This attack has been generalized in 2015 by Leander et al. [11]. They proposed a generic

algorithm that is able to detect invariant subspaces. Indeed, their initial invariant subspaces

on PRINTCIPHER were found empirically.

Following the idea of the invariant subspace attack, Grassi et al. [12] introduced the subspace

trail cryptanalysis. Given r + 1 subspaces V ½0�,…, V ½r�, it is assumed that the image of any coset of

V[i] under the SP-network is included in a coset of V[i+1]. That is to say, for each a[i], there exists

a[i+1] such the following inclusion holds

Fða½i� þ V ½i�Þ⊆ a½iþ1� þ V ½iþ1� :

In this case, it is easy to see the all round functions Fk inherit such a property. The family of

subspaces ðV ½i�Þi ≤ r is said to be a subspace trail. Naturally, the dimension of V[i] must be lower

Partition-Based Trapdoor Ciphers
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than or equal to the dimension of V[i+1]. In contrast to the invariant subspace attack, Grassi

et al. relaxed the assumption that the coset has to be invariant. Here, the considered subset

becomes the coset of possibly different increasingly dimensional subspaces throughout the

encryption. However, the authors also required this property to hold for each coset of V[0]

instead of one. Therefore, this cryptanalysis is not a generalization but a variation of the

invariant subspace attack. As will become clear in Section 2 of Chapter 2, the family of

backdoors covered in this book is closely related to constant-dimensional subspace trails.

Let us mention that in [13], the authors introduced nonlinear invariant subspaces by consider-

ing a general Boolean function g such that gðFðxÞÞ⊕ gðxÞ is constant. Finally, Table 1.1 summa-

rized the structures considered by the attacks presented in this section and compared it with

our work.

2.2.2. Backdoor design and structures

One of the first trapdoor ciphers was created in 1997 by Rijmen and Preneel [14]. Their S-boxes

are constructed to have one high correlation between the zero mapping and a sum of certain

output bits. The knowledge of this correlation yields a high potential linear trail which is used

to recover a part of the key with linear cryptanalysis. Such a weakness is generally pointed out

by the first line of the S-boxes’ correlation matrices. Yet, if the output size of the S-boxes is large

enough, their computation is too expensive. Relying on this fact, the authors claimed that their

trapdoor is undetectable, even if one knows its global design. Nevertheless, Wu et al. [15]

disproved this by discovering a way to recover the trapdoor. It is worthwhile to mention that

in practice, if a real cipher containing a trapdoor is given, the presence of the trapdoor will

certainly not be revealed.

More recently in [16], the authors created non-surjective S-boxes embedding a parity check to

create a trapdoor cipher. The message space is thus divided into cosets and leads to create an

attack on this DES-like cipher in less than 223 operations. The security of the whole algorithm,

particularly against linear and differential cryptanalysis is not given and the authors admit

that their attack is dependent on the first and last permutation of the cipher. Finally, the non-

surjective S-boxes may lead to detect easily the trapdoor by simply calculating the image of

each input vector. This problem is naturally avoided in a substitution-permutation network in

which S-boxes are bijective by definition.

Our approach is mainly a generalization of the ideas presented by Paterson in [17]. In this

article, a DES-like trapdoor cipher exploiting a weakness induced by the round functions is

Work Structure Key dependence

Evertse [8] Linear structure (if any) Key independent

Leander et al. [9, 11] Exact coset Round key dependent

Grassi et al. [12] Coset independent Round key independent

Our approach Coset independent Round key independent

Table 1.1. Comparison of existing work with respect to input and output space structures.

Partition-based Trapdoor Ciphers6



presented. The group generated by the round functions acts imprimitively on the message

space. In other words, the round function preserves a partition of the message space no matter

the round key used, and hence, the same applies to the full cipher. This partition forms the

trapdoor. Paterson then introduced a trapdoor cipher composed of 32 rounds and using an 80-

bit key. The trapdoor enables recovery of the key using 241 operations and 232 chosen plain-

texts. Even if the mathematical material to build the trapdoor is given, no general algorithm

details the S-boxes’ construction. Furthermore, as the author says, S-boxes using these princi-

ples are incomplete: half of the ciphertext bits are independent of half of the plaintext bits.

Finally, the security against a differential attack is said to be not as high as one might expect.

Moreover, the author wondered whether the partition of the message space had to be linear,

that is to say, made up with every coset of a linear subspace. Caranti et al. [18] provided a first

answer to Paterson’s question, by proving that if the group generated by the round functions is

imprimitive, then the partition of the message space must be linear. In his thesis [19], Harpes

considered trapdoor ciphers mapping a partition of the plaintexts to a partition of the cipher-

texts. As these partitions are not necessarily equal, this family generalizes Paterson’s one.

Harpes suggested using this trapdoor with its partitioning cryptanalysis.

Partition-Based Trapdoor Ciphers
http://dx.doi.org/10.5772/intechopen.70420

7



Partition-Based Trapdoor Cipher

This chapter intends to study Substitution-Permutation Networks mapping a partition of the

plaintexts to a partition of the ciphertexts, independently of the round keys used. All the

results of this and the following chapters comes from [20].

1. Linear partitions

Let us begin with some notations and conventions.

Notation 2.1. Let m and n denote positive integers. For two maps f and g, the composition g ∘ f

(or simply gf) denotes the evaluation of f followed by g. For any set E, let #E denotes its

cardinality. If F is a subset of E, Fc denotes its complement.

Let us denote the Galois field of order two by F2 and 0n ¼ ð0;…,0 Þ the zero vector of Fn
2 . All the

vector spaces considered in this chapter are over the finite field F2. It is worthwhile to mention

that ðFn
2Þ

m will be often identified with Fnm
2 . The concatenation of two vectors x and y is denoted

by (x || y).

An n-bit S-box is any permutation of Fn
2 . If x and y are two elements of Fn

2 , then 〈x, y〉 ¼
Pn�1

i¼0 xiyi.

If L : F
n
2 ! F

m
2 is a linear map, define L⊺ : Fm

2 ! F
n
2 by 〈L⊺ðxÞ, y〉 ¼ 〈x, LðyÞ〉 for every

ðx, yÞ∈Fn
2 � F

m
2 . In other words, L⊺ is the transpose of L for the bilinear form 〈 � , � 〉.

Finally, we will denote the elements of Fn
2 using the hexadecimal notation. For instance, the

element ð1; 0; 1; 1; 1Þ of F5
2 is denoted by 17.

Since we are concerned with ciphers that associate a partition of the ciphertext space to another

partition of the plaintext space, let us introduce the following definition.

Definition 2.2. Let f be a permutation of E and A, B be two partitions of E. Let f ðAÞ denote the

set {f ðAÞjA∈A}. We say that f maps A to B if f ðAÞ ¼ B. If A ¼ B, we says that f preserves the

partition A.

The two partitions {{x} j x∈E} and {E} are called the trivial partitions of E. Observe that, for any

permutation f of E,

f ð{{x} j x∈E}Þ ¼ {{x} j x∈E} and f ð{E}Þ ¼ {E} :

That is, every permutation preserves the two trivial partitions. Moreover it should be

highlighted that if f maps A to B and if A is nontrivial, then so is B.

Example 2.3. Let E denote the set ½½0, 8½½ and consider the two partitions A, B of E defined by

A ¼ {{0; 1; 4}, {2; 6}, {3; 7}, {5}} and B ¼ {{0; 2; 7}, {1}, {3; 5}, {4; 6}}. Let f be the permutation of E

defined by
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0↦ 7 , 1↦ 0 , 2↦ 3 , 3↦ 6 , 4↦ 2 , 5↦ 1 , 6↦ 5 , 7↦ 4 :

By definition,

f ðAÞ ¼ { f ðAÞjA∈A} ¼ { f ð{0, 1, 4}Þ, f ð{2, 6}Þ, f ð{3, 7}Þ, f ð{5}Þ}

¼ { {7, 0, 2}, {3, 5}, {6, 4}, {1} }:

The equality f ðAÞ ¼ B holds, and thus f maps the partition A to B. ▴

Lemma 2.4. Let f be a permutation of E and A, B be two partitions of E. If for any part A of A,

f(A) is a part of B, then f maps A to B.

In this chapter, we will consider a special kind of partitions that is composed of all the cosets of

a linear subspace. Such partitions have already been introduced by [19, Definition 4.4] and are

recalled below.

Definition 2.5 (linear partition). Let A be a partition of Fn
2 . Let V denote its part containing 0n.

The partition A is said to be linear if V is a subspace of Fn
2 and if every part ofA is a coset of V in

F
n
2 , in other words, if

A ¼ {xþ Vjx∈Fn
2} ¼ F

n
2=V :

We denote LðVÞ such a partition.

Remark 2.6. It turns out that the linear partitions associated with the two trivial subspaces of

F
n
2 , that is {0n} and F

n
2 , correspond with the two trivial partitions of Fn

2 . Moreover, if V is a

nontrivial subspace of Fn
2 , then the linear partition LðVÞ is also nontrivial.

Example 2.7. Consider the subspaces V and W of F5
2 defined by

V ¼ spanð07,1AÞ ¼ {00,07,1A,1D} and W ¼ spanð0E,12Þ ¼ {00,0E,12,1C} :

Since both V andW are two-dimensional subspaces of F5
2, the quotient spaces LðVÞ ¼ F

5
2=V and

LðWÞ ¼ F
5
2=W are three-dimensional. In other words, the two linear partitions LðVÞ and LðWÞ

have 23 = 8 parts. It can be verified that

LðVÞ ¼ {V,01þ V,02þ V, 03þ V,08þ V,09þ V,0Aþ V,0Bþ V},

LðWÞ ¼ {W,01þW,02þW,03þW,04þW,05þW,06þW,07þW}:

For instance, the part 0B + V of the linear partition LðVÞ is the coset of V with respect to 0B.

Explicitly, it is equal to

0Bþ V ¼ {0Bþ 00,0Bþ 07,0Bþ 1A,0Bþ 1D} ¼ {0B,0C,11,16} :

Now, consider the permutation f of F5
2 given in Figure 2.1. The image of 0B + V under f is

f ð0Bþ VÞ ¼ f ð{0B,0C,11,16}Þ ¼ {0D,03,11,1F}

¼ {03þ 0E,03þ 00,03þ 12,03þ 1F} ¼ 03þW :

Partition-Based Trapdoor Ciphers
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Observe that f ð0Bþ VÞ is a coset of W so a part of LðWÞ. The images of all cosets of V under f

are displayed in Figure 2.2. Since any of them is a part of LðWÞ, the permutation f maps LðVÞ

to LðWÞ. It is worthwhile to observe that a permutation mapping a linear partition to another

one does not need to be itself linear or even affine. Indeed, f is certainly not linear as

f ð00Þ ¼ 1E 6¼ 00. By contradiction, suppose that f is an affine transformation. Then, there exist

a linear mapping L : F
5
2 ! F

5
2 and an element c of F5

2 such that f ðxÞ ¼ LðxÞ þ c holds for all x in

F
5
2. Therefore,

f ðxÞ þ f ðyÞ þ f ðzÞ ¼ LðxÞ þ cþ LðyÞ þ cþ LðzÞ þ c ¼ Lðxþ yþ zÞ þ c ¼ f ðxþ yþ zÞ

for all x, y and z in F5
2. Observe that

f ð00Þ þ f ð01Þ þ f ð02Þ ¼ 1Eþ 08þ 04 ¼ 12 6¼ 13 ¼ f ð00þ 01þ 02Þ :

Thus, f is not an affine transformation. ▴

Lemma 2.8. Let V, W be two subspaces of Fn
2 and f be a permutation of Fn

2 , which maps LðVÞ to

LðWÞ. For any x in Fn
2 , f maps x + V to f(x) + W.

Example 2.9. In Example 2.7, we have seen that f ð0Bþ VÞ ¼ 03þW . Since f maps LðVÞ to

LðWÞ, the previous lemma states that f ð0Bþ VÞ ¼ f ð0BÞ þW ¼ 0DþW . There is however no

contradiction here because 0D belongs to 03 + W. Consequently, the cosets 03 + W and 0D + W

are equal. ▴

The following two propositions are interesting properties of linear partitions, which will be

used in the rest of this chapter.

Proposition 2.10. Let V1, V2,W1,W2 be four subspaces of Fn
2 and f be a permutation of Fn

2 ,

which maps LðV1Þ to LðW1Þ and LðV2Þ to LðW2Þ. Then f maps LðV1 ∩V2Þ to LðW1 ∩W2Þ.

Figure 2.1. The permutation f of Example 2.7.

Figure 2.2. The permutation f mapping LðVÞ to LðWÞ where V ¼ spanð07,1AÞ and W ¼ spanð0E,12Þ.
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Proposition 2.11. Let V, W be two subspaces of Fn
2 and f be a permutation of Fn

2 , which maps

LðVÞ to LðWÞ. There exists an automorphism L of Fn
2 such that LðVÞ ¼ W . In particular, V and

W are isomorphic.

Example 2.12. Consider again the permutation f of F5
2 defined in Figure 2.8. As seen in the

previous example, the permutation maps the linear partition LðVÞ to LðWÞ. Then, Proposition

2.11 ensures that there exists a linear permutation L of F5
2 such that L(V) = W. Consider the bases

(07,1A) and (0E,12) of V andW respectively and complete them into the following bases of F5
2

BV ¼ ðviÞi<5 ¼ ð07,1A,01,02,08Þ and BW ¼ ðwiÞi<5 ¼ ð0E,12,01,02,04Þ :

Then, the mapping L can be defined by L(vi) = wi for each i < 5. This linear transformation will

be used in the next chapter. ▴

2. Substitution-permutation networks and partitions

This section aims at studying an SPN, which maps a partition of the plaintexts to a partition of

the ciphertexts. When the cipher key K is fixed, the encryption function EK is just a permutation

of the message space. Therefore, any partition A of the plaintexts is mapped to the partition

EKðAÞ of the ciphertexts. Nonetheless, to exploit the trapdoor, the designer needs to know the

pair of partitions ðA, EKðAÞÞ. The problem is that the output partition EKðAÞ depends a priori

on the cipher key K, which is unknown to the attacker. The simplest way to solve this problem

is to require the partition EKðAÞ to be independent of the cipher key K. In other words, we

want all the partitions EKðAÞ to be equal to a fixed partition B.

As with differential and linear cryptanalysis, taking account of the exact effect of the key

schedule seems to be a challenging problem. Therefore, the key schedule will deliberately be

omitted throughout this chapter. This amounts to consider an SPN mapping a partition A to a

fixed partition B, independently of the round keys used.

2.1. The key addition and diffusion layer

Substitution-permutation networks belong to the class of iterated block ciphers. As every

iterated block cipher, the encryption function consists in applying a simple keyed operation

called round function several times. A different round key is used for each iteration of the round

function. In practice, these rounds keys are extracted from a master key using an algorithm

called key schedule. In an SPN, the round function is made up of three distinct stages: a key

addition, a substitution layer and a permutation or diffusion layer. The substitution layer consists of

the parallel evaluation of several S-boxes and is the only part of the cipher, which is not linear

or affine. Then, the diffusion layer is the evaluation of some linear mappings (generally one).

Before tackling the full cipher, we look at its basic operations and primitives. The attacker

knows the specifications of the substitution and diffusion layers, but he does not know the
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round key used in the key addition. Therefore, the key addition should not be considered as

one operation but rather as a family of permutations. To get back to the subject at hand, we

must first determine the partitions A, which are mapped to a unique partition under the action

of all round keys.

The next proposition explains the fundamental property of linear partitions according to the

key addition. This result was introduced by Harpes in [19]. Later, Caranti et al. gave a similar

result expressed for imprimitive groups in [18]. For convenience, we restate this result with our

own notations.

Proposition 2.13. Let n be a positive integer. Let A and B be two partitions of Fn
2 . For each k in

F
n
2 , let αk denote the permutation of Fn

2 defined by αkðxÞ ¼ xþ k. Then, the permutation αk
maps A to B for any k in Fn

2 if and only if A ¼ B and A is a linear partition.

Even if this result was easily obtained, it has maybe the most important impact on our study.

Due to this result and its generalization given later in the next section, only linear partitions

will be considered. By definition, the linear partitions are quotient spaces and hence highly

structured algebraic objects. Consequently, the apparent combinatorial aspect of our study is

reduced to an algebraic problem. This result is indeed quite restrictive since the linear parti-

tions account for a small proportion of all partitions.

Example 2.14. Let n and k be nonnegative integers and q be a prime power. The q-binomial (or

Gaussian) coefficient is defined by

n
d

� �

q

¼
Y

d

i¼1

1� qn�iþ1

1� qi
:

It can be proved that this coefficient counts the number of d-dimensional subspaces of an n-

dimensional vector space over the finite field Fq. Therefore, the number of subspaces of F3
2 is

given by

X

3

d¼0

3

d

� �

2

¼ 1þ
1� 23

1� 2
þ
ð1� 23Þð1� 22Þ

ð1� 2Þð1� 22Þ
þ
ð1� 23Þð1� 22Þð1� 21Þ

ð1� 2Þð1� 22Þð1� 23Þ

¼ 1þ 7þ 7þ 1 ¼ 16 :

Since a linear partition of F3
2 is uniquely determined by a subspace of F3

2, there are exactly 16

linear partitions. All these partitions are represented graphically at the top of Figure 2.3. For

instance, the linear partition associated with the subspace spanð2,4Þ ¼ {0,2,4,6} is

Lðspanð2,4ÞÞ ¼ {{0,2,4,6}, {1,3,5,7}}.

Proposition 2.13 states that among the set of all the partitions of Fn
2 , only the linear ones yield a

unique output partition for every key. The Bell number Bm counts the number of partitions of a

set of size m. Thus, the number of partitions of Fn
2 is B2n . For n = 3, there are B8 = 4140 partitions

in all. Hence, the linear partitions represent a fraction of 16/B8 ≈ 2�8.0. This ratio falls greatly as

n increases. In fact, for n = 4, only 67/B16 ≈ 2
�27.2 are linear and for n = 5, this ratio becomes 374/

B32 ≈ 2�78.2. This underlines how Proposition 2.13 is restrictive.
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Figure 2.3. Every linear partitions and key addition in F3
2.
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All the key additions are given at the bottom of Figure 2.3. The reverse implication of Propo-

sition 2.13 states that any linear partition is preserved by all the key additions. For instance,

α2ðLðspanð6ÞÞ ¼ {f ð{0,6}Þ, f ð{1,7}Þ, f ð{2,4}Þ, f ð{3,5}Þ}

¼ { {2,4}, {3,5}, {0,6}, {1,7} } ¼ Lðspanð6ÞÞ:

Thus, the permutation α2 preserves Lðspanð6ÞÞ. Figure 2.4 illustrates graphically that this

linear partition is preserved by all the key additions. It is then not hard to check that the same

holds for every linear partition given in Figure 2.3. ▴

Now that we know linear partitions are of major importance, we focus on how the diffusion

layer deals with these partitions.

Proposition 2.15. Let n be a positive integer. Let L be an automorphism of Fn
2 and V a subspace

of Fn
2 . Then, LðLðVÞÞ ¼ LðLðVÞÞ. In particular, L maps a linear partition to another one.

Proof. Since L is an automorphism, we have

LðLðVÞÞ ¼ Lð{xþ Vjx∈Fn
2}Þ ¼ {Lðxþ VÞjx∈Fn

2}

¼ {LðxÞ þ LðVÞjx∈Fn
2} ¼ {x0 þ LðVÞjx0 ∈Fn

2} :

Moreover, L(V) is a subspace of F
n
2 because L is a linear mapping. Consequently,

LðLðVÞÞ ¼ LðLðVÞÞ. ▪

If V and W are two subspaces of Fn
2 , it is straightforward to design a linear permutation L of Fn

2

mapping LðVÞ to LðWÞ. Indeed, Proposition 2.15 establishes that L maps LðVÞ to LðWÞ is and

only if LðVÞ ¼ W . In other words, we only need to consider the image of V and not the whole

linear partition LðVÞ.

Figure 2.4. The key additions preserving the partition Lðspanð6ÞÞ.
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2.2. From the encryption function to the substitution layer

Along with the two results of the previous section, we can now address our main issue. For

the rest of this chapter, we consider a generic SPN whose parameters are defined as follows.

Definition 2.16 (SPN). Let m, n and r be positive integers. A substitution-permutation network is

an iterated block cipher whose encryption function is defined as follows. Let S0,…,Sm�1 be n-

bit S-boxes.

• The addition of the round key k is denoted by αk : F
nm
2 ! F

nm
2 , x↦ xþ k.

• The substitution layer is denoted by σ and maps ðxiÞ0 ≤ i<m to ðSiðxiÞÞ0 ≤ i<m.

• The diffusion layer is a linear permutation denoted by π : F
nm
2 ! F

nm
2 .

The round function Fk associated with the round key k is defined by Fk ¼ πσαk. The encryption

function associated with the round keys K ¼ ðk½0�,…, k½r�Þ in ðFnm
2 Þrþ1 is defined by

EK ¼ αk½r�Fk½r�1�…Fk½0� :

We can now prove the following result.

Theorem 2.17. Let A and B be two partitions of Fnm
2 . Suppose for any (r + 1)-tuples of round

keys K ¼ ðk½0�,…, k½r�Þ in ðFnm
2 Þrþ1 that the encryption function EK maps A to B. Define A½0� ¼ A

and for all 1 ≤ i ≤ r, A½i� ¼ ðπσÞiðAÞ. Then,

• A
½r� ¼ B;

• for any 0 ≤ i < r and for any k[i] in Fnm
2 , Fk½i�ðA

½i�Þ ¼ A
½iþ1�;

• for any 0 ≤ i ≤ r, A½i� is a linear partition.

Proof. Observe that for the round key k = 0nm, the key addition α0nm is the identity mapping on

F
nm
2 , and thus F0nm ¼ πσα0nm ¼ πσ. Now, choosing K ¼ ðk½0�,…, k½r�Þ ¼ ð0nm,…,0nmÞ gives

B ¼ EKðA
½0�Þ ¼ αk½r�Fk½r�1�…Fk½0�ðA

½0�Þ ¼ α0nm ðF0nmÞ
rðA½0�Þ

¼ ðπσÞrðA½0�Þ ¼ A
½r�:

Let 0 ≤ i < r be an integer. Let k[i] be any element of Fnm
2 . Define k½j�¼ 0nm for all 0 ≤ j ≤ r such that

j 6¼ i. By hypothesis, the equality αk½r�Fk½r�1�…Fk½0�ðA
½0�Þ ¼ A

½r� holds. Thus,

Fk½i�…Fk½0�ðA
½0�Þ ¼ ðαk½r�Fk½r�1�…Fk½iþ1�Þ

�1ðA½r�Þ :

On one hand,

Fk½i�…Fk½0�ðA
½0�Þ ¼ Fk½i�ðFk½i�1�…Fk½0�ÞðA

½0�Þ ¼ Fk½i�ðF0nm Þ
iðA½0�Þ

¼ Fk½i�ðπσÞ
iðA½0�Þ ¼ Fk½i�ðA

½i�Þ:
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On the other hand,

ðαk½r�Fk½r�1�…Fk½iþ1�Þ
�1ðA½r�Þ ¼ ðα0nmðF0nmÞ

r�ðiþ1ÞÞ�1ðA½r�Þ

¼ ððπσÞr�ðiþ1ÞÞ�1ðA½r�Þ ¼ A
½iþ1�:

Therefore, Fk½i�ðA
½i�Þ ¼ A

½iþ1�, or equivalently αk½i�ðA
½i�Þ ¼ ðπσÞ�1ðA½iþ1�Þ. Since this equality holds

for every k[i], Proposition 2.13 states that the partition A
½i� is linear.

It remains to show that A½r� is linear as the previous argument holds only for i < r. Let k[r] be an

element of Fnm
2 . Define k[i] = 0nm for each 0 ≤ i < r. Then,

A
½r� ¼ αk½r�Fk½r�1�…Fk½0�ðA

½0�Þ ¼ αk½r�ðF0nmÞ
rðA½0�Þ ¼ αk½r�ðA

½r�Þ :

Again, Proposition 2.13 implies that A½r� is linear and the result is proven. ▪

This theorem can be restated in the following way. First, the input partition A and the output

partition B must be linear. This result generalizes Proposition 2.13 in the sense that it applies to

the full cipher and not only to the key addition. As was pointed out earlier, linear partitions are

very specific partitions. This means that our combinatorial hypothesis implies to consider only

algebraic objects.

Second, we have only supposed that the encryption function maps A to B after r rounds.

Nevertheless, Theorem 2.17 ensures that each iteration of the round function also maps a fixed

linear partition to another one. As a consequence, the study of the full cipher is reduced to the

study of the round function. Additionally, this result can be strengthened as follows.

Corollary 2.18. Keep the notations of Theorem 2.17. For all 0 ≤ i ≤ r, let V[i] denote the part ofA½i�

containing 0. According to Theorem 2.17, A½i� ¼ LðV ½i�Þ. Let 0 ≤ i < r be an integer. Then,

σðLðV ½i�ÞÞ ¼ LðW ½i�Þ :

where W[i] denotes the subspace π�1ðV ½iþ1�Þ. In particular, the substitution layer must at least

map one linear partition to another one.

Proof. By definition, πσðA½i�Þ ¼ A
½iþ1� or, equivalently, σðA½i�Þ ¼ π�1ðA½iþ1�Þ. This equality can

be restated as

σðLðV ½i�ÞÞ ¼ π�1ðLðV ½iþ1�ÞÞ :

As π is an automorphism of F
nm
2 , then so π�1 is. Next, Proposition 2.15 ensures that

π�1ðLðV ½iþ1�ÞÞ ¼ Lðπ�1ðV ½iþ1�ÞÞ. The result follows. ▪

A diagrammatic representation of Theorem 2.17 and Corollary 2.18 is given in Figure 2.5. This

highlights that the input partition is always transformed in the same way through each basic

operation of the encryption process. The results obtained so far can be summarized as follows:

if an SPN maps a partition A of the plaintext space to a partition B of the ciphertext space no
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matter the round keys used, then the substitution layer has to map at least one linear partition

to another one. This shows that our study can be reduced to the substitution layer without loss

of generality.

3. Structure of the substitution layer

In the remainder of this chapter, V and W will denote two subspaces of ðFn
2Þ

m.

As explained in the previous section, it remains to understand how the substitution layer can

map the linear partition LðVÞ to LðWÞ. This problem is far more complex for the substitution

Figure 2.5. Results of Section 2.2.
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layer than it was for the diffusion layer. The reasons for this are twofold. First, the substitution

layer is nonlinear. It is even the only part of the SPN, which is not affine. As a consequence, to

map the linear partition LðVÞ to LðWÞ, we have to consider all the parts of both partitions and

not only the subspaces V and W, as was the case for the diffusion layer (see Proposition 2.15).

Second, the substitution layer should not be considered as a whole, but as the parallel applica-

tion of its S-boxes. Therefore our problem becomes the following. Given two subspaces V and

W, what are the necessary and/or sufficient conditions on the S-boxes for the substitution layer

to map LðVÞ to LðWÞ.

Before going any further, let us introduce an example that we will continue throughout this

section.

Example 2.19. Consider the substitution layer made up of the four 5-bit S-boxes S0, S1, S2 and

S3 described in Figure 2.6. Its parameters are then m = 4 and n = 5. Observe that the S-box S2
was previously studied in Example 2.7. Define the two families EV ¼ ðviÞ0 ≤ i<7 and

EW ¼ ðwiÞ0 ≤ i<7 of elements of ðF5
2Þ

4 by

v0 ¼ ð10,00,00,17Þ ,

v1 ¼ ð08,00,00,17Þ ,

v2 ¼ ð04,00,00,0BÞ ,

v3 ¼ ð02,00,00,1CÞ ,

v4 ¼ ð01,00,00,1CÞ ,

v5 ¼ ð00,00,1A,00Þ ,

v6 ¼ ð00,00,07,00Þ :

w0 ¼ ð10,00,00,15Þ ,

w1 ¼ ð08,00,00,1DÞ ,

w2 ¼ ð04,00,00,15Þ ,

w3 ¼ ð02,00,00,08Þ ,

w4 ¼ ð01,00,00,00Þ ,

w5 ¼ ð00,00,12,00Þ ,

w6 ¼ ð00,00,0E,00Þ :

Finally, define VandWas the subspaces spanned by EV and EW , respectively. Note that the family

EV is linearly independent because it is echelonized. Hence, EV is a basis of V. The same applies

for EW andW. As a consequence, V and W are both seven-dimensional subspaces of ðF5
2Þ

4.

We claim that the substitution layer σ maps LðVÞ to LðWÞ. Naturally, we will not verify this

statement by hand because it requires to check for each of the 213 cosets of V that the 27 images

of its elements under σ lies in the same coset of W. However, the reader who is relectant to

accept this claim is encouraged to check it with a computer. ▴

Figure 2.6. Specification of the S-boxes used throughout Section 3.
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3.1. Truncating the substitution layer

To understand how the substitution layer can map LðVÞ to LðWÞ, we will adopt a divide and

conquer strategy. That is to say, we want to break down this problem into several independent

sub-problems, each involving less S-boxes than the full substitution layer. The first idea is to

truncate the substitution layer and the subspaces V and W to get a local view of what happens

on some S-boxes.

Definition 2.20 (truncation and substitution layer). Let E be any non-empty subset of ½½0;m½½

and define the following mappings

TE : ðFn
2Þ

m ! ðFn
2Þ

E σE : ðFn
2Þ

E ! ðFn
2Þ

E

ðxiÞ0 ≤ i<m ↦ ðxiÞi∈E ðxiÞi∈E ↦ ðSiðxiÞÞi∈E :

If E has cardinality p, then we identify ðFn
2Þ

E with ðFn
2Þ

p.

The mapping TE allows to shorten a vector of ðFn
2Þ

m to keep only the coordinates whose indices

belong to E. The application σE is a substitution layer truncated to the S-boxes whose indices

lie in E.

Remark 2.21. Note that TE is a linear mapping. Observe that σ½½0;m½½ is the substitution layer of

the SPN. Moreover, the truncated substitution layer σ{i} and the S-box Si are equal for all

0 ≤ i < m.

Proposition 2.22 (truncating to a few S-boxes). Suppose that σmaps LðVÞ to LðWÞ. Let E be a

nonempty subset of ½½0;m½½. Then, the permutation σE maps LðTEðVÞÞ to LðTEðWÞÞ.

Proof. Let x ¼ ðxiÞi∈E be an element of ðFn
2Þ

E. Let y be the element of ðFn
2Þ

m defined by yi = xi if i

belongs to E and yi¼ 0n otherwise. Thus, TEðyÞ ¼ x. By hypothesis, σ maps LðVÞ to LðWÞ.

Hence, Lemma 2.8 implies that σðyþ VÞ ¼ σðyÞ þW . Next,

TEðσðyþ VÞÞ ¼ TEðσðyÞÞ þ TEðWÞ

since TE is a linear mapping. Furthermore,

TEðσðyþ VÞÞ ¼ TEσð{yþ vjv∈V}Þ ¼ {TEσðyþ vÞjv∈V}

¼ {σEðTEðyþ vÞÞjv∈V} ¼ σEð{TEðyþ vÞjv∈V}Þ

¼ σEð{TEðyÞ þ TEðvÞjv∈V}Þ ¼ σEðTEðyÞ þ TEðVÞÞ :

Therefore, σEðxþ TEðVÞÞ ¼ TEðσðyÞÞ þ TEðWÞ. In other words, the image of any part of

LðTEðVÞÞ under σE lies in LðTEðWÞÞ. The result is a consequence of Lemma 2.4. ▪

Example 2.23. By choosing E ¼ {0; 3}, the previous proposition ensures that the truncated

substitution layer σ{0,3} maps LðT {0,3}ðVÞÞ to LðT {0,3}ðWÞÞ. First, it is easy to see that

T{0,3}ðVÞ ¼ spanðð10,17Þ, ð08,17Þ, ð04,0BÞ, ð02,1CÞ, ð01,1CÞÞ,

T{0,3}ðWÞ ¼ spanðð10,15Þ, ð08,1DÞ, ð04,15Þ, ð02,08Þ, ð01,00ÞÞ:
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Again, we will not explicitly check that σ{0;3} maps LðT{0;3}ðVÞÞ to LðT{0;3}ðWÞÞ but limit our-

selves to prove that the coset ð07,03Þ þ T{0;3}ðVÞ is mapped to one coset of T {0;3}ðWÞ. Its image

can be found using Lemma 2.8 as follow

σ{0;3}ðð07,03Þ þ T{0;3}ðVÞÞ ¼ σ{0;3}ðð07,03ÞÞ þ T{0;3}ðWÞ

¼ ð07,1AÞ þ T{0;3}ðWÞ :

The images of every element of this coset are given in Figure 2.7. For instance,

σ{0;3}ðð07,03Þ þ ð01,1CÞÞ ¼ σ{0;3}ð06,1FÞ ¼ ðS0ð06Þ, S3ð1FÞÞ ¼ ð01,07Þ

¼ ð07,1AÞ þ ð06,1DÞ :

This explains the second image. ▴

Choosing E = {i} in Proposition 2.22 gives that the S-box Si maps LðT {i}ðVÞÞ to LðT {i}ðWÞÞ. As

this result holds for each index i in ½½0;m½½, we deduce that

σðLðVÞÞ ¼ LðWÞ ) ∀i∈ ½½0;m½½, SiðLðT{i}ðVÞÞÞ ¼ LðT{i}ðWÞÞ : (2.1)

However, the equivalence does not hold in general. Hence, this only gives a necessary condi-

tion on each S-box. In other words, this means that we can lose information when considering

each S-box independently. The next example stresses this fact.

Example 2.24. In our example, the truncated subspaces T{i}(V) and T{i}(W) are the following:

T{0}ðVÞ ¼ F
5
2, T{1}ðVÞ ¼ {00}, T{2}ðVÞ ¼ spanð07,1AÞ, T{3}ðVÞ ¼ spanð0B,17Þ,

T{0}ðWÞ ¼ F
5
2, T{1}ðWÞ ¼ {00}, T{2}ðWÞ ¼ spanð0B,17Þ, T{3}ðWÞ ¼ spanð08,15Þ:

Figure 2.7. σ{0,3} mapping a coset of T{0,3}(V) to a coset of T{0,3}(W).
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First, observe that the truncated subspaces for S0 and S1 are trivial. Hence, the associated linear

partitions are also trivial and no information on S0 or S1 can be drawn from 2.1. Yet, the last

two truncated subspaces are nontrivial and 1 gives the following equalities:

S2ðLðspanð07,1AÞÞÞ ¼ Lðspanð0B,17ÞÞ ,

S3ðLðspanð0B,17ÞÞÞ ¼ Lðspanð08,15ÞÞ :

The first property has already been highlighted in Example 2.7 and in Figure 2.2. The second

one is represented in Figure 2.8.

Let us now show that the converse of Implication 2.1 does not hold in general. Consider the

substitution layer σ0 made up of the four S-boxes S00, S
0
1, S

0
2 and S03 where

S00 ¼ S1 , S01 ¼ S1 , S02 ¼ S2 , S03 ¼ S3 :

Thus, this new substitution layer differs from σ by only one S-box. Recall that the linear

partition associated with T{0}ðVÞ ¼ T{0}ðWÞ is trivial. Therefore, S00 necessarily preserves this

partition. As the other S-boxes remain the same, the right side of 2.1 still holds for σ0, that is

∀i∈ ½½0; 4½½, S0 iðLðT{i}ðVÞÞÞ ¼ LðT{i}ðWÞÞ :

However, we will prove that σ0 does not map LðVÞ to LðWÞ. Suppose by contradiction that it

does. Then Proposition 2.22 ensures that σ0{0;3} maps LðT{0;3}ðVÞÞ to LðT{0;3}ðWÞÞ. By Lemma 2.8,

σ0{0;3}ðð07,03Þ þ T{0;3}ðVÞÞ ¼ σ0{0;3}ð07,03Þ þ T{0;3}ðWÞ

¼ ðS00ð07Þ, S
0
3ð03ÞÞ þ T{0;3}ðWÞ

¼ ðS1ð07Þ, S3ð03ÞÞ þ T{0;3}ðWÞ ¼ ð07,1AÞ þ T{0;3}ðWÞ :

Then

σ0{0;3}ðð07,03Þ þ ð01,1CÞÞ ¼ σ0{0;3}ð06,1FÞ ¼ ðS00ð06Þ, S
0
3ð1FÞÞ ¼ ðS1ð06Þ, S3ð1FÞÞ

¼ ð0C,07Þ ¼ ð07,1AÞ þ ð0B,1DÞ :

This is a contradiction since (0B,1D) does not belong to T {0;3}ðWÞ as can be seen in Figure 2.7.

As a consequence, the substitution layer σ0 does not map LðVÞ to LðWÞ. ▴

As shown in the previous example, truncating the substitution layer and the subspaces V and

W to each S-box independently of the others is too restrictive in general. This suggests that

Figure 2.8. The S-box S3 mapping LðV 0Þ to LðW 0Þ where V 0 ¼ spanð0B,17Þ and W 0 ¼ spanð08,15Þ.
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some S-boxes can in a way be linked together. That is to say, considering them independently

results in a loss of information on the subspaces V and W. Recall that we are interested in

splitting the problem of finding all the substitution layers σ mapping LðVÞ to LðWÞ into

several independent smaller problems. Taking into account that some S-boxes can be linked

together, we require the following:

• a sub-problem can involve several S-boxes;

• the same S-box cannot be involved in two different sub-problems (in other words, the sub-

problems are independent);

• each S-box is involved in one sub-problem (possibly trivial).

This is naturally formalized by a partition I of ½½0;m½½. Each part I of I represents a sub-problem,

and its elements are the indices of the S-boxes involved in. By virtue of Proposition 2.22, it

holds that

σðLðVÞÞ ¼ LðWÞ ) ∀I ∈ I , σIðLðT IðVÞÞÞ ¼ LðT IðWÞÞ : (2.2)

The next section aims to find a sufficient condition on the partition I to obtain the equivalence.

In such a case, this means that combining the solutions of these sub-problems yields a substi-

tution layer mapping LðVÞ to LðWÞ and vice versa.

3.2. Structure of the subspaces V and W

With the aim of ending up with partitions for which the converse of 2.2 holds, let us introduce

a few definitions and notations.

Definition 2.25 (trivial product). Let E be a subset of ½½0;m½½. The trivial product subspace

associated with E, denoted by TrivE, is defined to be

TrivE ¼ {x∈ ðFn
2Þ

m j ∀i∈Ec, xi¼ 0n} :

Moreover, we denote by VE the intersection of V and TrivE, that is VE ¼ V ∩TrivE ¼ {v∈V j ∀i

∈Ec, vi¼ 0n}. The subspace WE is defined in the same way.

Remark 2.26. It is easily seen that

TrivE ¼
Y

m�1

i¼0

Triv
½i�
E with Triv

½i�
E ¼

{0n} if i∈Ec ,
F
n
2 if i∈E :

�

Thus, a trivial product subspace is the Cartesian product of trivial spaces for each S-box; this

justifies its name. Additionally, if E⊆ F, then TrivE ⊆TrivF, and hence VE ⊆VF and WE ⊆WF.

The subspaces TrivE are essential in the study of the substitution layer because the latter

always preserves the partition LðTrivEÞ regardless of its S-boxes. This result, together with

Proposition 2.10, establishes the following corollary.
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Corollary 2.27. Let E be a subset of ½½0;m½½. If σ maps LðVÞ to LðWÞ, then σ also maps LðVEÞ to

LðWEÞ.

Example 2.28. All the subspaces VE are graphically represented in Figure 2.9. For instance,

V {0} ¼ spanðð15,00,00,00Þ, ð0D,00,00,00Þ, ð03,00,00,00ÞÞ :

Additionally, this figure also highlights the expected inclusions given by Remark 2.26. Observe

that BV ¼ ðviÞ0 ≤ i<7 is a basis of V. This new basis is more convenient than the echelonized basis

EV previously introduced in Example 2.19 since all the VE are then easily described. It is worth

noting that the same picture remains valid for the subspace W. For example,

Figure 2.9. The subspaces VE, WE for each subset E of {0,1,2,3}.
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W {0} ¼ spanðð14,00,00,00Þ, ð0E,00,00,00Þ, ð01,00,00,00ÞÞ :

This emphasizes that when the substitution layer maps LðVÞ to LðWÞ, the subspaces V and W

have the same structure.

According to Corollary 2.27, the substitution layer maps LðV {0}Þ to LðW {0}Þ. Next, truncate to

E = {0} using Proposition 2.22 to obtain

S0ðLðspanð03,0D,15ÞÞÞ ¼ Lðspanð01,0E,14ÞÞ :

This property is depicted in Figure 2.10. Finally, it should be underlined that with Proposition

2.22 alone, no property can be established on the S-box S0 (see Example 2.24). ▴

Definition 2.29 (projection PE). Let E be a subset of ½½0;m½½. The projection PE from ðFn
2Þ

m onto

TrivE is defined by PEðx0,…, xm�1Þ ¼ ðy0,…, ym�1Þ where yi = xi if i belongs to E and yi = 0n
otherwise.

Remark 2.30. It is not hard to see that PE is a linear mapping and that VE is always a subspace

of PE(V). Moreover, it holds that TEðVÞ ¼ TEðPEðVÞÞ.

The next lemma gives some relations between the previous definitions. It is quite important

and will be used several times by the end of the current chapter.

Lemma 2.31. Let I be a partition of ½½0;m½½. Then V equals the internal direct sum ⊕ I ∈ IV I if and

only if V I ¼ PIðVÞ for any part I of I . In this case, the decomposition of an element v of V is

v ¼
P

I ∈ IPIðvÞ.

Remark 2.32. Suppose that I is a partition of ½½0;m½½ such that V ¼ ⊕ I∈ IV I . The previous

lemma, together with Remark 2.30, establishes that TIðVÞ ¼ TIðV IÞ for each part I of I .

Proposition 2.33 (Substitution layer structure). Let I be a partition of ½½0;m½½ satisfying both

V ¼ ⊕ I ∈ IV I andW ¼ ⊕ I∈ IW I . The permutation σmaps LðVÞ to LðWÞ if and only if σI maps

LðT IðVÞÞ to LðT IðWÞÞ for any I in I .

The preceding proposition establishes that the converse of Implication 2.2 (page 21) holds

whenever the partition I satisfies both V ¼ ⊕ I ∈ IV I and W ¼ ⊕ I ∈ IW I . For such a partition,

the problem of finding all the substitution layers σ mapping LðVÞ to LðWÞ can equivalently be

broken down into the independent sub-problems of finding all the σI mapping LðTIðVÞÞ to

LðTIðWÞÞ for each part I of I .

Figure 2.10. The S-box S0 mapping LðV 0Þ to LðW 0Þ where V 0 ¼ spanð03,0D,15Þ and W 0 ¼ spanð01,0E,14Þ.
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3.3. Linked and independent S-boxes

Of course, there may be several partitions I such that V ¼ ⊕ I ∈ IV I and W ¼ ⊕ I ∈ IW I , each

yielding a different decomposition of the substitution layer. A few of these decompositions are

certainly more interesting or easier to solve. The purpose of this section is to study such

partitions. Let us begin with the following lemma.

Lemma 2.34. Suppose that σ maps LðVÞ to LðWÞ. For every partition I of ½½0;m½½, V ¼ ⊕ I ∈ IV I

if and only if W ¼ ⊕ I ∈ IW I .

The contrapositive of Lemma 2.34 is the following: if there exists a partition I such that

V ¼ ⊕ I ∈ IV I and W 6¼ ⊕ I ∈ IW I or such that V 6¼ ⊕ I∈ IV I and W ¼ ⊕ I ∈ IW I , then there

exists no substitution layer mapping LðVÞ to LðWÞ. Because we intend to study the substitu-

tion layers mapping LðVÞ to LðWÞ, Lemma 2.34 suggests to assume the following.

Assumption 2.35. For the remainder of this section, we assume that for any partition I of

½½0;m½½, it holds that

V ¼ ⊕
I∈ I

V I ⇔W ¼ ⊕
I ∈ I

W I :

Proposition 2.33, together with the preceding assumption, suggests the following definition.

Definition 2.36 (decomposition partition). A decomposition partition (with respect to V and W)

is a partition of ½½0;m½½ such that V ¼ ⊕ I∈ IV I .

Remark 2.37 (partial order on partitions). Recall that if I and J are two partitions of ½½0;m½½,

then the partition I is said to be finer than J if for any part I in I , there exists a part J in J such

that I ⊆ J.

Example 2.38. The purpose of this example is to find all the decomposition partitions with

regard to V and W. By virtue of Lemma 2.31, the subspace V can be decomposed as ⊕ I ∈ IV I if

and only if VI is equal to PI(V) for each part I of I . The eight-framed subspaces in the middle of

Figure 2.9 are exactly those that satisfy VE ¼ PEðVÞ. Hence, the decomposition partitions are

the partitions whose parts are selected from the following:

∅, {1}, {2}, {1; 2}, {0; 3}, {0; 1; 3}, {0; 2; 3}, {0; 1; 2; 3} :

It is then easy to check that the decomposition partitions of V are:

{{1}, {2}, {0; 3}} , {{1}, {0; 2; 3}} , {{2}, {0; 1; 3}} ,

{{0; 3}, {1; 2}} and {{0; 1; 2; 3}} :

In Figure 2.11, all the partitions of ½½0; 4½½ are ordered by the “finer-than” relation, and the

decomposition partitions are emphasized. What stands out is that the decomposition partition

{{1}, {2}, {0, 3}} is finer than all other decomposition partitions. ▴

The existence of this least decomposition partition in the example above is a very welcome and

nontrivial property. This means that all the truncated substitution layers obtained using
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Proposition 2.33 are the smallest possible. Thus, such a partition should be preferred to any

other decomposition partition. We will now prove that this least decomposition partition

always exists.

Proposition 2.39. The set of the partitions I of ½½0;m½½ satisfying V ¼ ⊕ I ∈ IV I has a least element

denoted I ld.

Consequently, the only decomposition partition that will be considered in the remainder of this

chapter is the least decomposition partition I ld. The following definition is inspired by Propo-

sition 2.33 and Proposition 2.39.

Definition 2.40 (linked and independent S-boxes). Suppose that σ maps LðVÞ to LðWÞ. Let I

be a part of I ld.

• If I = {i}, the S-box Si is said to be independent of the other S-boxes.

Moreover, if V {i}¼ {0nm} or V {i} ¼ Triv{i}, the S-box Si is said to be inactive. Otherwise, Si is

active.

• If #I ≥ 2, then the S-boxes whose indices lie in I are said to be linked together.

Remark 2.41. Let 0 ≤ i ≤ m be an integer. We have already noted that the substitution layer σ

always preserves Lð{0nm}Þ and LðTriv{i}Þ. In addition, Proposition 2.33 ensures that σ maps

LðV {i}Þ to LðW {i}Þ. Consequently, if V {i}¼ {0nm} or if V {i} ¼ Triv{i}, then V{i}= W{i}.

Figure 2.11. The partitions I of {0, 1, 2, 3} such that V ¼ ⊕ I ∈ IVI .
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Suppose that the S-box Si is independent with regard to the subspaces V andW. As established

by Proposition 2.33 and Remark 2.32, if Si is replaced with another S-box S0 i, then this new

substitution layer still maps LðVÞ to LðWÞ provided that S0i maps LðT {i}ðV {i}ÞÞ to LðT {i}ðW {i}ÞÞ.

Suppose further that Si is active. By definition, f0nmg⊈V {i} ⊈Triv{i}. Observe that the restriction

of T{i} to Triv{i} is one-to-one, hence

f0n} ¼ T{i}ðf0nm}Þ⊈T{i}ðV {i}Þ⊈T{i}ðTriv{i}Þ ¼ F
n
2 :

Thus, T{i}(V{i}) is a nontrivial subspace of Fn
2 and the requirement that S0 i maps LðT {i}ðV {i}ÞÞ to

LðT {i}ðW {i}ÞÞ is also nontrivial. Therefore, an independent active S-box can be chosen indepen-

dently of the other S-boxes but has to respect the structure of the subspaces V and W.

Now suppose that Si is inactive. By definition, V {i}¼ {0nm} or V {i} ¼ Triv{i}. Then, the equality

V {i} ¼ W {i} follows from Remark 2.41 and we have that

T{i}ðV {i}Þ ¼ T{i}ðW {i}Þ ¼ f0n} or T{i}ðV {i}Þ ¼ T{i}ðW {i}Þ ¼ F
n
2 :

In either case, the condition that S0 i maps LðT{i}ðV {i}ÞÞ to LðT{i}ðW {i}ÞÞ is trivial, and any S-box

fulfills it. As a consequence, an independent inactive S-box can be freely chosen. In other

words, such an S-box has no impact on the fact that σ maps LðVÞ to LðWÞ.

Finally, suppose that some S-boxes are linked together. If only one of these S-boxes is replaced

independently of the others, then the desired property of the substitution layer may not hold.

Example 2.42. As we have seen in Example 2.38 and Figure 2.11, the least decomposition

partition with regard to the subspaces V and W is I ld ¼ {{1}, {2}, {0; 3}}. By Proposition 2.33,

the substitution layer maps LðVÞ to LðWÞ is and only if the following equalities hold:

σ{0;3}ðLðT{0;3}ðVÞÞÞ ¼ LðT{0;3}ðWÞÞ ,
S1ðLðT{1}ðVÞÞ ¼ LðT{1}ðWÞÞ ,

S2ðLðT{2}ðVÞÞ ¼ LðT{2}ðWÞÞ :

Thus, the S-box S1 is independent of the other S-boxes, the same applies to S2 and the S-boxes

S0 and S3 are linked together. As was already noted in Figure 2.9, we have that

V {1} ¼ {ð00,00,00,00Þ} and V {2} ¼ spanðð00,00,1A,00Þ, ð00,00,07,00ÞÞ :

Therefore, the S-box S2 is active while S1 is inactive. ▴

3.4. The forbidden case

Throughout this section, we assume that the substitution layer σ maps LðVÞ to LðWÞ. In order

to prove the last main theorem of this chapter, we need to consider the following particular

case.

Proposition 2.43. Let I be a decomposition partition. Let I be a part of I such that #I ≥ 2 and let

E be a nonempty proper subset of I. Suppose that VE ¼ V I\E¼ {0nm} and PEðVÞ ¼ TrivE. Then,

for all i in E, Si is an affine mapping.

Partition-Based Trapdoor Ciphers
http://dx.doi.org/10.5772/intechopen.70420

27



If the subspace V satisfies the assumption of the proposition above, then at least one of S-boxes

has to be affine. Nowadays, an SPN whose substitution layer has an affine S-box cannot be

taken seriously. Additionally, such a cipher is likely to be very weak to differential and linear

cryptanalysis. This discussion explains the title of this section.

Example 2.44. As seen in Example 2.38, the least decomposition partition is

I ld ¼ {{1}, {2}, {0; 3}}. Its only part of cardinality greater than or equal to 2 is I ¼ {0; 3}. The

nonempty proper subsets of I are the E = {0} and E = {1}. According to Figure 2.9, we have

V {0} 6¼ {020}. Consequently, Proposition 2.43 does not apply to this example, and this is good

news because none of the S-boxes is affine. Otherwise, this would have disproved the contra-

positive of Proposition 2.43.

Now let us introduce another example. Consider a substitution layer σ0 made up of two 3-bit S-

boxes S00 and S01; hence, its parameters are m = 2 and n = 3. Define the subspaces V0 and W0 of

ðF3
2Þ

2 by

V 0 ¼ W 0 ¼ spanðð4,4Þ, ð2,2Þ, ð1,1ÞÞ ¼ {ðx, xÞjx∈F3
2} :

Finally, suppose that σ0 maps LðV 0Þ to LðW 0Þ. It is easily seen that

V 0
∅ ¼ {ð0,0Þ} , V 0

{0} ¼ {ð0,0Þ} , V 0
{1} ¼ {ð0,0Þ} , V 0

{0;1} ¼ V ,

P∅ðV
0Þ ¼ Triv∅ , P{0}ðV

0Þ ¼ Triv{0} , P{1}ðV
0Þ ¼ Triv{1} , P{0;1}ðV

0Þ ¼ V :

Thus, the least decomposition partition with regard to V0 andW0 is {{0, 1}}. The S-boxes S00 and

S01 are then linked together. Choosing E = {0} in Proposition 2.43 ensures that S00 must be

affine. Similarly, we can prove that S01 must also be affine by considering E = {1}. As a result,

any substitution layer σ0 mapping LðV 0Þ to LðW 0Þ is necessary affine. These subspaces are thus

completely prohibited as the whole cipher is then affine. ▴

3.5. Reduction to one S-box

To prove our main result about the substitution layer, we need the following preliminary

lemma.

Lemma 2.45. Let I be a part of I ld and E be a non-empty proper subset of I.

• If VE is a trivial product subspace, then VE ¼ Triv∅¼ {0nm}.

• If PE(V) is a trivial product subspace, then PEðVÞ ¼ TrivE.

Now we have all the results needed, let us state and prove the main result of Section 3 which is

depicted in Figure 2.12.

Theorem 2.46. Let n ≥ 2 and m be two positive integers. Let S0,…,Sm–1 be n-bit S-boxes. Define

the permutation σ of ðFn
2Þ

m, which maps the element ðxiÞ0 ≤ i<m to ðSiðxiÞÞ0 ≤ i<m. Let V and W be

two subspaces of ðFn
2Þ

m such that σ maps LðVÞ to LðWÞ. Suppose that V is not a trivial product

subspace. Then, at least one of the S-boxes maps a nontrivial linear partition to another one.
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Proof. Let us prove this result by complete induction on the number m of S-boxes. Suppose

that m = 1. In this case, σ = S0. By hypothesis, V is different from {0n} and F
n
2 . Hence, LðVÞ is a

nontrivial partition and S0 maps LðVÞ to LðWÞ.

Letm ≥ 2 be an integer. Suppose that the result holds for any positive integer strictly lower than

m. First, suppose that all the S-boxes are independent. In other words, I ld ¼ {{i}ji∈ ½½0;m½½}. If

each S-box is inactive, then V is a trivial product subspace, a contradiction with our hypothesis.

Thus, there exists at least one active S-box Si. In this case, {0nm}⊈V {i} ⊈Triv{i}. According to

Lemma 2.31, the equality P {i}ðVÞ ¼ V {i} holds. Then, T{i}ðV {i}Þ ¼ T{i}ðP{i}ðVÞÞ ¼ T{i}ðVÞ is a

nontrivial subspace of Fn
2 , so LðT{i}ðVÞÞ is also nontrivial. Finally, Proposition 2.22 states that

Si maps LðT {i}ðVÞÞ to LðT {i}ðWÞÞ, and thus the result holds in this case.

Now, suppose that some S-boxes are linked together. Then, there exists an element I of I ld such

that I ≥ 2. Next, at least one of the following three cases holds.

1. Suppose that there exists a nonempty proper subset E of I such that PE(V) is not a trivial

product subspace. Let p denote the cardinality of E. Recall that TEðPEðVÞÞ ¼ TEðVÞ. It

follows that TE(V) is not a trivial product subspace of ðFn
2Þ

p. According to Proposition

2.22, σE maps LðTEðVÞÞ to LðTEðWÞÞ. Note that E is a non-empty proper subset of I, so of

½½0;m½½. Hence p < m, so the induction hypothesis ensures that at least one of the S-boxes of

σm maps a nontrivial partition to another one.

2. Suppose that there exists a nonempty proper subset E of I such that VE is not a trivial

product subspace. Recall that σ maps LðVEÞ to LðWEÞ. Proposition 2.22 ensures that σE
maps LðTEðVEÞÞ to LðTEðWEÞÞ. It is easily seen that TE(VE) is not a trivial product sub-

space. As before, the result is a consequence of the induction hypothesis.

3. Suppose that there exists a nonempty proper subset E of I such that PEðVÞ, VE and VI\E are

all trivial product subspaces. Then, Lemma 2.45 implies that PE(V) = TrivE and

VE ¼ V I\E¼ {0nm}. According to Proposition 2.43, the S-boxes whose indices belong to E

are affine mappings. Combining Proposition 2.15 and 2.13, we see that these S-boxes map

any non-trivial linear partition to another one.

Figure 2.12. Diagrammatic representation of Theorem 2.46.
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In any case, the result holds for this integer m. The result follows by induction. ▪

Example 2.47. It is worthwhile to note that the proof of Theorem 2.46 is constructive. There-

fore, it gives a method to find necessary conditions on the S-boxes for the substitution layer to

map LðVÞ to LðWÞ. Let us apply this method to our main example.

The first step is equivalent to what had been done in Examples 2.38 and 2.42. Consider the least

decomposition partition I ld ¼ {{1}, {2}, {0; 3}} and deduce that:

• S1 is inactive;

• S2 is active and maps Lðspanð07,1AÞÞ to Lðspanð0E,12ÞÞ (see Figure 2.2);

• S0 and S3 are linked together.

Now, consider the part I = {0,3} of I ld. Thus, the nonempty proper subsets of I are {0} and {3}.

The first case requires to compute the following projections:

P{0}ðVÞ ¼ Triv{0} and P{3}ðVÞ ¼ spanðð00,00,00,0BÞ, ð00,00,00,1CÞÞ :

Thus, P{3}(V) is not a trivial product subspace. As in Example 2.24 and Figure 2.8, we see that

S3 maps Lð0B,1CÞ to Lð08,15Þ by truncating σ and the subspaces P{3}ðVÞ, P{3}ðWÞ to {3}. Now,

we need to compute the following subspaces:

V {0} ¼ spanðð03,00,00,00Þ, ð0D,00,00,00Þ, ð15,00,00,00ÞÞ and V {3} ¼ Triv∅ :

Since V{0} is not a trivial product subspace, the second case apply. Then, truncate the substitu-

tion layer σ and the subspaces V{0} and W{0} to prove that S0 maps Lð03,0D,15Þ to

Lð01,0E,14Þ. This property was stressed in Example 2.28 and Figure 2.9. Finally, recall that

the third case does not apply to these subspaces, as observed in Example 2.44. ▴

The preceding example covers only the first and the second cases in the treatment of linked S-

boxes given by the proof of Theorem 2.46. To illustrate the third case, we introduced the

following example.

Example 2.48. Let n = m = 3. Thus, the substitution layer σ is made up of three 3-bit S-boxes

denoted by S0, S1 and S2. Define the subspaces V and W of ðF3
2Þ

3 by

V ¼ W ¼ {ðx, y, xþ yÞ j x, y∈F3
2}

and assume that the substitution layer σ maps LðVÞ to LðWÞ. By definition, it holds that

P∅ðVÞ ¼ {ð0,0,0Þ} and P{0;1;2}ðVÞ ¼ V. Then, for each nonempty proper subset E of {0,1,2}, it is

easily seen that PEðVÞ ¼ TrivE. For instance,

P{0;1}ðVÞ ¼ {ðx, y,0Þjx, y∈F3
2} ¼ Triv{0;1} :

We know that V∅ ¼ {ð0,0,0Þ} and V {0;1;2}ðVÞ ¼ V. The other subspaces VE are the following:
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V {0} ¼ {ð0,0,0Þ} , V {1} ¼ {ð0,0,0Þ} , V {2} ¼ {ð0,0,0Þ} ,

V {0;1} ¼ {ðx, x,0Þjx∈F3
2} , V {0;2} ¼ {ðx,0, xÞjx∈F3

2} , V {1;2} ¼ {ð0, x, xÞjx∈F3
2} :

Thus, the equality PEðVÞ ¼ VE holds only for E ¼ ∅ and E = {0,1,2}. Consequently, the least

decomposition partition is I ld ¼ {{0,1,2}}, and hence, all the S-boxes are linked together.

From now on, we follow the method given in the proof of Theorem 2.46. As previously noted,

for each nonempty proper subset E of {0,1,2}, the projection PE(V) is a trivial product. There-

fore, the first case does not apply to this example. We move on to the second case. By

induction, the substitution layer and the subspaces V{0,1} and W{0,1} are truncated to {0,1}.

Hence, we now consider the permutation σ0 = σ{0,1}, which maps LðV 0Þ to LðW 0Þ where

V 0 ¼ W 0 ¼ T {0;1}ðV {0;1}Þ ¼ {ðx, xÞjx∈F3
2} :

Such a substitution layer has already been studied in Example 2.44. Recall that

V 0
∅ ¼ {ð0,0Þ} , V 0

{0} ¼ {ð0,0Þ} , V 0
{1} ¼ {ð0,0Þ} , V 0

{0;1} ¼ V ,

P∅ðV
0Þ ¼ Triv∅ , P{0}ðV

0Þ ¼ Triv{0} , P{1}ðV
0Þ ¼ Triv{1} , P{0;1}ðV

0Þ ¼ V :

Thus, the least decomposition partition with regard to V0 and W0 is {{0,1}}. Since V 0
{0}, V

0
{1},

P{0}ðV
0Þ and P{1}ðV

0Þ are all trivial products, the first and second cases do not apply. Choosing

E = {0} and E = {1} in the third case proves that S0 and S1 are affine mappings. Come back to the

full substitution layer. Similarly, it is straightforward to verify that S2 must be affine by

truncating σ and the subspaces V{0,2}, W{0,2} to {0,2}. To summarize, we have proven that any

substitution layer mapping LðVÞ to LðWÞ is necessarily affine. ▴

In this chapter, we have studied a generic SPNmapping a partitionA of Fnm
2 to a partitionB of Fnm

2 ,

independently of the round keys used. Combining Theorem 2.17 and Corollary 2.18, we proved

that there exist two families ðV ½i�Þ0 ≤ i ≤ r and ðW ½i�Þ0 ≤ i ≤ r of subspaces of F
nm
2 such that the substitution

layer σmaps LðV ½i�Þ to LðW ½i�Þ for each 0 ≤ i ≤ r. This result has been illustrated in Figure 2.5.

First, suppose that all the V[i] are trivial products. In such a case, the diffusion layer of the

cipher is probably not playing its role (or the round number is very small). As is generally the

case, suppose that there is no diffusion layer in the last round of the SPN. Then, the input and

the output partitions are both linear partitions associated with a trivial product subspace. This

implies that some ciphertext bits are independent of some plaintext bits. Such a property must

be avoided in any good cipher.

Now, suppose that at least one of the V[i] is not a trivial product. This second case is far more

interesting than the previous one. By virtue of Theorem 2.46, at least one of the S-boxes must

map a nontrivial linear partition to another one, as illustrated in Figure 2.12.

Thus, we have proven in this chapter that any good partition-based trapdoor SPN has at least

on S-box mapping a nontrivial linear partition to another one. The following chapter aims to

design such an S-box with the best security against both differential and linear cryptanalysis.

Partition-Based Trapdoor Ciphers
http://dx.doi.org/10.5772/intechopen.70420

31



Analysis of a backdoor S-box

Differential [21] and linear [22] cryptanalysis are considered as the most important attacks

against block ciphers [23]. The resistance of an S-box against these attacks is assessed by its

difference distribution table and its linear approximation table respectively.

Let S be an n-bit S-box. The difference distribution table and the linear distribution table of S

are the two families DTS and LTS indexed by ðFn
2Þ

2 and defined for any (a, b) in ðFn
2Þ

2 by

DTSða, bÞ ¼ #{x∈Fn
2 j SðxÞ þ Sðxþ aÞ ¼ b} ,

LTSða, bÞ ¼ #{x∈Fn
2 j 〈a, x〉 ¼ 〈b, SðxÞ〉}� 2n�1 :

Moreover, the S-box S is said to be differentially δ-uniform if DTSða, bÞ ≤ δ for any (a, b) in ðFn
2Þ

2

with a 6¼ 0. Similarly, S is linearly λ-uniform if jLTSða, bÞj ≤λ for every (a, b) in ðFn
2Þ

2 with b 6¼ 0. It

is worthwhile to mention that the smaller the differential uniformity is, the more resistant S is

against differential cryptanalysis. The same applies for linear cryptanalysis.

Remark 3.1. It can be proven that any n-bit S-box is at least linearly 2
n�1
2 -uniform.

Recall that two permutations S1 and S2 of F
n
2 are said to be equivalent if there exist two linear

mappings L1, L2 of F
n
2 and two elements v1, v2 of F

n
2 such that

∀x∈Fn
2 , S2ðxÞ ¼ L2ðS1ðL1ðxÞ þ v1ÞÞ þ v2:

It is well known that equivalent permutations have the same differential uniformity and the

same linear uniformity, see for instance [24, 25]. More precisely, their differential tables are

equal up to row and column permutations. This result holds for linear tables up to the sign of

the coefficients.

Let V and W be two subspaces of Fn
2 . Suppose that S

0 is an n-bit S-Box mapping LðVÞ to LðWÞ.

Proposition 2.11 ensures that there exists an automorphism L of Fn
2 such that LðVÞ ¼ W . Since

L�1ðWÞ ¼ V, Proposition 2.15 states that L�1 maps LðWÞ to LðVÞ. Then, S ¼ L�1 ∘ S0 is equiva-

lent to S0 and maps LðVÞ to LðVÞ. This discussion establishes the following proposition.

Proposition 3.2. Let V and W be two subspaces of Fn
2 . If S

0 is an n-bit S-box mapping LðVÞ to

LðWÞ, then there exists an S-box S equivalent to S0 preserving LðVÞ.

Remark 3.3. Conversely, suppose that S preservesLðVÞ. LetW be any subspace isomorphic to V.

Then find an automorphism L such that L(V) =W. By Proposition 2.15, L ∘ Smaps LðVÞ to LðWÞ.

As with Section 3, let us introduce an example that we will continue throughout this section.

Example 3.4. Consider the 5-bit S-box S0 given in Figure 3.1. This S-box has already been met

twice in Examples 2.7 and 2.19 (refered to as f and S2 respectively). Thus, we know that S0
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maps LðVÞ to LðWÞ where V ¼ spanð07,1AÞ and W ¼ spanð0E,12Þ. Following the proof of

Proposition 2.11, an automorphism L of F5
2 satisfying L(V) = W was constructed in Example

2.12. Its inverse L�1 and the composition S = L�1S0 are given in Figure 3.1. For instance,

Sð07Þ ¼ L�1ðS0ð07ÞÞ ¼ L�1ð10Þ ¼ 18. It is easy to check in Figure 3.2 that S preserves the

linear partition LðVÞ. Finally, it is worth observing how Figures 2.2 and 3.2 look similar. This

explains our choices to construct the automorphism L. ▴

By virtue of Proposition 3.2, we can assume without loss of generality that V = W in our study

of the linear and differential properties of an S-box mapping LðVÞ to LðWÞ.

Throughout this section, we consider the following

• let V be a d-dimensional nontrivial subspace of Fn
2 ,

• let U be a complement space of V,

• let S be an n-bit S-box preserving LðVÞ.

Therefore, the space Fn
2 can be written as the direct sumU⊕V. In other words, every element x

of Fn
2 can be uniquely written as the sum x = u + v where u and v belong to U and V,

respectively. Let [u] denote the coset of V with respect to u. Thus, [u] = u + V is the unique part

of LðVÞ where u lies in and we have

LðVÞ ¼ {½u�ju∈U} :

Since V is d-dimensional, the complement space U is (n – d)-dimensional. In addition, we have

the following inequalities

1 ≤ d ≤ n� 1 and 1 ≤ n� d ≤n� 1

Figure 3.1. Construction of the S-box S used throughout Chapter 3.

Figure 3.2. The permutation S preserving LðVÞ where V ¼ spanð07,1AÞ.
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because V is assumed to be a nontrivial subspace of Fn
2 .

The following theorem describes the structure of permutations preserving a linear partition. It

can be seen as a corollary of the Krasner-Kaloujnine embedding theorem [26]. However, for

convenience, we give a direct constructive proof.

Theorem 3.5. There exist a unique permutation ρ of U and a unique family of permutations

ðτuÞu∈U of V such that, for all x = u + v in Fn
2 ,

Sðuþ vÞ ¼ ρðuÞ þ τuðvÞ :

Conversely, if ρ is a permutation of U and if ðτuÞu∈U is a family of permutations of V, then the

mapping S0 defined by S0ðuþ vÞ ¼ ρðuÞ þ τuðvÞ preserves LðVÞ.

Proof. By hypothesis, S preserves LðVÞ. Thus, S induces a permutation ρ of U defined as

follows. Let u be an element of U. Hence, there exists a unique u0 in U such as f ð½u�Þ ¼ ½u0�.

Define then ρðuÞ ¼ u0. For each element u ofU, define the permutation τu of V, which maps v to

Sðuþ vÞ þ ρðuÞ. By construction, for any u in U and any v in V, we have

τuðvÞ ¼ Sðuþ vÞ þ ρðuÞ and hence Sðuþ vÞ ¼ ρðuÞ þ τuðvÞ:

The existence of the permutations ρ and τu is proven. Now, let us show their uniqueness.

Suppose that there exist a permutation ~ρ of U and a family of permutations ð~τuÞu∈U of V

satisfying the result. Let (u, v) be an element of U � V. By hypothesis, we have

ρðuÞ þ τuðvÞ ¼ ~ρðuÞ þ ~τuðvÞ :

Because the sum of U and V is direct, it follows that ρðuÞ ¼ ~ρðuÞ and τuðvÞ ¼ ~τuðvÞ. The

uniqueness of ρ and the τu follows.

Conversely, let ρ be a permutation ofU and ðτuÞu∈U be a family of permutations of V. Denote S0

the mapping from F
n
2 to Fn

2 defined by S0ðuþ vÞ ¼ ρðuÞ þ τuðvÞ. Since F
n
2 ¼ U⊕V and ρ and

the τu are permutations of U and V respectively, The mapping S0 is a permutation of Fn
2 . Let u

be an element of U. It holds that

S0ð½u�Þ ¼ {S0ðuþ vÞjv∈V} ¼ {ρðuÞ þ τuðvÞjv∈V}

¼ ρðuÞ þ {τuðvÞjv∈V} ¼ ρðuÞ þ V ¼ ½ρðuÞ� :

Hence, S0 preserves the linear partition LðVÞ. ▪

This theorem allows us to design an S-box that preserves LðVÞ using permutations with

smaller domains. Furthermore, these permutations can be chosen arbitrarily.

Example 3.6. Consider the complement subspace U of V defined by

U ¼ spanð01,02,08Þ ¼ {00,01,02,03,08,09,0A,0B} :

Figure 3.2 shows that S induces a permutation ρ of U. For instance, ρð00Þ ¼ 02 because Smaps

the part [00] to [02]. The whole permutation ρ is given in Figure 3.3. For each u in U, define the

permutation τu of V by τuðvÞ ¼ Sðuþ vÞ þ ρðuÞ. For example,
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τ02ð1DÞ ¼ Sð02þ 1DÞ þ ρð02Þ ¼ Sð1FÞ þ ρð02Þ ¼ 12þ 08 ¼ 1A :

The permutations τu are also given in Figure 3.3. Informally, the permutation ρ tells us how S

permutes the parts of LðVÞ and the permutations ðτuÞu∈U describe how the elements are

moved inside each part (Figure 3.4). ▴

In the rest of this section, the permutation ρ and the family ðτuÞu∈U given by Theorem 3.5 are fixed.

The goal of this part is to express the linear and differential properties of S according to the

ones of the permutations ρ and ðτuÞu∈U . However, these permutations are not defined on F
n
2

but on the subspaces U and V of Fn
2 . Thus, the concept of linear or differential table is inexistent

for such maps. To solve this problem, we define two isomorphisms between U and F
n�d
2 and

between V and Fd
2. Then, we consider the maps induced by ρ and ðτuÞu∈U on these spaces.

Notation 3.7. Let BU ¼ ðuiÞi<n�d and BV ¼ ðviÞi<n�d be two bases of U and V respectively.

Define the following mappings:

LU : F
n�d
2 ! U LV : F

d
2 ! V

ðxn�d�1,…, x0Þ↦
Xn�d�1

i�0
xiui, ðyd�1,…, y0Þ↦

Xd�1

i¼0
yivi:

It is easily seen that LU and LV are both isomorphisms of vector spaces. Define the permutation

ρ0 ¼ L�1
U ρLU of Fn�d

2 . Finally, for each u in U, let τ0u denote the permutation L�1
V τuLV of Fd

2.

Example 3.8. Consider the bases BU ¼ ð01,02,08Þ and BV ¼ ð07,1AÞ and define the isomor-

phisms LU and LV. The permutation ρ0 of F3
2 and the permutations τ0u of F2

2 are given in

Figure 3.5. ▴

1. Linear approximation table

The next theorem links the linear tables of S and ρ0. The coefficients of the linear approximation

table of S taken into account by this result are in practice the greatest. Thus, they generally

determine the linear uniformity of S.

Theorem 3.9. Let a and b be two elements of V⊥. Denote at ¼ L⊺UðaÞ and bt ¼ L⊺UðbÞ. Then,

LTSða, bÞ ¼ 2d � LTρ0ða
t, btÞ :

Remark 3.10. Consider the map L⊺U : F
n
2 ! F

n�d
2 . Then, kerðL⊺UÞ ¼ ðImLUÞ

⊥ ¼ U⊥ :Observe that

U⊥ ∩V⊥ ¼ ðU þ VÞ⊥ ¼ ðFn
2Þ

⊥ ¼ {0}. Consequently, the restriction L⊺U : V⊥ ! F
n�d
2 is one-to-one

and thus onto because of the rank-nullity theorem.

Example 3.11. The restriction L⊺U : V⊥ ! F
3
2 is given by the following table.

a 00 05 0B 0E 13 16 18 1D

L⊺UðaÞ 0 1 7 6 3 2 4 5
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Figure 3.3. The permutation S preserving LðVÞ where V ¼ spanð07,1AÞ.
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Reorder the rows and the columns of the linear approximation table of S to begin with

ððL⊺UÞ
�1ðxÞÞx∈F3

2
, as suggested by Theorem 3.9. The reordered linear table is shown in

Figure 3.6. Each dot “�” in this figure stands for the integer 0. With this order, it is easily seen

that the top left part of LTS is exactly the linear table of ρ0 multiplied by 2d = 4. For instance,

LTSð1D,16Þ ¼ 22 � LTρ0ð5,2Þ ¼ �8 because L⊺Uð1DÞ ¼ 5 and L⊺Uð16Þ ¼ 2. ▴

Corollary 3.12. The S-box S is at least linearly 2ðnþd�1Þ=2-uniform.

Proof. As noted in Remark 3.1, there exist two elements at and bt of Fn�d
2 both nonzero such

that jLTρ0ða
t, btÞj ≥ 2ðn�d�1Þ=2. Let a and b denote the elements ðL⊺UÞ

�1ðatÞ and ðL⊺UÞ
�1ðbtÞ of Fn

2 .

Then, Theorem 3.9 implies that

jLTSða, bÞj¼ 2d � jLTρ0ða
t, btÞj ≥ 2d � 2ðn�d�1Þ=2¼ 2ðnþd�1Þ=2 :

Observe that a and b are nonzero and the result is proven. ▪

Remark 3.13. It is well-known that any 4-bit S-box is at least linearly 4-uniform, see for

example [27]. As a consequence, the permutation S is at least 2d+2-uniform if n–d = 4. Similarly,

any 2-bit S-Box is linearly 2-uniform, and hence S is at least 2d+1-uniform if n – d = 2.

Example 3.14. It is easily seen that S is linearly 8-uniform in Figure 3.6. The lower bound given

by Corollary 3.12 is 2ðnþd�1Þ=2¼ 2ð5þ2�1Þ=2 ¼ 8. Therefore, this bound is tight on this example. ▴

Figure 3.4. The linear transformations LU and LV.

Figure 3.5. The family of permutations ðτ0uÞu∈U and the permutation ρ0.
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Figure 3.6. The reordered linear table of S.
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2. Differential distribution table

Unlike linear cryptanalysis, where only a local view of the table was provided, the results for

differential cryptanalysis bring both local and global outlooks.

Theorem 3.15. Let a ¼ ua þ va and b ¼ ub þ vb be elements of Fn
2 . Denote u0a ¼ L�1

U ðuaÞ and

u0b ¼ L�1
U ðubÞ. Then

X

i∈ ½ua�

DTSði, bÞ ¼
X

j∈ ½ub�

DTSða, jÞ ¼ 2d �DTρ0ðu
0
a, u

0
bÞ :

Especially, DTSða, bÞ ≤ 2
d �DTρ0ðu

0
a, u

0
bÞ.

The preceding theorem can be restated in the following way. If DTS is rearranged coset by

coset, a simple operation enables recovery of DTρ0. On the other hand, the next theorem is

similar to Theorem 3.9 but for differential cryptanalysis. Again, it generally highlights the

coefficients of DTS involved in the differential uniformity of S.

Theorem 3.16. Let va and vb be two elements of V. Denote v0a ¼ L�1
V ðvaÞ and v0b ¼ L�1

V ðvbÞ. Then

DTSðva, vbÞ ¼
X

u∈U

DTτ0uðv
0
a, v

0
bÞ :

Particularly, the subtable ðDTSðva,vbÞÞva,vb ∈V is uniquely determined by the differential tables

ðDTτ0uÞu∈U .

Example 3.17. To illustrate Theorems 3.15 and 3.16, reorder the rows and the columns of the

differential table of S as presented in Figure 3.7. With this order, we can see the differential

table of ρ0 by considering the differential table of S coset by coset. In fact, Theorem 3.15 states

that the sum of all elements in the same row or column of the subtable DTSð½u1�, ½u2�Þ is equal to

the coefficient (x1, x2) of DTρ0 multiplied by 22, where xi ¼ L�1
V ðuiÞ. For instance, if we consider

the subtable

we can see that the sum of each row or column is equal to 8 ¼ 22 �DTρ0ð5,3Þ since LV(5) = 09

and LV(3) = 03.

Finally, Theorem 3.16 ensures that the subtable DTSðV, VÞ ¼ DTSð½00�, ½00�Þ is the sum of the

differential tables ðDTτ0u Þu∈U. ▴

Partition-Based Trapdoor Ciphers
http://dx.doi.org/10.5772/intechopen.70420

39



Figure 3.7. The reordered differential table of S.
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Corollary 3.18. The permutation S is at least δ-uniform for the differential cryptanalysis where

δ denotes the even integer directly greater than or equal to 2n

2d�1
.

Example 3.19. In Figure 3.7, we can see that S is differentially 12-uniform. Thus, this S-box

reaches the lower bound given by Corollary 3.18. ▴

3. The design of a trapdoor S-box

First, let us summarize the theorems of this section.

• Theorem 3.9 implies to reduce at most the linear uniformity of ρ0 to keep the one of S as

small as possible.

• In the same way, Theorem 3.15 implies to reduce at most the differential uniformity of ρ0.

• The same theorem also stresses that the greater the number of nonzero coefficients of DTρ0

is, the better.

• Finally, Theorem 3.16 teaches us that the sum of the differential distribution tables DTτ0u

should be as low as possible.

Now, to design the S-box S, one needs to pick a permutation ρ0 of Fn�d
2 with the smallest

uniformities for linear and differential cryptanalysis. Then, one searches for permutations τ0u

of Fd
2 satisfying the last condition. This search can be conducted randomly over every d-bit S-

boxes. Finally, construct the S-box S as in the converse of Theorem 3.5. If the differential and

linear uniformities of S are too far from the lower bounds given by Corollaries 3.12 and 3.18

and by Remark 3.13, then start again. In practice, these bounds are reached (or almost reached)

after a small number of iterations.

Moreover, observe that the closer the dimension d of V from n is, the weaker the S-box S is

against linear cryptanalysis and the stronger S is against differential cryptanalysis. The lower

bounds given by Corollaries 3.12 and 3.18 and by Remark 3.13 are given in Figure 3.8 for each

3 ≤ n ≤ 8.

Figure 3.8. Lower bounds for the linear (left) and differential (right) uniformities of S.
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Finally, it should be highlighted that these results can be used to easily prove that a given S-box

does not map any linear partition to another one. For instance, the linear and differential

uniformities of the S-box of Rijndeal [11] are far below the lower bounds given by Corollaries

3.12 and 3.18, no matter what the dimension d of the subspace V is. As a consequence, this S-

box does not map any linear partition to another linear one.
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Backdoored Encryption Algorithm 1

BEA-1 [28] (Backdoored Encryption Algorithm) is an AES-like cipher together with a backdoor based

on the theory developed in Chapters 2 and 3. This cipher is designed to resist linear and differential

cryptanalysis. Nonetheless, the backdoor enables recovery of the full 120-bit cipher key in just a

few seconds on a laptop computer using 216 chosen plaintext blocks, as presented in [29].

This chapter is organized as follows. First, the specification of the cipher BEA-1 and its security

analysis against linear and differential cryptanalysis are given in Section 1. Then, Section 2

explains the hidden property of the algorithm and its design. To conclude, the cryptanalysis

exploiting the backdoor is detailed in Sections 3 and 4.

1. Presentation of BEA-1

The cipher BEA-1 is directly inspired by Rijndael [7], the block cipher designed by Joan

Daemen and Vincent Rijmen, now known as the AES. Our algorithm encrypts 80-bit plaintext

blocks using a 120-bit cipher key. Unlike the AES, the internal state is not seen as a matrix of

bytes but as an array of 10-bit bundles. Therefore, the message and key spaces are respectively

ðF10
2 Þ8 and ðF10

2 Þ12.

1.1. Specification of the encryption process

The encryption consists in applying 11 times a simple keyed operation called round function to

the data block. A different 80-bit round key is used for each iteration of the round function.

Since the last round is slightly different and uses two round keys, the encryption requires twelve

80-bit round keys. These round keys are derived from the 120-bit cipher key using a key schedule.

Like any other substitution-permutation network, the round function is made up of three

stages: a key addition, a substitution layer and a diffusion layer.

• The key addition is just a bitwise “exclusive or” (XOR) between the data block and the

round key.

• The substitution layer consists in the parallel evaluation of four different 10-bit S-boxes

and is the only part of the cipher that is not affine. These S-boxes are referred to as S0, S1,

S2, S3 and are defined in Figures 5A, 7A, 9A and 11A given in Appendix. They should not

be confused with the secret S-boxes S0, S1, S2 and S3, only used in the design and the

cryptanalysis of BEA-1.

• Following the design principles of the AES, the diffusion layer comes in two parts: the

ShiftRows and the MixColumns operations. The first part is a bundle permutation. The
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second evaluates in parallel the linear transformation M : ðF10
2 Þ4 ! ðF10

2 Þ4 processing four

10-bit bundles. Because of its linearity, M is only defined over the standard basis of ðF10
2 Þ4

in Figure 3A in Appendix. For convenience, its inverse M�1 is also in the same figure.

The pseudo-codes for the key schedule and the encryption algorithm are both given in

Figure 4.1. To provide an overview of their structures, the first step of the key schedule and

Figure 4.1. The key schedule and the encryption function of BEA-1.
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the round function is illustrated in Figure 4.2. This representation also emphasizes the similar-

ities between our algorithm and the AES.

Remark 4.1. The decryption is straightforward from the encryption since all the primitives are

bijective. Thus, to decrypt, we just have to apply the inverse operations in the reverse order. It

should be stressed that the key addition and the ShiftRows are involutions; therefore the same

operations are used in the decryption process. Finally, note that the inverse S-boxes are not

given here but can be computed by using the equation S�1
i ðSðxÞÞ ¼ x holding for each x in F10

2 .

Figure 4.2. Diagrammatic representations of the key schedule and the round function of BEA-1.
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1.2. Differential and linear cryptanalysis

In [7], Daemen and Rijmen introduced the differential and the linear branch numbers of a linear

transformation. With an exhaustive search, it can be checked that the differential and linear

branch numbers ofM are both equal to 5, which is the maximum. This implies that any 2-round

trail has at least 5 active S-boxes. Thus, a 10-round trail involves at least 25 active S-boxes.

Note that all the S-boxes are (at most) differentially 40-uniform and linearly 128-uniform.

Therefore, the probability of any 10-round differential trail is upper bounded by ð 40
1024Þ

25
≈

2�116:9 and the absolute bias of a 10-round linear trail is upper bounded by ð128512Þ
25¼ 2�50.

Consequently, a differential cryptanalysis of the 10-round version of our cipher would require

at least 2117 chosen plaintext/ciphertext pairs and a linear cryptanalysis would require 2100

known plaintext/ciphertext pairs.

Even if this is a rough approximation since it does not take into account the inter-column

diffusion provided by the ShiftRows operation, it suffices to prove the cipher’s practical

resistance against classical differential and linear cryptanalysis. In fact, there are only 280

different plaintext/ciphertext pairs for a fixed cipher key.

2. Design of the backdoor

The presentation of secret structure of BEA-1 comes in two parts. First, Section 2.1 explains the

nature of this backdoor and provides all the results needed to address the cryptanalysis. Then,

the design of BEA-1’s primitives is given in Sections 2.2 and 2.3. The reader who just wants to

understand how the backdoor works can skip these two sections. Indeed, they are more

technical and are also independent of the remainder of this chapter.

2.1. The linear partitions throughout the encryption

As said in introduction, the backdoor of BEA-1 relies on the theoretical framework developed

in Chapters 2 and 3. Thus, it should not be surprising that linear partitions must play a key role

in it. For this purpose, let us introduce the following 5-dimensional subspaces of F10
2

V0 ¼ spanð266,343,3ED,354,17FÞ , W0 ¼ spanð16A,11B,306,05E,0B8Þ ,

V1 ¼ spanð398,229,34C,251,37BÞ , W1 ¼ spanð04B,3B7,0D5,027,2C8Þ ,

V2 ¼ spanð0BA,155,307,37E,318Þ , W2 ¼ spanð1A9,095,107,36F,2A3Þ ,

V3 ¼ spanð1D1,21E,134,0DC,15AÞ , W3 ¼ spanð0F0,2FE,191,332,1A6Þ :

Then, define the 40-dimensional subspaces V ¼ ∏7
i¼0V i mod 4 andW ¼ ∏7

i¼0W i mod 4 of message

space ðF10
2 Þ8. Therefore, the linear partitions LðVÞ and LðWÞ are both made up with 240 cosets,

each containing 240 elements.
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The S-boxes S0, S1, S2 and S3 given in the specification of BEA-1 are actually derived from the

secret S-boxes S0, S1, S2 and S3 given in Figures 4A, 6A, 8A and 10A in Appendix. The relation

between the secret S-boxes Si and their modified versions Si will be detailed later in Section 2.2.

In the first place, let us state the following theorem relating BEA-1 to the theory of partition-

based backdoor ciphers.

Theorem 4.2. Consider the encryption function of BEA-1 where the modified S-boxes S0, S1, S2,

and S3 are replaced with their secret counterparts S0, S1, S2, and S3. Then, the round function

preserves the linear partition LðVÞ of ðF10
2 Þ8 and the last round maps LðVÞ to LðWÞ, no matter

the round keys used. As a consequence, the full encryption maps LðVÞ to LðWÞ.

More precisely, Figure 4.3 depicts the evolution of the linear partition LðVÞ throughout each

primitive of the (secret) encryption process. For instance, we can see that the S-box Si maps the

linear partition LðV iÞ to LðW iÞ, and hence, the substitution layer maps LðVÞ to LðWÞ. Simi-

larly, the diffusion layer comes back to the original partition, since it maps LðWÞ to LðVÞ.

Figure 4.3. The linear partitions throughout the encryption.
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Remark 4.3. Theorem 4.2, as well as Theorem 18 stated hereinafter, will be proven in Sections

2.2 and 2.3. Indeed, they establish the main properties of the backdoor and are hence closely

related to the design of the cipher’s primitives.

Thanks to Theorem 4.2, we can now explain our choices for the Vi andWi. Each of these subspaces

of F10
2 is a five-dimensional linear code whose minimal distance is equal to 4. This property

ensures that the Hamming distance of any two different elements lying in the same coset is at

least equal to 4. The subspaces V ndWof F80
2 inherit this property. Thus, if p is a plaintext, then any

other plaintext p0 lying in the same coset of V differs from p in at least four bits. Considering the

secret encryption function, Theorem 4.2 establishes that their ciphertexts c and c0 belong to the

same coset ofW. Thus, c and c0 have at least four different bits. As it will become clear in the next

two sections, the subspaces Vi and Wi could have been freely chosen among the five-dimensional

subspaces of F10
2 . We surmised that using linear codes with high minimal distance should reduce

the likelihood of observing the backdoor by accident, hence our choice for the Vi andWi.

Having explained the main property of the secret encryption function, now is the time to

introduce the following theorem establishing a link between the secret cipher and BEA-1.

Theorem 4.4. Let F and E denote the round function and the encryption function of BEA-1

using the secret S-boxes. Let p ¼ p½0� be any plaintext. Define the following elements with

respect to the round keys k½0�,…, k½10�:

p½iþ1� ¼ Fk½i�ðp
½i�Þ and p½iþ1� ¼ Fk½i�ðp

½i�Þ for 0 ≤ i < 11 :

Assume that the round keys k[0],…,k[10] are independent and uniformly distributed. The prob-

ability that all the equalities p[i] = p[i] hold for each 1 ≤ i ≤ 11 is given by

944

1024

� �6

�
925

1024

� �2
 !11

≈ 2�11 :

Therefore, the probability that p is encrypted equally with E and E can be approximated by 2�11.

Remark 4.5. The fact that the MixColumns operation is replaced with a key addition in the last

round of BEA-1 does not matter in Theorem 4.4. For the sake of simplicity, we then ignore this

detail. This explains why the last round key k[11] does not appear in the statement of this result.

Needless to say, the hypothesis that the round keys are independent and uniformly distributed

is mathematically wrong in any practical cryptanalysis. Indeed, the twelve 80-bit round keys

are all extracted from one 120-bit cipher key. However, the cipher key needs to have (at least)

960 bits to provide independence and uniform distribution to its round keys. Such a cipher key

must be related to the concept of long-key cipher defined in [30]. Nonetheless, if the cipher key

is uniformly distributed, the same applies for each round key.

In our cryptanalysis of BEA-1, we are given plaintexts with their ciphertexts encrypted under a

fixed cipher key. Even if we forget about the independence of the round keys, each plaintext

must be encrypted with a random cipher key to make use of Theorem 4.4.

Partition-based Trapdoor Ciphers48



Fortunately, our experiments suggest that the proportion of the plaintexts encrypted equally

with EK and EK is approximatively 2�11, even when the round keys are derived from a fixed

cipher key K. To put it another way, if P is a subset of the plaintext space ðF10
2 Þ8, it seems

reasonable to assume that

#{p∈PjEKðpÞ ¼ EKðpÞ} ≈
#P

211
: (4.1)

Now, suppose that P is included in a coset of V denoted by x + V. As the secret encryption

function EK maps LðVÞ to LðWÞ (see Theorem 4.2), we know that the image of P under EK is

included in a coset ofW. More precisely, Lemma 2.8 establishes that EKðPÞ is included in y +W

where y = EK(x). Hence,

{p∈PjEKðpÞ ¼ EKðpÞ} ⊆ {p∈PjEKðpÞ∈ ðyþWÞ} : (4.2)

Combining (4.1) with (4.2), we conclude that approximately #P � 2�11 ciphertexts in C ¼ EkðPÞ

belong to y + W. In addition, we have observed that the ciphertexts c = EK(p) such that

EKðpÞ 6¼ EKðpÞ are spread over the 240 cosets of W.

The backdoor of BEA-1 is hence the following. First, choose a set P of 216 plaintexts uniformly

chosen in one coset x + V and collect their ciphertexts C ¼ EKðPÞ encrypted under an unknown

cipher key K. Then search for the most represented coset of W in C and denote by y one of its

representatives. According to our experiments, this coset should have roughly 216–11 = 32

elements, and the second most represented coset is unlikely to have more than six elements.

As a consequence of the preceding discussion, we know that the coset x + V is mapped to y +W

by the secret encryption function EK. This information can then be used to recover the cipher

key K with a low computation cost, as detailed later in Sections 3 and 4.

To conclude this section, observe that no particular property of the key schedule has been used.

It can be proven that each round of the key schedule preserves the linear partition Lð
Q11

i¼0 W iÞ,

provided that the S-boxes Si are replaced with their secret equivalents Si. This implies that if two

cipher keys K and K0 are in the same coset of
Q11

i¼0 W i, then we can approximate the probability

that each pair of round keys k[i] and k0[i] are in the same coset of W by ð9443 � 925 � 2�40Þ7 ≈ 2�3:5.

However, for this property to be easily exploitable, the round keys ought to stay in the same

coset of V instead of W (which can be simply achieved by switching the mappings M and (S0||

S1||S2||S3) in the key schedule). Therefore, if compared with our cryptanalysis, this property

appears not to be very useful and was intentionally left as a wrong track.

2.2. The substitution layer

The nature of the hidden property of BEA-1 having been emphasized, this and the following

sections detail the design of the cipher’s primitives and prove Theorems 4.2 and 4.4 stated

above. As explained in introduction, these two sections are aimed at the reader who wants to

understand how BEA-1 was made. For a first read, it is possible to jump directly to Section 3

explaining the basic principle of the cryptanalysis using the backdoor.
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Let {0*} and {*0} denote respectively the subspaces {05}� F
5
2 and F

5
2 � {05} of F

10
2 . It should be

noted that {*0} is a complement space of {0*} in F10
2 . The design of each secret S-box Si rests on a

permutation S0
i of F

10
2 preserving the linear partition Lð{0 � }Þ. Following Theorem 3.5, we just

need to choose a permutation ρi of {*0} and a family ðτi,uÞu∈ {�0} of permutations of {0*}. Then,

we define S0
i for all x = u + v in F10

2 by

S0
iðxÞ ¼ S0

iðuþ vÞ ¼ ρiðuÞ þ τi,uðvÞ ,

where u is in {*0} and v in {0*}. The permutations ρi and τi,u were selected following the method

given in Section 3, in order to maximize the resistance of S0
i against both differential and linear

cryptanalysis.

Figure 1A in Appendix defines the linear mappings LV i
and LW i

(for 0 ≤ i ≤ 4) over the standard

basis of F10
2 . It is worthwhile to note that these mappings are automorphisms of F10

2 . Moreover,

LV i
ð{0 � }Þ ¼ V i and LW i

ð{0 � }Þ ¼ W i. By virtue of Proposition 2.15, we know that LV i
maps

Lð{0 � }Þ to LðV iÞ and that LW i
maps Lð{0 � }Þ to LðW iÞ. Last, but not least, define for each 0 ≤ i <

4 the secret S-box Si by

Si ¼ LW i
∘S0

i ∘ ðLV i
Þ�1 :

These S-boxes are given in Figures 4A, 6A, 8A and 10A in Appendix. Obviously, ðLV i
Þ�1 maps

LðV iÞ to Lð{0 � }Þ, then S0
i preserves Lð{0 � }Þ, and LW i

maps Lð{0 � }Þ to LðW iÞ. This implies the

following proposition.

Proposition 4.6. For each 0 ≤ i < 4, the secret S-box Si maps LðV iÞ to LðW iÞ.

Remark 4.7. If the reader is interested in an explicit definition of the permutations ρi and the

families of permutations ðτi,uÞi∈ {�0}, they can be recovered in the following way. First, compute

S0
i ¼ ðLW i

Þ�1
∘Si ∘ LV i

using the tables of Figures 1A and 4A (or 6A, 8A, 10A). As noted previously,

the permutation S0
i preserves the linear partition Lð{0 � }Þ. To obtain its decomposition, we just

have to follow the proof of Theorem 3.5. Thus, for each u in {*0}, define ρi(u) as the unique element

of { � 0}∪ðS0
iðuÞ þ {0 � }Þ. It is not hard to see that ρi(u) is simply equal to the element of F10

2 , where

the five leftmost bits are exactly the ones of S0
iðuÞ and the five remaining bits are all zero. Finally,

for each u in {*0}, let τi,u be the permutation of {0*} defined by τi,uðvÞ ¼ S0
iðuþ vÞ þ ρiðuÞ. Again,

τi,u(v) is just the 10-bit vector having its five leftmost bits all zero and its five rightmost bits

identical to the ones of S0
iðuþ vÞ. Naturally, the permutations ρi and τi,u can be seen as permuta-

tions of F5
2 (instead of {*0} and {0*}) to obtain the more convenient definition

S0
iðu∥vÞ ¼ ðρiðuÞ∥τi,uðvÞÞ :

The modified S-boxes Si given in the specification of BEA-1 are such that Si(x) = Si(x) for almost

all input x in F10
2 . For instance, S0ðxÞ ¼ S0ðxÞ for all except 80 elements x in F10

2 . The images of

these 80 particular points are emphasized in Figures 4A and 5A. These modifications were

chosen so as to improve the differential and linear resistances of S0 compared to the original
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secret S-box S0. More generally, Si and Si have 80 different images for i in {0,1,2}. The last-

modified S-box S3 is less close to it secret equivalent since S3 and S3 have 99 different images.

Consequently, if x is uniformly distributed over F10
2 , then the equality Si(x) = Si(x) holds with

probability qi where

q0 ¼ q1 ¼ q2 ¼
944

1024
and q3 ¼

925

1024
:

This implies that when x is uniformly distributed over ðF10
2 Þ8, the images of x under the secret

and the modified substitution layers are equal with probability q ¼ ð
Q3

i¼0 qiÞ
2.

Let p = p[0] be a plaintext. In the following, we use the notations of Theorem 4.4. If k[i] is

uniformly distributed, then so is p[i] + k[i]. Thus, p½iþ1� ¼ Fk½i�ðp
½i�Þ is equal to p½iþ1� ¼ Fk½i�ðp

½i�Þwith

probability q. Assuming moreover that the round keys are independent implies that the events

p[i] = p[i] for each 1 ≤ i ≤ 11 are independent. Therefore, the probability that the equalities p[i] =

p[i] hold for all 1 ≤ i ≤ 11 is given by q11. This discussion proves Theorem 4.4.

2.3. The diffusion layer

Some components used to design the linear transformation M are defined over the finite field

F25 . In order to have an explicit construction of this field, we consider the irreducible polyno-

mial X5 + X2 + 1 over F2 and define F25 as the quotient ring F2½X�=ðX
5 þ X2 þ 1Þ. Let α denote

the equivalence class of X in F25 . By construction, the equality α5 þ α2 þ 1 ¼ 0 holds, or

equivalently, α5 ¼ α2 þ 1. Each element of F25 can hence be uniquely written as
X4

i¼0
xiα

i

where (x4,…, x0) belongs to F
5
2. More precisely, the family ðαiÞi<5 is a basis of F25 seen as a 5-

dimensional vector space over F2. The field F25 will then be identified with ðF2Þ
5 via the

isomorphism from F
5
2 to F25 mapping (x4,…, x0) to

X4

i¼0
xiα

i. For instance, the element α2 + α

+ 1 in F25 is identified with 07 in F5
2. Now define the 4 � 4 matrices MU and MV over F25 by

a b c d

b a d c

c d a b

d c b a

0

B

B

B

B

@

1

C

C

C

C

A

MU :

a ¼ α4 þ α2,

b ¼ α4 þ α3 þ α2 þ αþ 1,

c ¼ α3 þ α2,

d ¼ α4 þ α2 þ 1,

MV :

a ¼ α3 þ α2 þ 1,

b ¼ α4 þ α3 þ α2 þ α,

c ¼ α4 þ α2 þ α

d ¼ α3:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

It can be verified that these matrices are MDS. In other words, the [8, 4]-linear code having

G ¼ ½Id4,MU� as generator matrix has minimal distance equals to 5, which is the maximum

achievable.

Each of these matrices naturally induces an automorphism of ðF25Þ
4 and hence of ðF10

2 Þ4. For

instance, MU maps the element x ¼ ðx0, x1, x2, x3Þ to x � MU. Observe that we chose to see

elements of ðF10
2 Þ4 as row vectors to keep the common notations of linear codes.
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Example 4.8. To illustrate these notations, let us compute the image of the element

x ¼ ð00,02,00,00Þ of ðF10
2 Þ4 under the automorphism induced by MU. First, x is identified

with the element (0, α, 0, 0) of ðF25Þ
4. Then,

ð0;α; 0; 0Þ �MU ¼ ðαðα4 þ α3 þ α2 þ αþ 1Þ,αðα4 þ α2Þ,αðα4 þ α2 þ 1Þ,αðα3 þ α2ÞÞ

¼ ðα5 þ α4 þ α3 þ α2 þ α, α5 þ α3, α5 þ α3 þ α, α4 þ α3Þ

¼ ðα4 þ α3 þ αþ 1,α3 þ α2 þ 1,α3 þ α2 þ αþ 1, α4 þ α3Þ:

Therefore, ð00,02,00,00Þ �MU ¼ ð1B,0D,0F,18Þ. ▴

As was the case for the secret S-boxes Si, the linear transformation M rests upon the linear

transformation M0 defined as follows

M0
: ðF10

2 Þ4 ! ðF10
2 Þ4

ðui ∥ viÞi<4 ↦ ðρðuÞi ∥ τuðvÞiÞi<4

where ρðuÞ ¼ u�MU and τuðvÞ ¼ v�MV þ PU!VðuÞ. The strength of this construction is that

M0 inherits the linear and differential branch numbers of MU and MV, as stated in the proposi-

tion hereunder. But first, we introduce the following example.

Example 4.9. Let us compute the image of x ¼ ð000,070,000,000Þ under M0. As a first step,

observe that x can be written as

x ¼ ð00∥00,03∥10,00∥00,00∥00Þ ¼ ðui∥viÞi<4 ,

where u ¼ ð00,03,00,00Þ and v ¼ ð00,10,00,00Þ. Let e9 ¼ ð00,02,00,00Þ and

e10 ¼ ð00,01,00,00Þ. Then u ¼ e9 þ e10, it is indeed its decomposition over the standard basis

of ðF5
2Þ

4. Thus, for any linear mapping L, it holds that LðuÞ ¼ Lðe9Þ þ Lðe10Þ. The image of u

under ρ can hence be computed by

ρðuÞ ¼ ρðe9Þ þ ρðe10Þ ¼ ð1B,0D,0F,18Þ þ ð1F,14,15,0CÞ ¼ ð04,19,1A,14Þ :

In the same way,

τuðvÞ ¼ v�MV þ PU!Vðe9Þ þ PU!Vðe10Þ

¼ ð16,0E,14,02Þ þ ð0F,11,0C,16Þ þ ð11,0E,02,0AÞ ¼ ð08,11,1A,1EÞ :

Consequently, M0ðxÞ ¼ ð04 ∥ 08,19 ∥ 11,1A ∥ 1A,14 ∥ 1EÞ ¼ ð088,331,35A,29EÞ. ▴

Proposition 4.10. The linear and the differential branch numbers of M0 are both equal to 5.

Thus, M0 is a perfect diffusion layer.

Proof. Let x ¼ ðui ∥ viÞi<4 be a nonzero element of ðF10
2 Þ4. In order to prove that the differential

branch number of M0 is equal to 5, we need to show that w10ðxÞ þw10ðM
0ðxÞÞ is greater than

or equal to 5. First, assume that u ¼ ðuiÞi<4 is nonzero. Using the fact that MU is MDS, we

obtain the inequality w5ðuÞ þw5ðu�MUÞ ≥ 5. Next,
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5 ≤w5ðuÞ þw5ðρðuÞÞ ¼ w10ððui ∥ 0Þi<4Þ þw10ððρðuÞi ∥ 0Þi<4Þ

≤w10ððui ∥ viÞi<4Þ þw10ððρððuÞi ∥ τuðvÞiÞi<4Þ ¼ w10ðxÞ þw10ðM
0ðxÞÞ:

Now, suppose that u = 0. It must be the case that v 6¼ 0 as x is nonzero by definition. Again, it

holds that w5ðvÞ þw5ðv�MVÞ ≥ 5 because MV is also MDS. Then,

5 ≤w5ðvÞ þw5ðτ0ðvÞÞ ¼ w10ðð0 ∥ viÞi<4Þ þw10ðð0 ∥ τ0ðvÞiÞi<4Þ

¼ w10ðxÞ þw10ðM
0ðxÞÞ:

We have proven that w10ðxÞ þw10ðM
0ðxÞÞ ≥ 5 for any nonzero element x of ðF10

2 Þ4. Conse-

quently, the differential branch number of M0 is greater than or equal to 5. The equality

BDðM
0Þ ¼ 5 follows as 5 is the maximum achievable. Similarly, it can be proven that M0 has

also the maximum linear branch number. It follows that M0 is a perfect diffusion layer and the

result is proven. ▪

Recall that the notation {0*} denotes the subspace {05}� F
5
2 and that the linear mappings LV i

and LW i
(see Figure 1A) map respectively Lð{0 � }Þ to LðV iÞ and Lð{0 � }Þ to LðW iÞ. It is then

easily seen that M0 maps {0*}4 to itself. Thus, M0 preserves the partition Lð{0 � }4Þ by Proposi-

tion 2.15. Finally, define

M ¼ ðLV0
∥ LV1

∥ LV2
∥ LV3

Þ ∘M0 ∘ ðLW0
∥ LW1

∥ LW2
∥ LW3

Þ�1 :

From its definition, it is straightforward to check that M maps the linear partition Lð
Q3

i¼0 W iÞ

to Lð
Q3

i¼0 V iÞ.

Example 4.11. We are going to compute Mð000,080,000,000Þ. First, we have that

ðLW0
∥ LW1

∥ LW2
∥ LW3

Þ�1ð000,080,000,000Þ

¼ ðL�1
W0

ð000Þ, L�1
W1

ð080Þ, L�1
W2

ð000Þ, L�1
W3

ð000ÞÞ ¼ ð000,070,000,000Þ :

Then, the image of ð000,070,000,000Þ under M0 is ð088,331,35A,29EÞ, as already

established in Example 4.9. Finally,

Mð000,080,000,000Þ ¼ ðLV0
∥ LV1

∥ LV2
∥ LV3

Þð088,331,35A,29EÞ

¼ ð15E,0BF,1E2,04FÞ :

Indeed, LV0
ð088Þ ¼ LV0

ð080Þ þ LV0
ð008Þ ¼ 21Dþ 343 ¼ 15E. The three other bundles are

computed in the same manner. ▴

Because each mapping LV i
or LW i

operates on different bundles and is invertible, it is clear that

the linear and differential branch numbers of M are the same as M0. This discussion completes

the proof of the following corollary.

Corollary 4.12. The linear mapping M is a perfect diffusion layer, which maps Lð
Q3

i¼0 W iÞ to

Lð
Q3

i¼0 V iÞ.
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In conclusion, Proposition 2.13 ensures that any key addition preserves all the linear partitions,

and hence it preserves LðVÞ. Next, it has been proven in Section 2.2 that every secret S-box Si

maps LðV iÞ to LðW iÞ. Thus, the secret substitution layer maps LðVÞ to LðWÞ. It is clear that the

ShiftRows operation is linear and maps W to itself. According to Proposition 2.15, this

mapping preserves LðWÞ. Finally, the MixColumn operation maps LðWÞ to LðVÞ by Corollary

4.12. This discussion is summarized in Figure 4.3 and proves Theorem 4.2 previously given in

Section 2.1.

3. Main idea of the cryptanalysis

As we have seen in Section 2.1, the cipher BEA-1 does not map a linear partition to another one

but behaves as though it did for a nonnegligible fraction of the message space. This nontrivial

property can be used to recover the cipher key in an operational cryptanalysis. But before

considering the full cipher, we give the main idea of this attack.

3.1. A detailed example

To explain how to take advantage of this backdoor, we introduce a toy example. First, let us

mention that all the notations of this section are independent of the remainder of this chapter.

The message space of this toy cipher is simply F6
2. Then, consider the subspaces V and W of F6

2

defined by

V ¼ spanð01,02,10,20Þ ¼ {ðx3, x2; 0; 0;x1, x0Þjx∈F
4
2} ,

W ¼ spanð01,02,04,10Þ ¼ {ð0;x3; 0;x2, x1, x0Þjx∈F
4
2} :

Thus, LðVÞ ¼ {xþ Vjx∈ {00,04,08,0C}} and LðWÞ ¼ {yþW jy∈ {00,08,20,28}}.

Let S be the permutation of F6
2 given in Figure 4.4. We defined another permutation S of F6

2

satisfying S(x) = S(x) for any input x in F6
2 except 00, 01, 04, 05, 08, 09, 0C and 0D. The

images of these eight specific points under S are also given in Figure 4.4. By analogy with

Section 2, the permutation S represents the secret S-box used to design the trapdoor whereas S

represents the modified S-box given in the specification of the algorithm. Lastly, define the

following keyed mappings

Figure 4.4. The theoretical and the modified S-boxes.
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Fk : F
6
2 ! F

6
2 Fk : F

6
2 ! F

6
2

x↦SðxÞ þ k , x↦ SðxÞ þ k ,

representing respectively the secret and the modified round functions. Naturally, the key k can

be any element of F6
2.

It can be easily verified that the secret S-box S maps LðVÞ to LðWÞ. In fact, we have that

Sð00þ VÞ ¼ 08þW , Sð08þ VÞ ¼ 00þW ,

Sð04þ VÞ ¼ 28þW , Sð0Cþ VÞ ¼ 20þW :

In contrast with the secret permutation S, the modified S-box S does not map LðVÞ to LðWÞ.

However, the equality S(x) = S(x) holds with probability 56=64 assuming that x is uniformly

distributed over F6
2. This can be stated equivalently as

#{x∈F6
2jSðxÞ ¼ SðxÞ} ¼ 26 � 8 ¼ 56 :

It should also be noted that this statement remains valid when considering their inverse

mappings, that is #{y∈F6
2 j S

�1ðyÞ ¼ S�1ðyÞ} ¼ 56. Indeed, if x is an element of F6
2 such that

S(x) = S(x), then y = S(x) satisfies the equality S�1(x) = S�1(y). As a consequence,

#{x∈F6
2jSðxÞ ¼ SðxÞ} ≤ #{y∈F6

2 j S
�1ðyÞ ¼ S�1ðyÞ} :

The converse inequality can be proven in the same way, establishing the equality.

Now, consider the subset P of F6
2 defined hereinafter. We assume that the round key is k = 37.

The image of P under S and its encryption with F37 are given below.

It should be stressed that the coset 04 + V is significantly more represented in P than any other

coset of V. Since F37ðPÞ maps the linear partition LðVÞ to LðWÞ, the messages belonging to the

same coset of V are all mapped to the same coset ofW. Therefore, the most represented coset of

W in F37ðPÞ has also ten elements.

As we have seen above, the modified round function F37 does not map LðVÞ to LðWÞ.

Figure 4.5 displays the differences between the encryption of P with F37 and its encryption

with F37 by highlighting the messages x in P such that S(x) 6¼ S(x) (that is 04, 05, and 0D) and

their images throughout the encryption.
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To explain these differences, let us first consider the set Q of the ten messages lying in both P

and 04 + V. Knowing that the equality S(x) = S(x) holds with probability 56= 64 when x is

uniformly distributed, it seems reasonable to assume that only 10�56= 64 ¼ 8:75 messages of

Qwill remain in the same coset when computing their images under S. By comparing with the

actual messages in Q, we can see that this is a good approximation since eight messages in

SðQÞ belong to the same coset of W.

Needless to say, there are also eight messages in F37ðQÞ lying in the same coset of W because

the key addition preserves LðWÞ.

We focus now to the set P as a whole. According to the discussion above, we know that the

most represented coset ofW in F37ðPÞ has at least eight elements. We have seen that the images

under S of messages lying in the same coset may not stay together. Nonetheless, the converse

can also be true, and messages in different cosets may end up in the same coset. This is exactly

what happens with the message 0D, as illustrated in Figure 4.5. Consequently, the most

represented coset in F37ðPÞ has actually nine elements.

Figure 4.5. Encryption with F37 and F37.
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The fact that the most represented coset may not only lose but occasionally retrieve elements

should be seen as a side effect. Its impact remains low when

• one coset has significantly more elements than all other cosets (say at least 5 times more), and

• when the number of messages is lower than the total number of cosets.

We must nevertheless keep this fact in mind to understand why the right key will not neces-

sarily have the best score.

It is now time to explain how to recover the round key using only the set C ¼ F37ðPÞ of

encrypted messages. First, we have to determine the most represented coset in C. In our

example, this coset is 08 + W with nine messages, and u = 08 is one of its representatives.

Now, assume that k is the round key used to encrypt C. We need to find the coset of V which is

mapped to u + W by the secret round function Fk. According to Lemma 2.8, Fk maps t + V to

Fk(t) + W. A representative of this coset of V is then t = S�1(u + k). Finally, the score of the

guessed key k is the number of messages F�1
k ðcÞ ¼ S�1ðcþ kÞ that belong to the theoretical

coset t + V, that is to say

scoreðkÞ ¼ #{c∈CjS�1ðcþ kÞ∈ ðtþ VÞ} :

Figure 4.6 illustrates the scoring process applied to the right key (37) and to a wrong key (07).

We naturally recover the set P and the coset tþ V ¼ 34þ V ¼ 04þ V when using the right

Figure 4.6. Decryption with the right key and with a wrong key.
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key. Thus, the score of k = 37 is equal to 10. In the same way, the score of k = 07 is the number of

decrypted messages in the coset tþ V ¼ 32þ V ¼ 00þ V, so scoreð07Þ ¼ 8.

Let us now explain why a wrong key tends to have a lower score than the right key. First, the

addition of the wrong key randomizes the cosets and the messages within. Recall that when

the input x is uniformly distributed, the equality S�1(x) = S�1(x) holds with probability 56=64.

The most represented coset after the addition of the wrong key should then lose some elements

by applying S�1. Thus, the score of any wrong key should be lower than or equal to 8.

It goes without saying that the previous discussion gives just the main idea of the cryptanaly-

sis. For some wrong keys, the side effects are significant, and their scores can even be higher

than the score of the right key, as shown in Figure 4.7. Indeed, the key 37 is one the four best

keys but is not the one that has the highest score (0B). For this reason, we will not only return

the best key but also the NbCand candidate keys having the highest scores when running this

cryptanalysis.

3.2. Formalization of the attack

The aim of this section is to formalize and to generalize the cryptanalysis introduced previ-

ously in Section 3.1. As we have just seen, this attack really begins in Figure 4.6. The very first

data needed is the set C containing the encrypted messages under the unknown key, given by

C ¼ {04,05,06,0D,0F,15,16,17,18,22,27,34,35,36,3A} :

Naturally, C is included in the set c ¼ F
6
2 of all possible ciphertexts. Similarly, the set of all

possible round keys is denoted by k ¼ F
6
2. Next, define the keyed mapping

G : k� c ! F
6
2

ðk, cÞ↦S�1ðcþ kÞ :

Each mapping Gk : c↦Gðk, cÞ is the inverse of the round function Fk. The secret counterpart of

G is G : ðk, cÞ↦S�1ðcþ kÞ. Observe that for each round key k, the mapping Gk maps LðWÞ to

Figure 4.7. The scores for each key.
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LðVÞ. It is also necessary to know the most represented coset u +W in C. Using these notations,

the cryptanalysis is formalized in Algorithm 3. Finally, to include potential information on the

round keys, this attack processes only a subset K of k.

More generally, the parameters can be outlined as follows.

• The sets of all possible keys and ciphertexts are referred to as k and c.

• The keyed mapping G : k� c ! E typically undoes (or partially undoes) one or two

rounds of the encryption process.

• Its secret counterpart is denoted by G : k� c ! E. It is assumed that Gk maps a linear

partition LðWÞ to another partition LðVÞ no matter the key k used.

• The set of the given ciphertexts is denoted by C. The set of the keys that must be scored by

this attack is denoted by K.

• It is assumed that there is a coset of W containing significantly more ciphertexts than any

other coset. The element u of c is a representative of this coset.

• Finally, NbCand is the number of candidate keys to return.

Remark 4.13. Taking a closer look at Algorithm 3, we can see that the structure Cand requires

an efficient way to remove the lowest scored key. In our implementation, Cand is a sorted

array of couples (s, L) where L is a list containing the keys having the score s. Since there are

very few different scores, the sorted insertion in Cand is (almost) in constant time. Removing
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the lowest scored key is also in constant time. Thus, the time complexity of this cryptanalysis is

Oð#K� #CÞ.

4. Cryptanalysis of BEA-1 using the backdoor

The algorithm SelectKeys (see Algorithm 3) detailed into the previous section enables

recovery of information on the last round key, using the fact that the round function acts as a

function mapping a linear partition to another one with high probability. In this section, we

explain how this algorithm can be used to recover the full 120-bit cipher key in just a few

seconds on a laptop computer.

This cryptanalysis requires N = 216 chosen plaintexts and their corresponding ciphertexts

encrypted under one unknown cipher key K. As BEA-1 operates on 80-bit blocks, this amounts

to 2 � 640 KiB of data. The plaintexts only need to be uniformly chosen in one coset of V, and

there is no requirement on the cipher key.

Our cryptanalysis is naturally divided in five distinct parts. First, we give a brief overview of

each part. By hypothesis, all the plaintexts are in the same coset of V. As explained in Section

2.1, a coset of W should be more represented among the ciphertexts. The first part is aimed at

finding a representative u of this coset. The second part consists in using the algorithm

SelectKeys to find 215 candidates for the full 80-bit last round key k[11]. Next, relying on a

property of the key schedule, SelectKeys is applied to these 215 candidates to find the right

last key in a third part. So far, we have recovered 80 bits of the cipher key. Knowing the last

round key, it is then possible to undo the last round of each ciphertext. The fourth part is really

close to the first one and provides 215 candidates for the 40 remaining bits. Finally, deduce the

215 candidate cipher keys from k[11] and the preceding candidates. The last part involves testing

these cipher keys on the plaintext/ciphertext pairs available to find the right one.

The presentation of our cryptanalysis is structured as follows. First, we provide the full

attack in Algorithm 4. Then, each part of this algorithm is detailed in one dedicated section.

It should be noted that we keep the notations of Section 2 (and not those of Section 3) in

the remainder of this chapter. This work has been presented at the RusKrypto 2017 confer-

ence [31].

4.1. Part 1: finding the right output coset

Let P denote the set of the 216 plaintexts uniformly chosen in one coset of V and let

C ¼ {EKðpÞjp∈P} denote the set of their ciphertexts. As said previously, we first need to find

the most represented coset of W in C. Let Ui be the subspace of F
10
2 defined by Ui ¼ LW i

ð{ � 0}Þ

for each 0 ≤ i < 3. Since {*0} is a complement space of {0*} and LW i
is an automorphism, we

know that Ui is a complement space of LW i
ð{0 � }Þ ¼ W i. Define U as the subspace

Q7
i¼0 Ui mod 4

of ðF10
2 Þ8. Of course, U is a complement space of W.
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Let c be a ciphertext and u ¼ ðuiÞi<8 be in U. Because both U and W are product spaces, it is

easily seen that u is the unique representative in U of the coset c +W if, and only if, ci and ui are

in the same coset ofWimod4 for each i < 8. We deduce the following efficient way to compute the

representative in U of the coset c + W. First, precompute the four tables RepWi such that, for

each x in F
10
2 , RepWi½x� gives the representative in Ui of x + Wi. These tables are just arrays of

1024 integers. Then, the representative of c ¼ ðciÞi<8 is just u ¼ ðRepWi mod 4½ci�Þi<8.

To find the most represented coset of W in C, we first compute the representative in U of each

ciphertext as described above. Then, we search for the representative that occurs the most. Any

naive algorithm should work since there are only 215 representatives.

4.2. Part 2: obtaining candidates for the last round key

This part is intended to find candidates for the last round key k[11] using the algorithm

SelectKeys (see Algorithm 3) to undo the last round of BEA-1. However, if this algorithm is

naively applied, then the last round has to be undone for each of the 216 ciphertexts and 280

possible values of k[11], yielding an order of 296 time complexity.

To solve this problem, the 215 candidates for k[11] are obtained bundle by bundle, as illustrated

in Figure 4.8. First, we partially decrypt the bundles of index 3 and 7. We begin by these

Figure 4.8. Cryptanalysis using the backdoor (Part 2).
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bundles since they both involve the S-box S3, being the most different from its secret equiva-

lent. Following the notations of SelectKeys, the set containing the ciphertexts is

C{3;7} ¼ {ðc3, c7Þjc∈ C}, and the set of the keys is K{3;7} ¼ {ðk3, k7Þjk3, k7 ∈F
10
2 }. The mapping used

to partially decrypt the last round of these ciphertexts is

G{3;7} : ðF
10
2 Þ2 � ðF10

2 Þ2 ! ðF10
2 Þ2

ððk3, k7Þ, ðc3, c7ÞÞ↦ ðS�1
3 ðc3 þ k3Þ, S

�1
3 ðc7 þ k7ÞÞ :

Its secret equivalent G{3,7} is obtained by replacing S3 with S3. The two remaining inputs of the

algorithm are the representative u = (u3, u7) of the most represented coset of (W3)
2, and the

subspace (V3)
2 of ðF10

2 Þ2. It is worth observing thatG{3,7} maps LððW3Þ
2Þ to LððV3Þ

2Þ as required

by the algorithm. Running SelectKeys with these arguments generates a set Cand

containing 215 candidates for ðk3
½11�, k7

½11�Þ instead of 220.

From now on, each step seeks to add a new bundle to our candidates for the last round key

k[11]. The next bundle to add has index 0. Let E denote the set {0, 3, 7} of the current bundle’s

indices. Since we have no information on the value of k0
½11�, the set of the possible values for

ðki
½11�Þi∈E is

KE ¼ {ðkiÞi∈Ejk0 ∈F
10
2 , ðk3, k7Þ∈Cand} :

Following the idea of the first step, we define CE ¼ {ðciÞi∈EjðciÞi<8 ∈ C} and

GE : ðF10
2 ÞE � ðF10

2 ÞE ! ðF10
2 ÞE

ððkiÞi∈E, ðciÞi∈EÞ↦ ðS�1
i mod 4ðciþkiÞÞi∈E :

Then, define GE by replacing Si with Si and let VE denote the subspace
Q

i∈E V i mod 4 of ðF
10
2 ÞE.

The set Cand obtained by running SelectKeyswith these parameters contains 215 candidates

for ðk0
½11�, k3

½11�, k7
½11�Þ.

According to Algorithm 4, the index of the next bundle is 4. Actually, the order of the bundle’s

indices was chosen such as to involve the S-boxes S3, then S0, S1 and finally S2. The current

indices are in the set E ¼ {0; 3; 4; 7}. Similarly, we define

KE ¼ {ðkiÞi∈Ejk4 ∈F
10
2 , ðk0, k3, k7Þ∈Cand}

to include the information on k[11] gathered by the previous step. Finally, define CE, GE,GE and

VE as above. Again, the algorithm SelectKeys yields 215 candidates for ðki
½11�Þi∈E.

This time, let us take a closer look at the implementation of this step. Because #KE¼ 225 and

#CE¼ 216, a straightforward implementation of SelectKeys requires 241 partial round

decryptions, as explained by Remark 4.13. Algorithm 5 provides our implementation of

SelectKeys for this step. As we can see, the previous candidates are used to filter the

ciphertexts before attacking k4 by brute force. For each of the 215 candidates, initializing the
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filter requires 216 partial decryptions. On average, it remains roughly 26 ciphertexts after the

filtering process. The loop over k4 hence requires 216 partial decryptions. Consequently, this

implementation performs about 232 partial decryptions instead of 241.

Naturally, the 215 candidates for the full round key k[11] are obtained by repeating this method

for the four remaining bundles. We will conclude by observing that the complexity of each step

decreases since the filtering process improves as the algorithm progresses.

4.3. Part 3: finding the last round key

So far, we have found 215 candidates for the 80-bit key k[11]. This part intends to recover the

right key among these candidates, relying on the key schedule’s structure. Let us consider the
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last round of the key schedule in order to derive a relation between k[10] and k[11]. In

Figure 4.2:

• k½9� ¼ ðk0
½9�,…, k7

½9�Þ corresponds with ðk0,…, k7Þ,

• k½10� ¼ ðk0
½10�,…, k7

½10�Þ corresponds with ðk8,…, k15Þ,

• k½11� ¼ ðk0
½11�,…, k7

½11�Þ corresponds with ðk16,…, k23Þ.

It is then easily seen that

ðk
½10�
0 , k

½10�
1 , k

½10�
2 , k

½10�
3 Þ ¼ ðk

½11�
0 , k

½11�
1 , k

½11�
2 , k

½11�
3 Þ þ ðk

½11�
4 , k

½11�
5 , k

½11�
6 , k

½11�
7 Þ :

Thus, the 40 leftmost bits of k[10] are determined by k[11]. Using this equality, it is possible to

partially decrypt the last two rounds for every candidate for k[11]. Again, the algorithm

SelectKeys is used to distinguish between candidates.

Instead of wasting time understanding the definition of G stated hereinafter, we encourage the

reader to compare it with Figure 4.9, which speaks for itself. Let us consider

Figure 4.9. Cryptanalysis using the backdoor (Part 3).
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G0
: ðF102 Þ8 � ðF10

2 Þ{0; 2; 5; 7}↦ ðF10
2 Þ4

ððkiÞi<8, ðciÞi∈ {0;2;5;7}Þ↦ ðS�1
0 ðc0 þ k0Þ þ k0 þ k4, S

�1
1 ðc5 þ k5Þ þ k1 þ k5,

S�1
2 ðc2 þ k2Þ þ k2 þ k6, S

�1
3 ðc7 þ k7Þ þ k3 þ k7Þ :

Then, let G be the mapping from ðF102 Þ8 � ðF10
2 Þ{0;2;5;7} to ðF10

2 Þ4 given by

G ¼ ðS0 ∥ S1 ∥ S2 ∥ S3Þ
�1

∘M�1 ∘G0 :

Define G in the same way as before and let V 0 ¼
Q3

i¼0 V i. Finally, run Selectkeys as in line

12 of Algorithm 4. The candidate that has the highest score is then the last round key k[11].

To explain why Parts 2 and 3 of this cryptanalysis are complementary, let us take a closer look

at the 215 candidates obtained previously. Most of them are in fact really close to k[11]; more

precisely, they have at most three bundles different from k[11]. This observation is not surpris-

ing because when decrypting the last round, each bundle of the key affects only one bundle of

the output. As a direct consequence, close candidates give rise to close one-round decrypted

ciphertexts. This explains why the algorithm SelectKeys, as used in Part 2, may assign

similar scores to close candidates.

By contrast, the mapping G defined above yields very different outputs when used with close

candidate keys. Such a property comes from the high diffusion provided by M�1. Thus, this

part is more effective where the previous part has its main weakness. Moreover, the side effects

are limited here since we decrypt two rounds instead of one.

4.4. Part 4: obtaining candidates for the remaining bits

The round function of the key schedule being bijective, it is sufficient to know the 120 output bits

of the last round to compute the cipher key. Until now, we have recovered the last round key k[11],

accounting for 80 of these 120 bits. The 40 remaining bits are the 40 rightmost bits of k[10], also

denoted by ðki
½10�Þ4 ≤ i<8. This fourth part intends to find 215 candidates for these unknown bits.

Since the key k[11] is now known, it is possible to undo the last round for every ciphertext. The

cryptanalysis is then reduced to the attack of the second to last round. However, the method

used in Part 2 cannot be directly applied here since the second to last round involves the MDS

mapping M. Let x and k be elements of ðF10
2 Þ4 and observe that

MðxÞ þ k ¼ MðxÞ þMðM�1ðkÞÞ ¼ MðxþM�1ðkÞÞ ¼ Mðxþ k0Þ

where k0 ¼ M�1ðkÞ. Thus, the key addition and the mapping M can be switched provided that

the key is replaced. According to this observation, define

ðki0
½10�Þ4 ≤ i<8 ¼ M�1ððki

½10�Þ4 ≤ i<8Þ :
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Therefore, the last two rounds of BEA-1 can equivalently be represented as in Figure 4.10.

Thanks to this representation, candidates for the key ðk0 i
½10�Þ4 ≤ i<8 can be obtained using

SelectKeys as in Part 2. To this end, we first need to partially undo the last round using

k[11]. Following Figure 4.10, define

f : ðF10
2 Þ{1;3;4;6} ! ðF10

2 Þ4

ðciÞi∈ {1; 3; 4; 6}↦M�1ðS�1
0 ðc4 þ k4

½11�Þ, S�1
1 ðc1 þ k1

½11�Þ,

S�1
2 ðc6 þ k6

½11�Þ, S�1
3 ðc3 þ k3

½11�ÞÞ :

The set {f ððciÞi∈ {1;3;4;6}Þjc∈ C} of these “new” ciphertexts is denoted by C
0, and the corresponding

coset representative is u0 ¼ fððuiÞi∈ {1;3;4;6}Þ. To be more consistent with Figure 4.10, the bundles

of u0 and of the elements of C0 are indexed from 4 to 7 included. The remainder of the attack is

similar to Part 2 as the candidates are obtained bundle by bundle. The first step gets candidates

for the bundle’s indices 4 and 7. The second and the third steps add the indices 5 and 6,

respectively. If E denotes the set of the current bundle’s indices, then the parameters of

SelectKeys are the set C0E ¼ {ðc0 iÞi∈Ejðc
0
iÞ4 ≤ i<8 ∈ C

0}, the mapping

Figure 4.10. Cryptanalysis using the backdoor (Part 4).
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GE : ðF10
2 ÞE � ðF10

2 ÞE ! ðF10
2 ÞE

ððk0 iÞi∈E, ðc
0
iÞi∈EÞ↦ ðS�1

i mod 4ðc
0
i þ k0 iÞÞi∈E ,

its equivalentGE and the subspace VE ¼
Y

i∈E
V i mod 4 of ðF

10
2 ÞE. The other details are given in

Algorithm 4. At the end of this part, every candidate k0 ¼ ðk0iÞ4 ≤ i<8 for ðk
0
i
½10�Þ4 ≤ i<8 gives rise to

a candidate k ¼ Mðk0Þ for ðki
½10�Þ4 ≤ i<8.

4.5. Part 5: deducing the cipher key

Concatenating the candidates for ðki
½10�Þ4 ≤ i<8 with k[11] yields 215 candidates for the output of

the key schedule’s last round. To obtain the corresponding candidates for the cipher key, we

need to reverse the rounds of the key schedule.

Referring to Figure 4.2, the ith round of the key schedule maps the element (X0, X1, X2) of

ðF40
2 Þ3 to (Y0, Y1, Y2) according to the following equalities

Y0 ¼ X0 þ f iðX2Þ , Y1 ¼ Y0 þ X1 , Y2 ¼ Y1 þ X2 ,

where fi denotes the permutation of ðF10
2 Þ4 defined for each X by

f iðXÞ ¼ ð3i mod 210; 0; 0; 0Þ þ ðS0 ∥ S1 ∥ S2 ∥ S3Þ ∘MðXÞ :

Using these notations, it easily seen that

X0 ¼ Y0 þ f iðY1 þ Y2Þ , X1 ¼ Y0 þ Y1 , X2 ¼ Y1 þ Y2 :

These equalities describe how to reverse each round of the key schedule, and thus how to

recover the 215 candidate cipher keys.

Finally, it just remains to test these candidate cipher keys to complete the cryptanalysis. To be

efficient, choose one plaintext/ciphertext pair (p, c) and check whether or not the encryption of

p under the candidate K is equal to c. In case of equality, repeat this process for all pairs

available to prevent false positive results. Otherwise, the candidate is discarded. Obviously,

the right cipher key is the one that passes all tests.
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Conclusion

In this book, we have addressed the following issue: “is it possible to design a mathematical

backdoor which would rely mostly on suitable partitionning techniques of the plaintext and

ciphertext spaces, independently of the round keys?”. We had in mind initially to exploit

combinatorial properties of the core primitives.

The overall conclusion we get is that if we want to design such a backdoor, the only solution is

to stay in the algebraic domain and no specifically combinatorial tools or primitive are possi-

ble. Let us summarize in details the main results.

If we wish to design any encryption system that maps any partition A of the plaintexts to a

partition B of the ciphertexts, independently of the round keys then

• the round function must map a linear partition to another one, and

• at least one S-box must do the same.

Here, the backdoor is precisely the knowledge of the pair ðA,BÞ. This result implies that the

partitions considered for the backdoor belong to the algebraic domain and not to the combi-

natorial one. We are condemned to consider highly structured algebraic objects.

For the candidate S-boxes which make it possible to design such a backdoor, we have

performed a detailed study with respect to their linear and differential tables. We have given

lower bounds on their linear and differential uniformities and we have explained how to

(nearly) achieve them.

The study presented in this book shows that the linear and differential tables of these

backdoor S-boxes are highly structured. Thus, we have proved that our backdoor class

implies necessarily a high algebraic structure. We conjecture that the reverse may be also

true: any algebraic structure can be used to design a backdoor cipher. In terms of backdoor

detectability, we also surmise that it is easy to detect and identify our backdoor from the results

presented in this book.

As future works, we would primarily address the two following issues. First, what would the

results be if we consider dependent round keys? In other words, we would like to consider a

key schedule algorithm which therefore would be part of the backdoor.

Second, we want to explore and formalize exhaustively a criterion which would help either to

design better hidden backdoors or, on the contrary, to evaluate the presence of a potential

backdoor. The first idea of criterion is the following. Let S denote the set of the S-boxes

mapping a linear partition to another linear partition. For any S-box S we define the distance

with respect to S as follows
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min{# Supp ðτÞjτ∈SðFn
2Þ, S ∘ τ∈S} :

This represents the minimal number of images under S we have to modify in order to obtain

an S-box lying in S. In other words, the aim is to have a distance measure to a backdoor S-

box. In Chapter 4, Section 2, we have first considered secret S-boxes mapping linear parti-

tions to another ones. Unfortunately, as mentioned previously, the structure of their linear

and differential tables is likely to betray the existence of a backdoor and can be used to find

it. This is the reason why, we have then modified the S-boxes. These new S-boxes “behave”

similarly to their secret counterparts with high probability. We have published a first-

algorithm proposal [32] denoted BEA-1 (Backdoored Encryption Algorithm version 1) whose

backdoor is based on this property. It operates on 80-bit data blocks using a 120-bit cipher

key and is directly inspired by the AES. The knowledge of the backdoor enables recovery

of the full cipher key in just a few seconds on a laptop computer using only 216 chosen

plaintext blocks.

We also hope to develop our work further to explore the different classes of possible back-

doors. In order to have a clearer view of the research presented in this book, we outline a

tentative starting classification of backdoor techniques. Of course, we hope that other authors

will have a critical cross-view of it and will make it evolve.

• Backdoors based on a single mathematical weakness. The backdoor is essentially put in the core

cryptographic primitives, exploits algebraic or combinatorial properties and is indepen-

dent of the key and the plaintext.

• Backdoors based on the combination of mixed techniques. Here, the backdoor relies on the

combination of several factors: algebraic properties, combinatorial properties, environ-

mental use of the algorithm (for example the nature of the plaintext encoding). Each

aspects being taken separately, it is not possible to see the backdoor. Only the combined

and global view makes it possible to see it, possibly. This approach seems promising in the

light our study of real-life governmental encryption algorithms proposed in a more or less

recent past.

Laval, France

May 26th, 2017
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Appendix

See Figures 1A to 11A.

Figure 1A. The transformation mappings given over the standard basis of F10
2 .

Figure 2A. The linear mappings over ðF10
2 Þ4 associated to MU, MV and the linear mapping PU!V.
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Figure 3A. Specification of the diffusion M and its inverse M�1.
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Figure 4A. Specification of the secret S-box S0.
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Figure 5A. Specification of the modified S-box S0.
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Figure 6A. Specification of the secret S-box S1.
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Figure 7A. Specification of the modified S-box S1.
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Figure 8A. Specification of the secret S-box S2.
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Figure 9A. Specification of the modified S-box S2.
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Figure 10A. Specification of the secret S-box S3.
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Figure 11A. Specification of the modified S-box S3.
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