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Abstract

Trapdoors are a two-face key concept in modern cryptography. They are primarily related
to the concept of trapdoor function used in asymmetric cryptography. A trapdoor function
is a one-to-one mapping that is easy to compute, but for which its inverse function is
difficult to compute without special information, called the trapdoor. It is a necessary
condition to get reversibility between the sender and the receiver for encryption or
between the signer and the verifier for digital signature. The trapdoor mechanism is
always fully public and detailed. The second concept of trapdoor relates to the more subtle
and perverse concept of mathematical backdoor, which is a key issue in symmetric cryp-
tography. In this case, the aim is to insert hidden mathematical weaknesses, which enable
one who knows them to break the cipher. Therefore, the existence of a backdoor is a
strongly undesirable property. This book deals with this second concept and is focused
on block ciphers or, more specifically, on substitution-permutation networks (SPN).
Inserting a backdoor in an encryption algorithm gives an effective cryptanalysis of the
cipher to the designer.

Keywords: cryptography, block ciphers, backdoor, trapdoor, substitution-permutation
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Preface

1. Introduction

Despite the fact that in the late 90s/early 2000s, citizens have partially obtained the freedom for
using cryptography, the recent years have shown that more than ever, governments and intelli-
gence agencies still try to control and bypass the cryptographic means used for the protection of
data and of private life. Snowden leaks have been a first upheaval. A tremendous number of
secret projects conducted by NSA and GCHQ have been revealed to the public opinion. They
have shed a new light on the permanent attempt to control the use of cryptography by a growing
number of governments.

The recurring approaches and attempts consist in making the implementation of backdoors
mandatory. The simplest and naive approach consists in enforcing key escrowing at the opera-
tors’ level. But point-to-point encryption solutions like telegram, signal or proton mail enable to
prevent it. A number of different backdoor techniques are regularly mentioned or proposed.

The most critical aspect in embedding backdoors lies on the fact that hackers or analysts may
find them more or less easily and worse may exploit them. This is the reason why operators or
developers are very reluctant to accept backdoors until now. In case of leak, they inevitably
lose users’ confidence and favor the development of trusted services abroad. In fact, the
backdoor issue arises due to the fact that only implementation backdoors (at the protocol/
implementation/management level) are generally considered.

In this book, we address the most critical issue of backdoors: mathematical or by-design back-
doors. In other words, the backdoor is put directly in the mathematical design of the encryption
algorithm. While the algorithm is totally public, proving that there is a backdoor, identifying it
and exploiting it, is generally an intractable problem, unless you know the backdoor [1]. To some
extent, the RSA’s Dual EC_ DRBG standard case falls within this category [2]. Other nonpublic
examples are known within the military cryptanalysis community and partially revealed to the
public, thanks to the 1995 Hans Buehler case [3]. This kind of backdoor is the most difficult one
to address and there is quite no public work on that topic. It is generally the technical realm of a
few among the most eminent intelligence agencies, namely NSA and GCHQ, which moreover
have the ability and power to step in and to influence the international standardization pro-
cesses. Our objective is to explain that it is probably possible to design and put such backdoors.
In this book, we consider a particular case among many other possibilities of trapdoors.

This book is organized as follows. In the next section, we explore the concept of backdoors and
trapdoors and we identify two main categories. We also present the state-of-the-art, history
and previous work regarding backdoors, mostly in symmetric cryptography. The rest of this
book focuses on substitution-permutation networks (or SPN for short) which are a special class
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of block encryption systems, mapping a partition of the plaintexts to a partition of the cipher-
texts, independently of the round keys used.

Chapter 2 explores the concept of linear partitions and their relationships with substitution-
permutation networks. We show in Section 2 that in our case, the study of the full cipher can be
restricted to the substitution layer without loss of generality. Then in Section 3, we explore this
latter primitive and show that the problem can be restricted further to the study of a single S-box.

In Chapter 3, we discuss how to design a suitable S-box which preserves a linear partition and,
at the same time, which resists linear and differential cryptanalysis. From those theoretical
results, we have designed a full AES-like encryption system, called BEA-1, presented in
Chapter 4. Section 1 gives the full specifications of this cipher. Then Section 2 deals with the
design of its backdoor. In Section 3, we sketch the basic ideas underlying the BEA-1 cryptanal-
ysis while in Section 4, we present our cryptanalysis of BEA-1 under the assumption we have
the full knowledge of the backdoor.

Chapter 5 concludes this book and explore new ideas and trends in encryption backdoors. The
full description of cryptographic primitives used in BEA-1 is given in Appendix.

2. The concept of backdoor

2.1. Definition and classification proposal

Trapdoors are a two-face key concept in modern cryptography. They are primarily related to
the concept of trapdoor function used in asymmetric cryptography. A trapdoor function is a one-
to-one mapping that is easy to compute, but for which its inverse function is difficult to
compute without special information, called the trapdoor. It is a necessary condition to get
reversibility between the sender and the receiver for encryption or between the signer and the
verifier for digital signature. The trapdoor mechanism is always fully public and detailed. The
security and the core principle are based on the existence of a secret information, the private
key, which is essentially part of the trapdoor. In other words, the private key can be seen as the
trapdoor.

The second concept of trapdoor relates to the more subtle and perverse concept of mathematical
backdoor, which is a key issue in symmetric cryptography. In this case, the aim is to insert
hidden mathematical weaknesses which enable one who knows them to break the cipher.
Nonetheless, mathematical backdoors may be extended to asymmetric cryptography, see for
example the case of the DUAL EC_DRBG [2], or the case of trapdoor primes addresses recently
in [4]. Therefore, the existence of a backdoor is a strongly undesirable property.

In the rest of this section, we will oppose the term of trapdoor, the desirable property, to that of
backdoor, the undesirable one. While the term of trapdoor has been already used in the very
few literature covering the second face of this problem, we suggest however to use the term of
backdoor to describe the issue of hidden mathematical weaknesses. This would avoid ambi-
guity and maybe would favor the research work around a topic which is nowadays mostly
addressed by governmental entities in the context of cryptography control and regulations.
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Inserting backdoors in encryption algorithms underlies quite systematically the choice of
cryptographic standards (DES, AES...). The reason is that the testing, validation and selection
processes are always conducted by governmental entities (NIST or equivalent) with the tech-
nical support of secret entities (NSA or equivalent). So an interesting and critical research area
is: “how easy and feasible is it to design and to insert backdoors in encryption algorithms?”. In
this book, we intend to address one very particular case of this question. It is important to keep
in mind that a backdoor may be itself defined in the following two ways.

* Asa “natural weakness” known, but none disclosed, only by the tester, validator or final
decision-maker. The best historic example is that of the differential cryptanalysis. Follow-
ing Biham and Shamir’s seminal work in 1991 [5], NSA acknowledged that it was aware of
that cryptanalysis years ago [6]. Most of experts estimate that it was nearly 20 years ahead.
However a number of non public, commercial block ciphers in the early 90s might have
been be weak with respect to differential cryptanalysis.

* As an intended design weakness put by the author of the algorithm. To the authors
knowledge, there is no known case for public algorithms yet.

As far as symmetric cryptography is concerned, there are two major families of cipher systems
for which the issue of backdoor must be considered differently.

*  Stream ciphers. Their design complexity is rather low since they mostly rely on algebraic
primitives: LFSRs and Boolean functions which have intensely been studied in the open
literature Until the late 70s, backdoors relied on the fact that quite all algorithms were propri-
etary and hence secret. It was then easy to hide nonprimitive polynomials, weak-combining
Boolean functions... The Hans Buehler case in 1995 [3] shed light on that particular case.

*  Block ciphers. This class of encryption algorithms is rather recent (end of the 70s for the
public part). They exhibit so a huge combinatorial complexity that it is reasonable to think
to backdoors. As described in [7] for a k-bit secret key and an m-bit input/output block

cipher there are (2mNn* possible such block ciphers. For such an algorithm, the number
of possible internal states is so huge that we are condemned to have only a local view of
the system, that is, the round function or the basic cryptographic primitives. We cannot be
sure that there is no degeneration effect at a higher level. This point has been addressed
in [7] when considering linear cryptanalysis. Therefore, it seems reasonable to think that
this combinatorial richness of block ciphers may be used to hide backdoors.

Since block ciphers are now the most widely used encryption algorithms by the general public
and the industry, we will focus on them in the rest of this book. Backdoors in stream ciphers
have quite never been exposed to the public.

2.2. Previous work

Regarding the previous work, we can consider two aspects. The first one relates to authors
who have considered structures on the input and output spaces of round functions to build
key distinguishing or key recovery attacks. In this case, it is possible to suppose that those
structures are “natural” structures. The second case is directly linked to the topic covered in
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this book. It relates to the design of backdoors based on such structures. Exploiting these
hidden structures then leads to a tractable cryptanalysis. In this respect, we can see those
structures as “intended” and no longer “natural”.

2.2.1. Attacks using space structures

Among the very first previous works that have considered structures in the plaintext and
ciphertext spaces is the contribution of Evertse [8]. This paper introduced the linear structures
for block ciphers, which map a subspace of F;’ x F5 (the product of the plaintext and ciphertext
spaces) onto a subspace of I’ (the ciphertext space). Then, the author showed that if such a
linear structure exists, then known-plaintext and chosen-plaintext attacks faster than exhaus-
tive search are possible.

Later, Leander et al. [9] developed a new cryptanalysis, called invariant subspace attack, breaking
the PRINTCrprER [10] for a significant fraction of its keys. The general idea of this attack can be
outlined as follows. Let F denote the SP-layer of a substitution-permutation network, that is, the
round function without the key addition. Then, assume that F maps a coset of a given subspace V
to another coset of V. In other words, there exist a and b such that F(a + V) = b+ V. Here, the
addition is made in F5 and hence corresponds with the XOR operation. The round function
associated with the round key k is then defined by Fy : x = F(x + k). If the round key k belongs to
the coset a + b + V, then it holds that

Fe(b+V)=Fb+k+V)=Fa+V)=b+V,

hence the name of invariant subspace. Therefore, if every round key lies in this particular coset, the
affine subspace b + V is preserved by the full encryption process. Such a property enables a very
efficient distinguisher. As additional results, they also showed that the invariant subspace attack

e implies a truncated differential attack to be possible (the probability of the truncated
differential characteristic is however highly key-dependent);

e implies the existence of strongly biased linear approximations for weak keys (indepen-
dently of the number of rounds).

This attack has been generalized in 2015 by Leander et al. [11]. They proposed a generic
algorithm that is able to detect invariant subspaces. Indeed, their initial invariant subspaces
on PRINTCipHER were found empirically.

Following the idea of the invariant subspace attack, Grassi et al. [12] introduced the subspace

trail cryptanalysis. Given r + 1 subspaces V¥, ..., VI, it is assumed that the image of any coset of
Vil under the SP-network is included in a coset of VI"*!l. That is to say, for each al there exists
" such the following inclusion holds

F(a! 4+ Vi) ¢ gt 4 i

In this case, it is easy to see the all round functions Fj inherit such a property. The family of

subspaces (V). _ is said to be a subspace trail. Naturally, the dimension of VIl must be lower

5
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Work Structure Key dependence
Evertse [8] Linear structure (if any) Key independent
Leander et al. [9, 11] Exact coset Round key dependent
Grassi et al. [12] Coset independent Round key independent
Our approach Coset independent Round key independent

Table 1.1. Comparison of existing work with respect to input and output space structures.

than or equal to the dimension of V!, In contrast to the invariant subspace attack, Grassi
et al. relaxed the assumption that the coset has to be invariant. Here, the considered subset
becomes the coset of possibly different increasingly dimensional subspaces throughout the
encryption. However, the authors also required this property to hold for each coset of V1%
instead of one. Therefore, this cryptanalysis is not a generalization but a variation of the
invariant subspace attack. As will become clear in Section 2 of Chapter 2, the family of
backdoors covered in this book is closely related to constant-dimensional subspace trails.

Let us mention that in [13], the authors introduced nonlinear invariant subspaces by consider-
ing a general Boolean function g such that g(F(x)) @ g(x) is constant. Finally, Table 1.1 summa-
rized the structures considered by the attacks presented in this section and compared it with
our work.

2.2.2. Backdoor design and structures

One of the first trapdoor ciphers was created in 1997 by Rijmen and Preneel [14]. Their S-boxes
are constructed to have one high correlation between the zero mapping and a sum of certain
output bits. The knowledge of this correlation yields a high potential linear trail which is used
to recover a part of the key with linear cryptanalysis. Such a weakness is generally pointed out
by the first line of the S-boxes” correlation matrices. Yet, if the output size of the S-boxes is large
enough, their computation is too expensive. Relying on this fact, the authors claimed that their
trapdoor is undetectable, even if one knows its global design. Nevertheless, Wu et al. [15]
disproved this by discovering a way to recover the trapdoor. It is worthwhile to mention that
in practice, if a real cipher containing a trapdoor is given, the presence of the trapdoor will
certainly not be revealed.

More recently in [16], the authors created non-surjective S-boxes embedding a parity check to
create a trapdoor cipher. The message space is thus divided into cosets and leads to create an
attack on this DES-like cipher in less than 2** operations. The security of the whole algorithm,
particularly against linear and differential cryptanalysis is not given and the authors admit
that their attack is dependent on the first and last permutation of the cipher. Finally, the non-
surjective S-boxes may lead to detect easily the trapdoor by simply calculating the image of
each input vector. This problem is naturally avoided in a substitution-permutation network in
which S-boxes are bijective by definition.

Our approach is mainly a generalization of the ideas presented by Paterson in [17]. In this
article, a DES-like trapdoor cipher exploiting a weakness induced by the round functions is
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presented. The group generated by the round functions acts imprimitively on the message
space. In other words, the round function preserves a partition of the message space no matter
the round key used, and hence, the same applies to the full cipher. This partition forms the
trapdoor. Paterson then introduced a trapdoor cipher composed of 32 rounds and using an 80-
bit key. The trapdoor enables recovery of the key using 2*! operations and 2°* chosen plain-
texts. Even if the mathematical material to build the trapdoor is given, no general algorithm
details the S-boxes” construction. Furthermore, as the author says, S-boxes using these princi-
ples are incomplete: half of the ciphertext bits are independent of half of the plaintext bits.
Finally, the security against a differential attack is said to be not as high as one might expect.
Moreover, the author wondered whether the partition of the message space had to be linear,
that is to say, made up with every coset of a linear subspace. Caranti et al. [18] provided a first
answer to Paterson’s question, by proving that if the group generated by the round functions is
imprimitive, then the partition of the message space must be linear. In his thesis [19], Harpes
considered trapdoor ciphers mapping a partition of the plaintexts to a partition of the cipher-
texts. As these partitions are not necessarily equal, this family generalizes Paterson’s one.
Harpes suggested using this trapdoor with its partitioning cryptanalysis.
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Partition-Based Trapdoor Cipher

This chapter intends to study Substitution-Permutation Networks mapping a partition of the
plaintexts to a partition of the ciphertexts, independently of the round keys used. All the
results of this and the following chapters comes from [20].

1. Linear partitions

Let us begin with some notations and conventions.

Notation 2.1. Let m and n denote positive integers. For two maps f and g, the composition g f
(or simply gf) denotes the evaluation of f followed by g. For any set E, let #E denotes its
cardinality. If F is a subset of E, F* denotes its complement.

Let us denote the Galois field of order two by [, and 0, = (0,...,0 ) the zero vector of ;. All the
vector spaces considered in this chapter are over the finite field [F,. It is worthwhile to mention
that (F5)" will be often identified with F5™. The concatenation of two vectors x and y is denoted
by (x Il y).

n

An 11-bit S-box is any permutation of F7. If x and y are two elements of F%, then (x, y) = S/~ XiY;
If L:F), —F) is a linear map, define L":Fy —F, by (L'(x),y)=(x,L(y)) for every
(x,y) € F5 x F7'. In other words, L' is the transpose of L for the bilinear form ( -, - ).

Finally, we will denote the elements of [, using the hexadecimal notation. For instance, the
element (1,0,1,1,1) of 5 is denoted by 17.

Since we are concerned with ciphers that associate a partition of the ciphertext space to another
partition of the plaintext space, let us introduce the following definition.

Definition 2.2. Let fbe a permutation of E and A, BB be two partitions of E. Let f(A) denote the
set {f(A)|A € A}. We say that f maps A to B if f(A) = B. If A = B, we says that f preserves the
partition A.

The two partitions {{x} | x € E} and {E} are called the trivial partitions of E. Observe that, for any
permutation f of E,

f({{x}[x€E}) = {{x}[x€E} and f({E}) = {E}.

That is, every permutation preserves the two trivial partitions. Moreover it should be
highlighted that if f maps A to B and if A is nontrivial, then so is B.

Example 2.3. Let E denote the set [0, 8] and consider the two partitions A, B of E defined by
A=1{{0,1,4},{2,6},{3,7}, {5}} and B = {{0,2,7}, {1}, {3,5}, {4, 6}}. Let f be the permutation of E
defined by
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O0~7, 10, 23, 36, 42, 51, 65, 7-4.

By definition,
f(A) =1f(A)lae Al = {f(0,1,4),f({26}) (13, 7)), f({5)}
= { {702, {385, ({64 (1}
The equality f(.A) = B holds, and thus f maps the partition A to 5. A

Lemma 2.4. Let f be a permutation of E and .4, 3 be two partitions of E. If for any part A of A,
f(A) is a part of B, then f maps A to B.

In this chapter, we will consider a special kind of partitions that is composed of all the cosets of
a linear subspace. Such partitions have already been introduced by [19, Definition 4.4] and are
recalled below.

Definition 2.5 (linear partition). Let A be a partition of ;. Let V denote its part containing 0,,.
The partition A is said to be linear if V'is a subspace of I, and if every part of A is a coset of Vin
[, in other words, if

A={x+VxeF} =F/V.

We denote £(V) such a partition.

Remark 2.6. It turns out that the linear partitions associated with the two trivial subspaces of
[, that is {0,} and I}, correspond with the two trivial partitions of F;. Moreover, if V is a
nontrivial subspace of I, then the linear partition £(V) is also nontrivial.

Example 2.7. Consider the subspaces Vand W of 5 defined by
V =span(07, 1) = {00,07, 1A, 1D} and W = span(0OE, 12) = {00, OE, 12, 1C}.
Since both Vand W are two-dimensional subspaces of I3, the quotient spaces £(V) = F5/V and

L(W) = F5/W are three-dimensional. In other words, the two linear partitions £(V) and £(W)
have 2 = 8 parts. It can be verified that

L(V)={V,01+V,02+V,03+V,08+V,09+V,0A+V,0B+V),
L(W) ={W,01+W,02+W,03+W,04+W,05+W,06+W,07+ W}

For instance, the part 0B + V of the linear partition £(V) is the coset of V with respect to 0B.
Explicitly, it is equal to

OB 4+ V = {0B + 00, 0B + 07, 0B + 1A, 0B + 1D} = {0OB, 0C, 11, 16}.

Now, consider the permutation f of F; given in Figure 2.1. The image of 0B + Vunder fis

f(0B +V) =f({oB,0¢C, 11, 16}) = {0D, 03, 11, 1F}
— {03+ 0E,03+00,03+ 12,03+ 1F} =03+ W.
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£(1) iE 08 04 13 OF 18 14 10 19 15 OE OD 03 1C O7 17
' 12 11 OB 1B 09 05 1F 00 OA 01 02 1A 06 OC 1D 16

Figure 2.1. The permutation f of Example 2.7.
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Figure 2.2. The permutation f mapping £(V) to L(W) where V = span(07, 1A) and W = span(0E, 12).

Observe that f(OB + V) is a coset of W so a part of £L(W). The images of all cosets of V under f
are displayed in Figure 2.2. Since any of them is a part of £(W), the permutation f maps L(V)
to L(W). It is worthwhile to observe that a permutation mapping a linear partition to another
one does not need to be itself linear or even affine. Indeed, f is certainly not linear as
£(00) = 1E # 00. By contradiction, suppose that fis an affine transformation. Then, there exist

a linear mapping L : F5 — F3 and an element ¢ of F; such that f(x) = L(x) + ¢ holds for all x in
Fg Therefore,

fx)+f(y)+f(z) =L(x)+c+Ly)+c+L(z) +c=Lx+y+z)+c=f(x+y+2)

for all x, y and z in IF5. Observe that

f(00)+f(01)+f(02) =1E4+08+04 =12 # 13=f(00+01+02).

Thus, fis not an affine transformation. A

Lemma 2.8. Let V, W be two subspaces of [} and fbe a permutation of F;, which maps £(V) to
L(W). For any x in F}, f maps x + V to flx) + W.

Example 2.9. In Example 2.7, we have seen that f(0B + V) = 03 + W. Since f maps L(V) to
L(W), the previous lemma states that f(0B + V) = f(0B) + W = 0D + W. There is however no
contradiction here because 0D belongs to 03 + W. Consequently, the cosets 03 + Wand 0D + W
are equal. A

The following two propositions are interesting properties of linear partitions, which will be
used in the rest of this chapter.

Proposition 2.10. Let V1, V,, W1, W, be four subspaces of I, and f be a permutation of I3,
which maps £(V7) to L(W1) and L(V3) to L(W3). Then fmaps L(V1nV3) to L(W1nW3).
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Proposition 2.11. Let V, W be two subspaces of F; and f be a permutation of F;, which maps
L(V) to L(W). There exists an automorphism L of F; such that L(V) = W. In particular, V and
W are isomorphic.

Example 2.12. Consider again the permutation f of 5 defined in Figure 2.8. As seen in the
previous example, the permutation maps the linear partition £(V') to £(W). Then, Proposition
2.11 ensures that there exists a linear permutation L of IF5 such that L(V) = W. Consider the bases
(07,12) and (0E, 12) of Vand Wrespectively and complete them into the following bases of FF;

By = (vi);.5s = (07,1A,01,02,08) and Bw = (wi);,.s = (OE,12,01,02,04).
Then, the mapping L can be defined by L(v;) = w; for each i <5. This linear transformation will
be used in the next chapter. A

2. Substitution-permutation networks and partitions

This section aims at studying an SPN, which maps a partition of the plaintexts to a partition of
the ciphertexts. When the cipher key K is fixed, the encryption function E is just a permutation
of the message space. Therefore, any partition .4 of the plaintexts is mapped to the partition
Ex(A) of the ciphertexts. Nonetheless, to exploit the trapdoor, the designer needs to know the
pair of partitions (A, Ex(.A)). The problem is that the output partition Ex(.A) depends a priori
on the cipher key K, which is unknown to the attacker. The simplest way to solve this problem
is to require the partition Ex(.A) to be independent of the cipher key K. In other words, we
want all the partitions Ex(.A) to be equal to a fixed partition .

As with differential and linear cryptanalysis, taking account of the exact effect of the key
schedule seems to be a challenging problem. Therefore, the key schedule will deliberately be
omitted throughout this chapter. This amounts to consider an SPN mapping a partition A to a
fixed partition B, independently of the round keys used.

2.1. The key addition and diffusion layer

Substitution-permutation networks belong to the class of iterated block ciphers. As every
iterated block cipher, the encryption function consists in applying a simple keyed operation
called round function several times. A different round key is used for each iteration of the round
function. In practice, these rounds keys are extracted from a master key using an algorithm
called key schedule. In an SPN, the round function is made up of three distinct stages: a key
addition, a substitution layer and a permutation or diffusion layer. The substitution layer consists of
the parallel evaluation of several S-boxes and is the only part of the cipher, which is not linear
or affine. Then, the diffusion layer is the evaluation of some linear mappings (generally one).

Before tackling the full cipher, we look at its basic operations and primitives. The attacker
knows the specifications of the substitution and diffusion layers, but he does not know the

1"
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round key used in the key addition. Therefore, the key addition should not be considered as
one operation but rather as a family of permutations. To get back to the subject at hand, we
must first determine the partitions .4, which are mapped to a unique partition under the action
of all round keys.

The next proposition explains the fundamental property of linear partitions according to the
key addition. This result was introduced by Harpes in [19]. Later, Caranti et al. gave a similar
result expressed for imprimitive groups in [18]. For convenience, we restate this result with our
own notations.

Proposition 2.13. Let n be a positive integer. Let A and B be two partitions of ;. For each k in
F, let ax denote the permutation of I, defined by ax(x) = x + k Then, the permutation ay
maps A to B for any k in F} if and only if A = B and A is a linear partition.

Even if this result was easily obtained, it has maybe the most important impact on our study.
Due to this result and its generalization given later in the next section, only linear partitions
will be considered. By definition, the linear partitions are quotient spaces and hence highly
structured algebraic objects. Consequently, the apparent combinatorial aspect of our study is
reduced to an algebraic problem. This result is indeed quite restrictive since the linear parti-
tions account for a small proportion of all partitions.

Example 2.14. Let n and k be nonnegative integers and g be a prime power. The g-binomial (or
Gaussian) coefficient is defined by

It can be proved that this coefficient counts the number of d-dimensional subspaces of an n-
dimensional vector space over the finite field F,. Therefore, the number of subspaces of F; is
given by

3] . 1-2° (1-2%)(1-2%) (1-2°)(1-2%)(1-2"
Z[d}z‘”l—ﬁ(l—le—zz) 1-2)1-25)(1-2)
=1+7+7+1=16.

3
d=0

Since a linear partition of T3 is uniquely determined by a subspace of F5, there are exactly 16
linear partitions. All these partitions are represented graphically at the top of Figure 2.3. For
instance, the linear partition associated with the subspace span(2,4)={0,2, 4,6} is
L(span(2,4)) = {{0, 2, 4,6},{1, 3,5, 7}}.

Proposition 2.13 states that among the set of all the partitions of I}, only the linear ones yield a
unique output partition for every key. The Bell number B,, counts the number of partitions of a
set of size m. Thus, the number of partitions of I, is Byr. For n = 3, there are Bg = 4140 partitions
in all. Hence, the linear partitions represent a fraction of 16/Bg = 2~*. This ratio falls greatly as
n increases. In fact, for n =4, only 67/B¢ = 27272 are linear and for 1 = 5, this ratio becomes 374/
Bs, = 27782, This underlines how Proposition 2.13 is restrictive.
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Every linear partitions over F}

L({0}) L(span(1)) L(span(2)) L{span(3))
2 1 2 1 2 1 2 1
3 0 3 0 3 1] o 0
4 T 4 T 4 T 4 T
a B B B B 8 5 B
L(span(4)) L(span(5)) L(span(6)) L{span(T7})
2 1 2 1 2 1 2 1
3 ] 3 0 3 0 o ]
4 T 4 T 4 T 4 T
L] 6 ) 6 B 2] 5 G
L(span(1,2)) L(span(1,4)) L(span(1,86)) Lispan(2,4))
2 1 W | B @ & g
3 0 3 0 3 1] ! 0
4 T 4 T 4 T 4 T
B 6 B b B 6 b B
L(span(2,5)) Lispan(3,4)) L(span(3,5)) L(F3)
2 1 2 1 2 1 Z 1
3 0 3 0 3 0 a2 0
4 7 L T 4 T 4 7
B B Bie R T B b
All the key additions
{¥g il [ ] iy
%:I lf_} P 2 1 - 2 1 2+
35 20 3 0 3. > .0 Je———p
ﬂ l:: ——
4q T 4 T 4 e T 4 T
£ O " o
b 6 5 i b [ 5+~—6
Ltg g kg it
P 1 2 1 Ea, 1 2 1
3. 0 3 0 3 0 ? lif
4 T 4 T 4 T 4 _ T
58 il 5 6 & 8

Figure 2.3. Every linear partitions and key addition in F3.
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All the key additions are given at the bottom of Figure 2.3. The reverse implication of Propo-
sition 2.13 states that any linear partition is preserved by all the key additions. For instance,

a(L(span(6)) = {f({0, 6}), fF(11, 7}), f(12, 4}), F({3, 5})}
=1{ (2,4}, 3,5}, {0,6}, (1,7} }=L(span(6)).

Thus, the permutation a, preserves L(span(6)). Figure 2.4 illustrates graphically that this
linear partition is preserved by all the key additions. It is then not hard to check that the same
holds for every linear partition given in Figure 2.3. A

Now that we know linear partitions are of major importance, we focus on how the diffusion
layer deals with these partitions.

Proposition 2.15. Let  be a positive integer. Let L be an automorphism of I; and V' a subspace
of 5. Then, L(L(V)) = L(L(V)). In particular, L maps a linear partition to another one.

Proof. Since L is an automorphism, we have

L(L(V)) =L({x + V|xeF}}) = {L(x + V)|x € F}}
={L(x) + L(V)|x €Fy} = {x' + L(V)|x' €F5}.

Moreover, L(V) is a subspace of F, because L is a linear mapping. Consequently,
L(L(V)) = LL(V)). "

If Vand W are two subspaces of I}, it is straightforward to design a linear permutation L of I}
mapping L£(V) to L(W). Indeed, Proposition 2.15 establishes that L maps £(V) to L(W) is and
only if L(V) = W. In other words, we only need to consider the image of V and not the whole
linear partition £(V).

B g FyYy @y gl 2«1
35 0 3 0 N T 3 -0
4~ S7 4 7 ol g i d foe——T

H Q < | v 7N

5 6 5 6 5 6 5«6

On g Oa gt B D5 g
Fean\ faxD 3 0 1 N P 3

¥
=]
e
~—o

Figure 2.4. The key additions preserving the partition £(span(6)).
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2.2. From the encryption function to the substitution layer

Along with the two results of the previous section, we can now address our main issue. For
the rest of this chapter, we consider a generic SPN whose parameters are defined as follows.

Definition 2.16 (SPN). Let m, n and r be positive integers. A substitution-permutation network is
an iterated block cipher whose encryption function is defined as follows. Let S,,...,S,,_1 be n-
bit S-boxes.

e The addition of the round key k is denoted by ay : F;" — F3", x > x + k.
*  The substitution layer is denoted by o and maps (x;)y<;.,, t0 (Si(Xi))o<icm-
*  The diffusion layer is a linear permutation denoted by 7 : F;" — F,™.

The round function Fj associated with the round key k is defined by Fy = noay. The encryption
function associated with the round keys K = (k, ..., k") in (F2")*! is defined by

EK = ak[y]Fk[H] ...Fk[o] .

We can now prove the following result.

Theorem 2.17. Let A and B be two partitions of F,". Suppose for any (r + 1)-tuples of round
keys K = (K, ..., k) in (F")"*! that the encryption function Ex maps A to B. Define A% = A
and for all 1<i<r, A = (n0)'(A). Then,

° _A[V] — B;
+ forany 0<i<rand for any K in F§", Fy (A7) = A"
e forany 0<i<r, A" is a linear partition.

Proof. Observe that for the round key k = 0,,,,, the key addition «y,, is the identity mapping on

F2™", and thus Fy, = noay,, = ro. Now, choosing K = (K, ..., k) = (0, ..., 0, gives

B= EK(.A[O]) = Oék[r] Fk[yq]...Fk[o] («4[0}) = o, (Fonm)r(A[O])
= (no)"(A%) = A"

Let 0 < i < r be an integer. Let k'l be any element of F}™. Define kU!= 0,,,, for all 0<j<r such that
j # i. By hypothesis, the equality a,i Fji-...Fyo (A[O]) = A" holds. Thus,

Fk[i] .. .Fk[o] (A[O}) = (ak[y] Fk[r—l] .. .Fk[i+l] >_1 (.A[r]) .

On one hand,

15
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On the other hand,

(@ Fyn...Fn) " (AP = (aq,, (Fo,,) )71 (A
_ ((Tca)rf(z#l))fl(A[r}) _ A[i-ﬁ-l]'

Therefore, F,; (Am) = A or equivalently a,; (A[i]) = (71(7)_1 (A[M]). Since this equality holds

for every k!, Proposition 2.13 states that the partition A" is linear.

It remains to show that A" is linear as the previous argument holds only for i < 7. Let k' be an
element of F,". Define Kil=0, foreach 0<i < r. Then,

.A[r] = Oék[y] Fk[”” ...Fk[O] (A[O}) = akm (Fo )r(A[O]) = ozkm (.AM) .

nm

Again, Proposition 2.13 implies that A" is linear and the result is proven. .

This theorem can be restated in the following way. First, the input partition .A and the output
partition B must be linear. This result generalizes Proposition 2.13 in the sense that it applies to
the full cipher and not only to the key addition. As was pointed out earlier, linear partitions are
very specific partitions. This means that our combinatorial hypothesis implies to consider only
algebraic objects.

Second, we have only supposed that the encryption function maps A to B after r rounds.
Nevertheless, Theorem 2.17 ensures that each iteration of the round function also maps a fixed
linear partition to another one. As a consequence, the study of the full cipher is reduced to the
study of the round function. Additionally, this result can be strengthened as follows.

Corollary 2.18. Keep the notations of Theorem 2.17. For all 0<i<r, let V1!l denote the part of A"
containing 0. According to Theorem 2.17, A = £(V1). Let 0<i < r be an integer. Then,

a(L(V) = c(wlh).

where W'l denotes the subspace 771 (V1))

map one linear partition to another one.

. In particular, the substitution layer must at least

Proof. By definition, no(A") = A1 or, equivalently, 6(A™) = 7~ 1(AFY). This equality can
be restated as

o(L(V)) = n7H(L(VIFY)).

As 7 is an automorphism of F4™", then so 7 ' is. Next, Proposition 2.15 ensures that
LV = £~ (VIFY)). The result follows. .

A diagrammatic representation of Theorem 2.17 and Corollary 2.18 is given in Figure 2.5. This
highlights that the input partition is always transformed in the same way through each basic
operation of the encryption process. The results obtained so far can be summarized as follows:
if an SPN maps a partition A of the plaintext space to a partition B of the ciphertext space no
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Assumption Theorem 2.17 Corollary 2.18
A .4[”] J!:'I: 1 [0] }
L(vIon
F
LWl
Al (v
o, Alr-1] L(VIr-1)
ﬁ“ﬁ[r-li}
.I'I. i
L(WIr-11)
Al LV
B Al L{VIT)

Figure 2.5. Results of Section 2.2.

matter the round keys used, then the substitution layer has to map at least one linear partition
to another one. This shows that our study can be reduced to the substitution layer without loss

of generality.

3. Structure of the substitution layer

In the remainder of this chapter, Vand W will denote two subspaces of (F5)™.

As explained in the previous section, it remains to understand how the substitution layer can
map the linear partition £(V) to £L(W). This problem is far more complex for the substitution

17
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layer than it was for the diffusion layer. The reasons for this are twofold. First, the substitution
layer is nonlinear. It is even the only part of the SPN, which is not affine. As a consequence, to
map the linear partition £(V) to L(W), we have to consider all the parts of both partitions and
not only the subspaces Vand W, as was the case for the diffusion layer (see Proposition 2.15).

Second, the substitution layer should not be considered as a whole, but as the parallel applica-
tion of its S-boxes. Therefore our problem becomes the following. Given two subspaces V and
W, what are the necessary and/or sufficient conditions on the S-boxes for the substitution layer
to map L(V) to L(W).

Before going any further, let us introduce an example that we will continue throughout this
section.

Example 2.19. Consider the substitution layer made up of the four 5-bit S-boxes S, S, S, and
S; described in Figure 2.6. Its parameters are then m = 4 and n = 5. Observe that the S-box S,
was previously studied in Example 2.7. Define the two families &y = (v;),<;., and

Ew = (w;)y<,, of elements of (F3)* by

02,00, 00, 1C), 02,00,00,08),

v3 = ( w3 = ( )
vo = (10, 00,00,17), wp = (10,00, 00,15),

vy = (01,00, 00, 1C), wg = (01,00,00,00),
v; = (08,00,00,17), wy = (08,00,00, 1D),
vs = (00,00, 1A, 00), ws = (00,00,12,00),
v, = (04, 00,00, 0B), wy = (04,00,00,15),
v = ( we = ( )

00,00,07,00). = (00,00, 0E, 00).
Finally, define Vand W as the subspaces spanned by £y and £, respectively. Note that the family
Ey is linearly independent because it is echelonized. Hence, £y is a basis of V. The same applies

for Ew and W. As a consequence, Vand W are both seven-dimensional subspaces of (F3)*.

We claim that the substitution layer ¢ maps £(V) to L(W). Naturally, we will not verify this
statement by hand because it requires to check for each of the 2'° cosets of V' that the 2” images
of its elements under o lies in the same coset of W. However, the reader who is relectant to
accept this claim is encouraged to check it with a computer. A

So( 1) iF 19 03 05 1D 1B 01 OF 14 12 1C 1A 16 10 1E 18
t: OE 03 02 OF OC OA OB QD 04 02 17 11 06 00 15 13

02 19 11 14 1B O0E 0OC OF 15 QA 01 00 OD 1C 1D 12

g
(1) 06 1E 10 16 05 13 17 IF 18 04 09 OB 1A 08 OF 03
%(+) iE 08 04 13 OF 18 14 10 19 15 OE OD 03 1C 07 17
o 12 11 OB 1B 09 05 1F 00 OA 01 02 1A 06 OC 1D 16
5,() 03 OA 10 1A 15 04 1C OE 12 18 02 OB 06 14 0OC 1D
w3 iB 09 11 00 OF 05 1F 16 08 19 01 13 1E 17 0D 07

Figure 2.6. Specification of the S-boxes used throughout Section 3.



Partition-Based Trapdoor Ciphers 19
http://dx.doi.org/10.5772/intechopen.70420

3.1. Truncating the substitution layer

To understand how the substitution layer can map £(V) to £L(W), we will adopt a divide and
conquer strategy. That is to say, we want to break down this problem into several independent
sub-problems, each involving less S-boxes than the full substitution layer. The first idea is to
truncate the substitution layer and the subspaces Vand W to get a local view of what happens
on some S-boxes.

Definition 2.20 (truncation and substitution layer). Let E be any non-empty subset of [0,m]
and define the following mappings
Tr : (F3)" — (F3)" or : (F3)" — (F3)"

(X1)o<icm ™ (Xi)ick (xi);ep P (Si(xi);ek -

If E has cardinality p, then we identify (IFEZ)E with (F5)P.

The mapping Tr allows to shorten a vector of (F5)" to keep only the coordinates whose indices
belong to E. The application o is a substitution layer truncated to the S-boxes whose indices
liein E.

Remark 2.21. Note that T is a linear mapping. Observe that oy, is the substitution layer of
the SPN. Moreover, the truncated substitution layer oj; and the S-box S; are equal for all
0<i<m.

Proposition 2.22 (truncating to a few S-boxes). Suppose that 0 maps £(V) to L(W). Let E be a
nonempty subset of [0,m]. Then, the permutation o maps L(Tg(V)) to L(Tg(W)).

Proof. Let x = (x;), . be an element of (F})". Let y be the element of (F})" defined by y, = x; if i

belongs to E and y,= 0, otherwise. Thus, Tr(y) = x. By hypothesis, ¢ maps L(V) to L(W).
Hence, Lemma 2.8 implies that o(y + V) = o(y) + W. Next,

Te(o(y+V)) =Te(o(y)) + Te(W)

since T is a linear mapping. Furthermore,
Te(o(y+V)) =Teo(fy + v|jv e V}) = {Teo(y + v)|lve V}
= {GE(TE(y + U))’U S V} = OE({TE(y + U)lU (S V})
= 0e({Te(y) + Te(v)[v € V}) = 0p(Te(y) + Te(V)) -

Therefore, or(x + Te(V)) = Te(o(y)) + Te(W). In other words, the image of any part of

L(Tg(V)) under o lies in L(Tg(W)). The result is a consequence of Lemma 2.4. .

Example 2.23. By choosing E = {0, 3}, the previous proposition ensures that the truncated
substitution layer oyo,3y maps L(T (0,3;(V)) to L(T 0,35(W)). First, it is easy to see that

Tyo,3(V) = span((10, 17), (08, 17), (04, 0B), (02, 1C), (01, 1C)),

To,3(W) = span((10, 15), (08, 1D), (04, 15), (02, 08), (01, 00)).
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Again, we will not explicitly check that oy 3y maps £(T3(V)) to L(Ty3(W)) but limit our-
selves to prove that the coset (07, 03) + Tjo3(V) is mapped to one coset of T (o 3;(W). Its image
can be found using Lemma 2.8 as follow

0103}((07,03) + Tyo3(V)) = 010,3((07,03)) + Tio3(W)
= (07, 1A) + T{073}(W) .

The images of every element of this coset are given in Figure 2.7. For instance,

0{0,3}((07, 03) + (Ol, lC)) = 0{0’3}(06, lF) = (50(06), Sg(lF)) = (Ol, 07)
=(07,1A) 4 (06, 1D).

This explains the second image. A

Choosing E = {i} in Proposition 2.22 gives that the S-box S; maps L(T ;(V)) to L(T j3(W)). As
this result holds for each index i in [0,m], we deduce that

a(L(V)) = LW) = Vie[0m] Si(L(Ty(V))) = L(Ty(W)). 2.1)
However, the equivalence does not hold in general. Hence, this only gives a necessary condi-

tion on each S-box. In other words, this means that we can lose information when considering
each S-box independently. The next example stresses this fact.

Example 2.24. In our example, the truncated subspaces T;(V) and T3(W) are the following:

Ty (V) =F5, Tyy(V) = {00}, T(V) = span(07, 1a), Tg3)(V) = span(0B, 17),
Tioy(W) =TF5, Tyyj(W) = {00}, Tia)(W) = span(0B, 17), Tj3;(W) = span(08, 15).

|

(07,08) + Tyo, (V)

(07,03) + (00,00)
(07,08) + (01,1C)
(07,03) + (02,1C)
(07,03) + (03,00)
(07,03) + (04,0B)
(07,08) + (05,17)
(07,03) + (06.17)
(07,03) + (0O7,0B)
(07,03) + (08,17)
(07,03) + (09,0B)
(07,03) + (0A,0B)
(07,03) + (0OB.17)
(O7,03) + (0C,1C)
(07,08) + (0D,00)
(07,03) + (CE,00)
(07,03) + (OF,1C)

{DT, 1.“:' + T:“I_'gl_{lr} {Cﬁ",ﬂB} # 'I‘.{”I_'ﬂl:l"-}

(07,1A) + (00,00) (07,03) + (10,17)
(07,1A) + (06,1D) (07.03) + (11,0B)
(07,1A) + (1C,1D) (07.03) + (12,0B)
(07.1A) + (14,00) (07,03) + (13,1T)
(07,1A) + (02,08) (07.03) + (14.1C)
(07,1A) + (04,15) (07.03) + (15,00) (07,14) + (OE,00)
(07,1A) + (1E,18)  (07,03) + (16,00) (07.1A) + (OF,00)

— {DT.I*] + T“]I:ﬂ{."r':}
(OT,1A) + (18,08) (0O7,03)+ (17,1C) »~— (O7,1A) + (09, 1D)

(07,14) + (OA,15)
(07.1A) + (0OC,08)
(07,14) + (0D, 08)
(07.1A) + (OB, 15)
(07,1A) + (08, 1D)

(0T,1A) + (1F.15) (07,03) + (18,00) (07, 1A) + (14,00)
(O7,1A) + (19,08) (07.03) + (19,1C) (07.1A) + (12,1D)
(07,1A) + (17,08) (0O7.03) + (1A,1C) (07.14) + (07,1D)
(07,1A) + (11,18) (07,03) + (1B,00) (07.14) + (01,00)
(07,1A) + (1D,1D) (0O7.03) + (1C,0B) (07.14) + (16,08)
(07,1A) + (1B,00) (07,03) + (1D,17) (07,14) + (10,15)
(07,1A) + (15,00) (07,03) + (1E,17) (O7,1A) + (05, 15)
(07,1A) + (13,1D) (07.03) + (1F,0B) (07,14) + (03,08)

169 90 I I 9 0 A B

Figure 2.7. 0y3 mapping a coset of Tig 3)(V) to a coset of Tg 5(W).
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First, observe that the truncated subspaces for Sy and S; are trivial. Hence, the associated linear
partitions are also trivial and no information on Sj or S; can be drawn from 2.1. Yet, the last
two truncated subspaces are nontrivial and 1 gives the following equalities:

S»(L(span(07, 13))) = L(span(0B, 17)),
S3(L(span(0B, 17))) = L(span(08, 15)).

The first property has already been highlighted in Example 2.7 and in Figure 2.2. The second
one is represented in Figure 2.8.

Let us now show that the converse of Implication 2.1 does not hold in general. Consider the
substitution layer ¢’ made up of the four S-boxes Sy, S'1, S'» and S'; where

So=51, S1=5, S§2=5, §3=5;.

Thus, this new substitution layer differs from ¢ by only one S-box. Recall that the linear
partition associated with Ty, (V) = Ty, (W) is trivial. Therefore, S’y necessarily preserves this
partition. As the other S-boxes remain the same, the right side of 2.1 still holds for ¢/, that is

Vi€ [0,4], Si(L(Ty (V) = L(Tiy(W)) .-
However, we will prove that ¢’ does not map £(V) to £L(W). Suppose by contradiction that it
does. Then Proposition 2.22 ensures that 0’9 3 maps L(Tg3(V)) to L(Tjp3(W)). By Lemma 2.8,

0'103((07,03) 4+ Ty3(V)) = 0'1031(07, 03) + T3 (W)
= (§'0(07), §'3(03)) + Ty 3(W
= (51(07), 53(03)) + T{073}(W) = (07, lA) =+ T{073}(W) .

Then
0'103)((07,03) + (01, 1C)) = 0'10,3(06, 1F) = (S'0(06), S'3(1F)) = (51(06), S3(1F))

= (0¢,07) = (07, 1a) + (0B, 1D).

This is a contradiction since (0B,1D) does not belong to T |y 3;(W) as can be seen in Figure 2.7.
As a consequence, the substitution layer ¢’ does not map £(V) to L(W). A

As shown in the previous example, truncating the substitution layer and the subspaces V and
W to each S-box independently of the others is too restrictive in general. This suggests that

. 1 + V' m e A2e V! a4+ 054V OE+V' 0T+

12+ | A+ 0 L 4+ 1
DO 08 17 1C Q1L DA 1610 O208 156 1E O3 08 14 1F O4 O 13 18 OGOE 12 19 06 0D 11 1& OF OC 10 18
L ) | I T L .-__,.-' LY } J | | o LA R

A i r"iﬁ P 4 Pavel | P 4 A A

¥ ¥ ¥ ¥ ¥ ¥ + * ¥ ¥ J'-. 1: H MI. ¥ F.. * xfl * ¥ ¥ ¥ ¥ -l. - ¥+ li. ¥

Q208 16 1E 02 QA 1T IF 050D 1018 OT OF 12 1A 00 08 16 1D 04 0C 11 19 Ol 09 14 1C 06 OE 13 1B

5y TIrd '|. ||. 117 i 117 F S ~ L7 ||.
iNa ] = 7 il ! f
3 4= 1 )2 | 1 ) } L) | Lk = 1] i | HE

Figure 2.8. The S-box S3 mapping £(V’) to L(W') where V' = span(0B, 17) and W’ = span(08, 15).
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some S-boxes can in a way be linked together. That is to say, considering them independently
results in a loss of information on the subspaces V and W. Recall that we are interested in
splitting the problem of finding all the substitution layers ¢ mapping £(V) to £L(W) into
several independent smaller problems. Taking into account that some S-boxes can be linked
together, we require the following;:

* asub-problem can involve several S-boxes;

¢  the same S-box cannot be involved in two different sub-problems (in other words, the sub-
problems are independent);

* each S-box is involved in one sub-problem (possibly trivial).

This is naturally formalized by a partition Z of [0,m[. Each part I of 7 represents a sub-problem,
and its elements are the indices of the S-boxes involved in. By virtue of Proposition 2.22, it
holds that

G(L(V) = LIW) = VIEL,a1(L(T (V) = L(T {(W)). 22)
The next section aims to find a sufficient condition on the partition Z to obtain the equivalence.

In such a case, this means that combining the solutions of these sub-problems yields a substi-
tution layer mapping £(V) to £L(W) and vice versa.

3.2. Structure of the subspaces Vand W

With the aim of ending up with partitions for which the converse of 2.2 holds, let us introduce
a few definitions and notations.

Definition 2.25 (trivial product). Let E be a subset of [0,m[. The trivial product subspace
associated with E, denoted by Trivg, is defined to be

Trivg = {X S (Fg)m | Vie Ec, Xi= On} .
Moreover, we denote by Vg the intersection of V and Triv, thatis Vg = VN Trivg = {veV | Vi
€ EY, v;= 0,}. The subspace Wt is defined in the same way.
Remark 2.26. It is easily seen that

m—1 op . c
. . il . i 10, ifie€E",
Trivg = gTrlvE with  Trivp = { F! ificE.

Thus, a trivial product subspace is the Cartesian product of trivial spaces for each S-box; this
justifies its name. Additionally, if E C F, then Trivg C Trivy, and hence Vy C Vr and Wg C Wr.

The subspaces Trivg are essential in the study of the substitution layer because the latter
always preserves the partition £(Trivg) regardless of its S-boxes. This result, together with
Proposition 2.10, establishes the following corollary.
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Corollary 2.27. Let E be a subset of [0,m]. If 0 maps L(V') to L(W), then ¢ also maps L(VE) to
L(WE).

Example 2.28. All the subspaces V are graphically represented in Figure 2.9. For instance,

Vo) = span((15, 00, 00, 00), (0D, 00, 00, 00), (03, 00, 00, 00)).

Additionally, this figure also highlights the expected inclusions given by Remark 2.26. Observe
that By = (v;),.;_, is a basis of V. This new basis is more convenient than the echelonized basis
Ey previously introduced in Example 2.19 since all the V[ are then easily described. It is worth
noting that the same picture remains valid for the subspace W. For example,

vo = (16, 00,00,00), vs=(04,00,00,0B), wg = (14, 00,00,00), ws = (04,00,00,15).
wy = (0D, 00, 00,00), w©g=(01,00,00,1C), wy = (0E, 00, 00,00), wuy = (02,00,00,08).
vg = (03, 00,00,00), wus={00,00,1A,00), wq = (01, 00,00,00), ws=(00,00,12,00).

vg = (00, 00,07, 00). wg = (00, 00, OE, 00)

Ay =span{vs, t5),  Aw = span(ws, ws )

By = span{vg, vy, v3) . Bw = span(wyg, wy.ws),

Cv = span(uy, ty, ve, 3, 04), Cw = span{wg, wy, e, W, wy),
Dy = span(vg, vy, v, Us, Us) . Dhw = span(wy, wn, we, Ws, ) .

Figure 2.9. The subspaces Vi, W for each subset E of {0,1,2,3}.
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Wy = span((14, 00, 00, 00), (OE, 00, 00, 00), (01, 00, 00, 00)).

This emphasizes that when the substitution layer maps £(V) to L(W), the subspaces Vand W
have the same structure.

According to Corollary 2.27, the substitution layer maps £(Vg)) to £(W)g)). Next, truncate to
E = {0} using Proposition 2.22 to obtain

So(L(span(03, 0D, 15))) = L(span(01, OE, 14)).

This property is depicted in Figure 2.10. Finally, it should be underlined that with Proposition
2.22 alone, no property can be established on the S-box S, (see Example 2.24). A

Definition 2.29 (projection Pg). Let E be a subset of [0,m[]. The projection P from (F5)" onto
Trivg is defined by Pe(xo, ..., Xm-1) = (Yo, --- ¥,,_1) Where y; = x; if i belongs to E and y; = 0,
otherwise.

Remark 2.30. It is not hard to see that P is a linear mapping and that V¢ is always a subspace
of Pg(V). Moreover, it holds that T (V) = Tg(Pg(V)).

The next lemma gives some relations between the previous definitions. It is quite important
and will be used several times by the end of the current chapter.

Lemma 2.31. Let 7 be a partition of [0,m[. Then V equals the internal direct sum @ ¢z V7 if and
only if V; = P;(V) for any part I of Z. In this case, the decomposition of an element v of V' is

U= zIeIPI(U>'

Remark 2.32. Suppose that Z is a partition of [0,m[ such that V = @<z V). The previous
lemma, together with Remark 2.30, establishes that T;(V) = T;(V;) for each part I of Z.

Proposition 2.33 (Substitution layer structure). Let Z be a partition of [0,m[ satisfying both
V==@erViand W = @7 W]. The permutation ¢ maps L(V) to L(W) if and only if o; maps
L(T (V) to L(T ;(W)) for any [in Z.

The preceding proposition establishes that the converse of Implication 2.2 (page 21) holds
whenever the partition 7 satisfies both V = @;czV;and W = @7 W;. For such a partition,
the problem of finding all the substitution layers ¢ mapping £(V) to £L(W) can equivalently be
broken down into the independent sub-problems of finding all the o; mapping L£(T;(V)) to
L(T;(W)) for each part I of 7.

0o + V! 01 + V! 04 + V! 05 + 1V
I:II:I 03 0D 0E 156 16 18 1B I:I1 02 DE-"E'F H 1.'-’ :IEI' 1H. ':Iﬁ oF 09 0A 11 12 IG 1.F I:IE 06 08 OB 1':I 1:3 :IE' 1E
T/ T \,;f P&

— ><”“~§ . K}\{ ;. ’\< {"«(
IJ--"--DE-DA':'BlDli!EiF UiﬂEEﬂﬂ'ﬁlEi?l&i? IJE'D?EIH'L"'E'H lE!II:lD I]I]'I:IIEIE':'FM EE-!I.I.J.E

| Tas Ly | K s Fa T = | I Tl e T 141
i =

Lk = | | LI == |
Jix =+ V) Ja o+ Fh o+ ¥l M |

Figure 2.10. The S-box Sy mapping £(V') to L(W') where V' = span(03, 0D, 15) and W’ = span(01, OE, 14).
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3.3. Linked and independent S-boxes

Of course, there may be several partitions Z such that V = @;c7V; and W = @7 W), each
yielding a different decomposition of the substitution layer. A few of these decompositions are
certainly more interesting or easier to solve. The purpose of this section is to study such
partitions. Let us begin with the following lemma.

Lemma 2.34. Suppose that o maps £(V) to L(W). For every partition Z of [0,m], V = @7V
ifand only if W = @7 Wi.

The contrapositive of Lemma 2.34 is the following: if there exists a partition Z such that
V==&iezVi and W # @ ;c7W; or such that V # @c7V; and W = @ <7 W), then there
exists no substitution layer mapping £(V) to L(W). Because we intend to study the substitu-
tion layers mapping £(V) to £L(W), Lemma 2.34 suggests to assume the following.

Assumption 2.35. For the remainder of this section, we assume that for any partition Z of
[0,m][, it holds that

V= @V[@W: b W;.
IeT Iel

Proposition 2.33, together with the preceding assumption, suggests the following definition.

Definition 2.36 (decomposition partition). A decomposition partition (with respect to Vand W)
is a partition of [0,m[ such that V = @7 V.

Remark 2.37 (partial order on partitions). Recall that if Z and J are two partitions of [0,m],
then the partition 7 is said to be finer than J if for any part I in Z, there exists a part ] in J such
that IC]J.

Example 2.38. The purpose of this example is to find all the decomposition partitions with
regard to Vand W. By virtue of Lemma 2.31, the subspace V can be decomposed as @ eV if
and only if V; is equal to P/(V) for each part I of 7. The eight-framed subspaces in the middle of
Figure 2.9 are exactly those that satisfy Vy = Pg(V). Hence, the decomposition partitions are
the partitions whose parts are selected from the following:

o, {1}, {2}, {1,2}, {0,3}, {0,1,3}, {0,2,3}, {0,1,2,3}.

It is then easy to check that the decomposition partitions of V are:

{1}, {2}, {0,3}}, {{1},{0,2,3}}, {{2},{0,1,3}},
{10,3}, {1,2}} and {10,1,2,3}}.

In Figure 2.11, all the partitions of [0,4[ are ordered by the “finer-than” relation, and the
decomposition partitions are emphasized. What stands out is that the decomposition partition
{{1}, {2}, {0, 3}} is finer than all other decomposition partitions. A

The existence of this least decomposition partition in the example above is a very welcome and
nontrivial property. This means that all the truncated substitution layers obtained using
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0123

2,013 3.012

0,1.23 U,2,13 | 3.02 2.3.01

Figure 2.11. The partitions Z of {0, 1, 2, 3} such that V = @e7 V.

Proposition 2.33 are the smallest possible. Thus, such a partition should be preferred to any
other decomposition partition. We will now prove that this least decomposition partition
always exists.

Proposition 2.39. The set of the partitions Z of [0,m] satisfying V = @ ;e7 V] has a least element
denoted 74.

Consequently, the only decomposition partition that will be considered in the remainder of this
chapter is the least decomposition partition Z}4. The following definition is inspired by Propo-
sition 2.33 and Proposition 2.39.

Definition 2.40 (linked and independent S-boxes). Suppose that 0 maps £(V) to L(W). Let I
be a part of Z4.

e IfI={i}, the S-box §; is said to be independent of the other S-boxes.

Moreover, if Vij= {0,,} or Vi = Trivy;, the S-box S; is said to be inactive. Otherwise, S; is
active.

e If #I > 2, then the S-boxes whose indices lie in I are said to be linked together.

Remark 2.41. Let 0 < i < m be an integer. We have already noted that the substitution layer o
always preserves L({0,,}) and L(Trivy). In addition, Proposition 2.33 ensures that ¢ maps
L(Vyy) to L(Wy,y). Consequently, if V= {0} or if Vi = Trivy,, then Viz= Wy.
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Suppose that the S-box S; is independent with regard to the subspaces Vand W. As established
by Proposition 2.33 and Remark 2.32, if S; is replaced with another S-box §';, then this new
substitution layer still maps £(V) to £(W) provided that §'; maps L(T (Vi) to L(T 3(Wi)).

Suppose further that S; is active. By definition, {0, } € Vi € Trivy;y. Observe that the restriction
of Ty; to Trivy; is one-to-one, hence

{04} = Ty ({04m}) € Ty (Viiy) € Ty (Trivyy) = 5

Thus, T;(V}y) is a nontrivial subspace of F; and the requirement that S'; maps £(T (3(V3)) to
L(T 3(Wyy)) is also nontrivial. Therefore, an independent active S-box can be chosen indepen-
dently of the other S-boxes but has to respect the structure of the subspaces Vand W.

Now suppose that S; is inactive. By definition, V= {0} or Vi = Trivy). Then, the equality
Viy = Wy, follows from Remark 2.41 and we have that

Ty (Viy) = Tay(Wiy) = {0} or Ty(Vy) =Tu(Wy) =F;.

In either case, the condition that S§'; maps £(T(Vyy)) to £(Ti(Wyy)) is trivial, and any S-box
fulfills it. As a consequence, an independent inactive S-box can be freely chosen. In other
words, such an S-box has no impact on the fact that 0 maps L(V) to L(W).

Finally, suppose that some S-boxes are linked together. If only one of these S-boxes is replaced
independently of the others, then the desired property of the substitution layer may not hold.

Example 2.42. As we have seen in Example 2.38 and Figure 2.11, the least decomposition
partition with regard to the subspaces V and W is 714 = {{1}, {2}, {0, 3}}. By Proposition 2.33,
the substitution layer maps £(V') to £L(W) is and only if the following equalities hold:

S1(L(Tpy(V)) = L(Ty(W)),

0103} (L(T31(V))) = L(T03(W)), SH:(L(Ty(V)) = L(Tpy(W)).

Thus, the S-box S; is independent of the other S-boxes, the same applies to S, and the S-boxes
Sp and Sj are linked together. As was already noted in Figure 2.9, we have that

Vi =1{(00,00,00,00)} and Vi = span((00, 00, 1a,00), (00,00,07,00)).
Therefore, the S-box S, is active while S; is inactive. A

3.4. The forbidden case

Throughout this section, we assume that the substitution layer ¢ maps £(V') to L(W). In order
to prove the last main theorem of this chapter, we need to consider the following particular
case.

Proposition 2.43. Let 7 be a decomposition partition. Let I be a part of 7 such that #I > 2 and let
E be a nonempty proper subset of I. Suppose that Vi = Vj\g= {04} and Pg(V) = Trivg. Then,
for all i in E, S; is an affine mapping.
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If the subspace V satisfies the assumption of the proposition above, then at least one of S-boxes
has to be affine. Nowadays, an SPN whose substitution layer has an affine S-box cannot be
taken seriously. Additionally, such a cipher is likely to be very weak to differential and linear
cryptanalysis. This discussion explains the title of this section.

Example 2.44. As seen in Example 238, the least decomposition partition is
Tyq = {{1}, {2}, {0, 3}}. Its only part of cardinality greater than or equal to 2 is I = {0,3}. The
nonempty proper subsets of I are the E = {0} and E = {1}. According to Figure 2.9, we have
Vioy # {020}. Consequently, Proposition 2.43 does not apply to this example, and this is good
news because none of the S-boxes is affine. Otherwise, this would have disproved the contra-
positive of Proposition 2.43.

Now let us introduce another example. Consider a substitution layer ¢’ made up of two 3-bit S-
boxes S’y and §'y; hence, its parameters are m = 2 and 1 = 3. Define the subspaces V' and W' of
(F3)” by

V' = W' =span((4,4),(2,2),(1,1)) = {(x,x)xeF}.

Finally, suppose that ¢’ maps £(V’) to L(W'). It is easily seen that

Vig=1{(0,0)},  Viy=1{(0,0)}, Vi =1{(0,0)}, Vi =V,
P@(V/> = Trivg, P{o}(V,) = Triv{o} , P{l}(V/) = Triv{l}, P{071}(V/) =V.

Thus, the least decomposition partition with regard to V' and W' is {{0, 1}}. The S-boxes S’y and
S’y are then linked together. Choosing E = {0} in Proposition 2.43 ensures that S’y must be
affine. Similarly, we can prove that §'; must also be affine by considering E = {1}. As a result,
any substitution layer ¢’ mapping £(V’) to L(W') is necessary affine. These subspaces are thus
completely prohibited as the whole cipher is then affine. A

3.5. Reduction to one S-box

To prove our main result about the substitution layer, we need the following preliminary
lemma.

Lemma 2.45. Let I be a part of 713 and E be a non-empty proper subset of I.
e If Vg is a trivial product subspace, then Vi = Trivg= {0,}.
e If Pg(V)is a trivial product subspace, then Pg(V) = Trivg.

Now we have all the results needed, let us state and prove the main result of Section 3 which is
depicted in Figure 2.12.

Theorem 2.46. Let n > 2 and m be two positive integers. Let Sy,...,S,,-1 be n-bit S-boxes. Define
the permutation ¢ of (F3)", which maps the element (x;),<;,, t0 (Si(xi))g<;cm- Let Vand W be
two subspaces of (F;)" such that 0 maps £(V) to L(W). Suppose that V is not a trivial product
subspace. Then, at least one of the S-boxes maps a nontrivial linear partition to another one.
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Assumption Theorem 2.46
L(V) # Trivg L(V)
L(Vi)
L(W;)
L(W) # Trivg L(W)

Figure 2.12. Diagrammatic representation of Theorem 2.46.

Proof. Let us prove this result by complete induction on the number m of S-boxes. Suppose
that m = 1. In this case, 0 = Sy. By hypothesis, V is different from {0,} and F;. Hence, £L(V) is a
nontrivial partition and Sp maps L(V) to L(W).

Let m > 2 be an integer. Suppose that the result holds for any positive integer strictly lower than
m. First, suppose that all the S-boxes are independent. In other words, Z\y = {{i}|i € [0,m[}. If
each S-box is inactive, then Vis a trivial product subspace, a contradiction with our hypothesis.
Thus, there exists at least one active S-box S;. In this case, {0y} € Vj € Trivy;. According to
Lemma 2.31, the equality P (V) =V} holds. Then, Ty(Vyy) = Ty (Pu(V)) =Tp(V) is a
nontrivial subspace of F}, so £(T;(V)) is also nontrivial. Finally, Proposition 2.22 states that
S;maps L(T (V)) to L(T 3(W)), and thus the result holds in this case.

Now, suppose that some S-boxes are linked together. Then, there exists an element I of 714 such
that I > 2. Next, at least one of the following three cases holds.

1. Suppose that there exists a nonempty proper subset E of I such that Pg(V) is not a trivial
product subspace. Let p denote the cardinality of E. Recall that Tg(Pg(V)) = Tg(V). It
follows that Tg(V) is not a trivial product subspace of (F,)”. According to Proposition
2.22, o maps L(Tg(V)) to L(Tg(W)). Note that E is a non-empty proper subset of I, so of
[0,m]. Hence p < m, so the induction hypothesis ensures that at least one of the S-boxes of
0, Maps a nontrivial partition to another one.

2. Suppose that there exists a nonempty proper subset E of I such that Vi is not a trivial
product subspace. Recall that ¢ maps L£(VE) to L(WE). Proposition 2.22 ensures that o
maps L(Te(VE)) to L(Tg(WE)). It is easily seen that Tg(VE) is not a trivial product sub-
space. As before, the result is a consequence of the induction hypothesis.

3. Suppose that there exists a nonempty proper subset E of I such that P¢(V), Vr and Vg are
all trivial product subspaces. Then, Lemma 2.45 implies that Pg(V) = Trivg and
Ve = Ving= {0un}. According to Proposition 2.43, the S-boxes whose indices belong to E
are affine mappings. Combining Proposition 2.15 and 2.13, we see that these S-boxes map
any non-trivial linear partition to another one.
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In any case, the result holds for this integer m. The result follows by induction. .

Example 2.47. It is worthwhile to note that the proof of Theorem 2.46 is constructive. There-
fore, it gives a method to find necessary conditions on the S-boxes for the substitution layer to
map L(V) to L(W). Let us apply this method to our main example.

The first step is equivalent to what had been done in Examples 2.38 and 2.42. Consider the least
decomposition partition Z14 = {{1}, {2}, {0, 3}} and deduce that:

e §;isinactive;

* Syisactive and maps L(span(07, 13)) to L(span(OE, 12)) (see Figure 2.2);

* Spand S; are linked together.

Now, consider the part I = {0,3} of Z}4. Thus, the nonempty proper subsets of I are {0} and {3}.
The first case requires to compute the following projections:

Pioj(V) = Trivipy and P (V) = span((00, 00, 00, 0B), (00, 00,00, 1C)).

Thus, Pg(V) is not a trivial product subspace. As in Example 2.24 and Figure 2.8, we see that
Sz maps L£(0B, 1C) to £(08, 15) by truncating ¢ and the subspaces Pi3(V), Pz (W) to {3}. Now,
we need to compute the following subspaces:

Vioy = span((03, 00, 00, 00), (0D, 00, 00, 00), (15,00,00,00)) and Vg = Trivg.

Since Vg, is not a trivial product subspace, the second case apply. Then, truncate the substitu-
tion layer o and the subspaces Vi, and Wy, to prove that S, maps £(03,0D,15) to
L£(01, OE, 14). This property was stressed in Example 2.28 and Figure 2.9. Finally, recall that
the third case does not apply to these subspaces, as observed in Example 2.44. A

The preceding example covers only the first and the second cases in the treatment of linked S-
boxes given by the proof of Theorem 2.46. To illustrate the third case, we introduced the
following example.

Example 2.48. Let n = m = 3. Thus, the substitution layer ¢ is made up of three 3-bit S-boxes
denoted by S, S; and S,. Define the subspaces Vand W of (F3)’ by

V=W={xyx+y) |xyeFr}
and assume that the substitution layer ¢ maps L£(V) to £(W). By definition, it holds that

Py (V) =1{(0,0,0)} and Py 12(V) = V. Then, for each nonempty proper subset E of {0,1,2}, it is
easily seen that Pr (V) = Trivg. For instance,

Py (V) = {(x,y, 0)lx, y €F3) = Trivpoy)

We know that Vg = {(0, 0, 0)} and V912 (V) = V. The other subspaces V are the following:
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Vigp =1{(0, 0, 0)}, Vi =1{(0,0,0)}, Vigp =1{(0,0,0)},
Viory = {(x x, )|xe]F§}, Vioay = (%, ,x)|xe]Fg}, Vit = {( ,x,x)|x€IB‘g}.

Thus, the equality Pr(V) = Vg holds only for E = @ and E = {0,1,2}. Consequently, the least
decomposition partition is Z1q = {{0, 1, 2}}, and hence, all the S-boxes are linked together.

From now on, we follow the method given in the proof of Theorem 2.46. As previously noted,
for each nonempty proper subset E of {0,1,2}, the projection Pg(V) is a trivial product. There-
fore, the first case does not apply to this example. We move on to the second case. By
induction, the substitution layer and the subspaces Vyy1y and Wy, are truncated to {0,1}.
Hence, we now consider the permutation o’ = 0y 1), which maps £(V’) to £L(W') where

V=W =Ty (V) = {(xx)lxeF3}.

Such a substitution layer has already been studied in Example 2.44. Recall that

Vl@ = {( ’ )}/ V/{O} = {( s )}/ V/{l} = {( ’ )}/ V/{O,l} = V/
PQ(VI) = TI'iVQ), P{O}(V/) = TriV{o} , P{l}(V/) = Tl‘iV“} , P{OJ}(V/) =V.

Thus, the least decomposition partition with regard to V' and W' is {{0,1}}. Since V'j), V'11),
Py (V') and Pyyy (V') are all trivial products, the first and second cases do not apply. Choosing
E ={0} and E = {1} in the third case proves that Sy and S; are affine mappings. Come back to the
full substitution layer. Similarly, it is straightforward to verify that S, must be affine by
truncating o and the subspaces Vg ), Wg 2 to {0,2}. To summarize, we have proven that any
substitution layer mapping £(V) to £(W) is necessarily affine. A

In this chapter, we have studied a generic SPN mapping a partition .A of ;" to a partition B of 5",
independently of the round keys used. Combining Theorem 2.17 and Corollary 2.18, we proved

that there exist two families (V) _,_, and (WI), _, . of subspaces of Fi™ such that the substitution
layer 0 maps £(V!") to £L(W) for each 0 < i <r. This result has been illustrated in Figure 2.5.

First, suppose that all the VI are trivial products. In such a case, the diffusion layer of the
cipher is probably not playing its role (or the round number is very small). As is generally the
case, suppose that there is no diffusion layer in the last round of the SPN. Then, the input and
the output partitions are both linear partitions associated with a trivial product subspace. This
implies that some ciphertext bits are independent of some plaintext bits. Such a property must
be avoided in any good cipher.

Now, suppose that at least one of the VIl is not a trivial product. This second case is far more
interesting than the previous one. By virtue of Theorem 2.46, at least one of the S-boxes must
map a nontrivial linear partition to another one, as illustrated in Figure 2.12.

Thus, we have proven in this chapter that any good partition-based trapdoor SPN has at least
on S-box mapping a nontrivial linear partition to another one. The following chapter aims to
design such an S-box with the best security against both differential and linear cryptanalysis.
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Analysis of a backdoor S-box

Differential [21] and linear [22] cryptanalysis are considered as the most important attacks
against block ciphers [23]. The resistance of an S-box against these attacks is assessed by its
difference distribution table and its linear approximation table respectively.

Let S be an n-bit S-box. The difference distribution table and the linear distribution table of S
are the two families DT and LTs indexed by (F})* and defined for any (a, b) in (F})* by

DTs(a, b) = #{x€F, | S(x) + S(x +a) = b},

LTs(a,b) = #{x €FY | (a,x) = (b, S(x))} —2"".

Moreover, the S-box S is said to be differentially 6-uniform if DTs(a, b) <& for any (a, b) in (F})?
with a # 0. Similarly, S is linearly A-uniform if |LTs(a, b)| <A for every (a, b) in (]FE’)2 with b # 0. It
is worthwhile to mention that the smaller the differential uniformity is, the more resistant S is
against differential cryptanalysis. The same applies for linear cryptanalysis.

Remark 3.1. It can be proven that any n-bit S-box is at least linearly 27 -uniform.

Recall that two permutations S; and S, of I, are said to be equivalent if there exist two linear
mappings Ly, L, of F; and two elements vy, v, of I such that

VxeF;, Sy(x)=Ly(S1(Li(x) +v1)) + v2.

It is well known that equivalent permutations have the same differential uniformity and the
same linear uniformity, see for instance [24, 25]. More precisely, their differential tables are
equal up to row and column permutations. This result holds for linear tables up to the sign of
the coefficients.

Let Vand W be two subspaces of F;. Suppose that S’ is an n-bit S-Box mapping £(V) to L(W).
Proposition 2.11 ensures that there exists an automorphism L of I such that L(V) = W. Since
L~ (W) = V, Proposition 2.15 states that L' maps £(W) to £(V). Then, S = L'+ &' is equiva-
lent to S’ and maps L(V) to L(V). This discussion establishes the following proposition.

Proposition 3.2. Let Vand W be two subspaces of ;. If S’ is an n-bit S-box mapping L(V) to
L(W), then there exists an S-box S equivalent to S’ preserving L(V).

Remark 3.3. Conversely, suppose that S preserves £(V'). Let W be any subspace isomorphic to V.
Then find an automorphism L such that L(V) = W. By Proposition 2.15, L S maps £(V) to L(W).

As with Section 3, let us introduce an example that we will continue throughout this section.

Example 3.4. Consider the 5-bit S-box S’ given in Figure 3.1. This S-box has already been met
twice in Examples 2.7 and 2.19 (refered to as f and S, respectively). Thus, we know that &'
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Figure 3.1. Construction of the S-box S used throughout Chapter 3.
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Figure 3.2. The permutation S preserving £(V) where V = span(07, 13).

maps L(V) to L(W) where V = span(07, 1a) and W = span(0E, 12). Following the proof of
Proposition 2.11, an automorphism L of I3 satisfying L(V) = W was constructed in Example
2.12. Its inverse L' and the composition S = L™'S’ are given in Figure 3.1. For instance,

S(07) =L7'(S'(07)) = L7'(10) = 18. It is easy to check in Figure 3.2 that S preserves the
linear partition £(V). Finally, it is worth observing how Figures 2.2 and 3.2 look similar. This
explains our choices to construct the automorphism L. A

By virtue of Proposition 3.2, we can assume without loss of generality that V=W in our study
of the linear and differential properties of an S-box mapping L(V) to L(W).

Throughout this section, we consider the following

* let Vbe a d-dimensional nontrivial subspace of I,
* let Ube a complement space of V,

* let S be an n-bit S-box preserving L(V).

Therefore, the space [, can be written as the direct sum U @ V. In other words, every element x
of F; can be uniquely written as the sum x = u + v where u and v belong to U and V,
respectively. Let [u] denote the coset of V with respect to u. Thus, [u] = u + V is the unique part
of L(V) where u lies in and we have

L(V)={[ullueU}.
Since V is d-dimensional, the complement space U is (1 — d)-dimensional. In addition, we have
the following inequalities

1<d<n—-1 and 1<n—d<n-—1
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because V'is assumed to be a nontrivial subspace of I5.

The following theorem describes the structure of permutations preserving a linear partition. It
can be seen as a corollary of the Krasner-Kaloujnine embedding theorem [26]. However, for
convenience, we give a direct constructive proof.

Theorem 3.5. There exist a unique permutation p of U and a unique family of permutations
(Tu), ey of Vsuch that, for all x = u + v in [},

S(u+0) = p(u) + 7(v).
Conversely, if p is a permutation of U and if (7,), ., is a family of permutations of V, then the
mapping S’ defined by S'(u 4+ v) = p(u) + 7,(v) preserves L(V).

Proof. By hypothesis, S preserves £(V). Thus, S induces a permutation p of U defined as
follows. Let u be an element of U. Hence, there exists a unique »’ in U such as f([u]) = ['].
Define then p(u) = u'. For each element u of U, define the permutation 7, of V, which maps v to
S(u +v) + p(u). By construction, for any u in U and any v in V, we have

174(v) = S(u+v) + p(u) andhence S(u+v)=p(u)+ 1,(v).

The existence of the permutations p and 7, is proven. Now, let us show their uniqueness.
Suppose that there exist a permutation p of U and a family of permutations (7,),., of V
satisfying the result. Let (1, v) be an element of U x V. By hypothesis, we have

p(u) +1u(v) = p(u) +7u(v) .
Because the sum of U and V is direct, it follows that p(u) = p(u) and 7,(v) = 7,(v). The
uniqueness of p and the 7, follows.

Conversely, let p be a permutation of U and (7,), < ; be a family of permutations of V. Denote S’

the mapping from F} to F; defined by S'(u + v) = p(u) + 7,(v). Since F5 = U@V and p and
the 7, are permutations of U and V respectively, The mapping S’ is a permutation of ;. Let u
be an element of U. It holds that

S'([u]) =1{S' (u+0)|veV}={pu) + 1,(v)veV}
=p(u) +{tu(v)veVl=pu)+V =[pu)].

Hence, S’ preserves the linear partition £(V). .

This theorem allows us to design an S-box that preserves L£(V) using permutations with
smaller domains. Furthermore, these permutations can be chosen arbitrarily.

Example 3.6. Consider the complement subspace U of V defined by
U = span(01,02,08) = {00,01,02,03,08,09, 0A, OB}.
Figure 3.2 shows that S induces a permutation p of U. For instance, p(00) = 02 because S maps

the part [00] to [02]. The whole permutation p is given in Figure 3.3. For each u in U, define the
permutation 7, of V by 7,(v) = S(u + v) + p(u). For example,
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T02(1D) = S(02 + 1D) + p(02) = S(1F) + p(02) = 12 + 08 = 1A.

The permutations 7, are also given in Figure 3.3. Informally, the permutation p tells us how S

permutes the parts of £(V) and the permutations (7,) describe how the elements are

uel
moved inside each part (Figure 3.4). A

In the rest of this section, the permutation p and the family (7,), . ; given by Theorem 3.5 are fixed.

The goal of this part is to express the linear and differential properties of S according to the

ones of the permutations p and (7,), o;- However, these permutations are not defined on I}

but on the subspaces U and V of I};. Thus, the concept of linear or differential table is inexistent
for such maps. To solve this problem, we define two isomorphisms between U and F4“ and

between Vand 4. Then, we consider the maps induced by p and (1,), . ,; on these spaces.

Notation 3.7. Let By = (ui);.,,_; and By = (vi),.,,_; be two bases of U and V respectively.
Define the following mappings:

Ly:F 7 —Uu Ly :F§ -V
d—-1

n—d—1
(Xn—d-1, ---, X0) > Zi—o xithi,  (Yg_1s - Yo) P Zi:o Y,0;.

It is easily seen that L;; and Ly are both isomorphisms of vector spaces. Define the permutation
o' = L pLy of F3~?. Finally, for each u in U, let 7/, denote the permutation L' t,Ly of F4.

Example 3.8. Consider the bases By; = (01,02, 08) and By = (07, 1) and define the isomor-

phisms Ly and Ly: The permutation p’ of 5 and the permutations 7/, of F5 are given in
Figure 3.5. A

1. Linear approximation table

The next theorem links the linear tables of S and p’. The coefficients of the linear approximation
table of S taken into account by this result are in practice the greatest. Thus, they generally
determine the linear uniformity of S.

Theorem 3.9. Let 2 and b be two elements of V*. Denote a' = L],(a) and b' = L] (b). Then,
LTs(a, b) = 2" x LT (", b') .
Remark 3.10. Consider the map L], : F — F4 . Then, ker(L],) = (ImLy)" = U" . Observe that

Utnvt = (U+V)* = (F2)" = {0}. Consequently, the restriction L], : V* — F4~ is one-to-one
and thus onto because of the rank-nullity theorem.

Example 3.11. The restriction L], : V* — F; is given by the following table.

Ll (a) 0 1 7 6 3 2 4 5
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Ly(r) 00 01 02 03 08 09 OA OB Lv(r) 00 07 1A 1D

Figure 3.4. The linear transformations L;; and Ly
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Figure 3.5. The family of permutations (7',), ¢ ; and the permutation p'.

Reorder the rows and the columns of the linear approximation table of S to begin with
((LL)_l(x))xng, as suggested by Theorem 3.9. The reordered linear table is shown in

Figure 3.6. Each dot “-” in this figure stands for the integer 0. With this order, it is easily seen
that the top left part of LTs is exactly the linear table of p’ multiplied by 27 = 4. For instance,
LTs(1D, 16) = 2% x LT, (5, 2) = —8 because L{,(1D) = 5 and L];(16) = 2. A

Corollary 3.12. The S-box S is at least linearly 2""**~D/2_uniform.

Proof. As noted in Remark 3.1, there exist two elements a' and b’ of Fg"d both nonzero such
that [LT,(a,b")|>2"~4"D/2 Let a and b denote the elements (L],)'(a') and (L],)"(b") of F4.
Then, Theorem 3.9 implies that

ILTs(a,b)|= 27 x [LTy(a', b")|229 x 20174~ 1/2= pntd=1)/2

Observe that a and b are nonzero and the result is proven. .

Remark 3.13. It is well-known that any 4-bit S-box is at least linearly 4-uniform, see for
example [27]. As a consequence, the permutation S is at least 2%**-uniform if 7—d = 4. Similarly,
any 2-bit S-Box is linearly 2-uniform, and hence S is at least 2**'-uniform if n — d = 2.

Example 3.14. It is easily seen that S is linearly 8-uniform in Figure 3.6. The lower bound given
by Corollary 3.12 is 2("+4-1/2— 25+2=1/2 — 8 _Therefore, this bound is tight on this example. A
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Figure 3.6. The reordered linear table of S.
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2. Differential distribution table

Unlike linear cryptanalysis, where only a local view of the table was provided, the results for
differential cryptanalysis bring both local and global outlooks.

Theorem 3.15. Let a = u, + v, and b = u; + v, be elements of ;. Denote v/, = Lﬁl(ua) and
u'y = L' (up). Then
> DTs(i,b) = > DTs(a,j) =29 x DTy (u/y, u'y) .

1€ [g] J € ]
Especially, DTs(a, b) <27 x DT,y (', u'p).

The preceding theorem can be restated in the following way. If DT is rearranged coset by
coset, a simple operation enables recovery of DTp’. On the other hand, the next theorem is
similar to Theorem 3.9 but for differential cryptanalysis. Again, it generally highlights the
coefficients of DT involved in the differential uniformity of S.

Theorem 3.16. Let v, and v;, be two elements of V. Denote v/, = L' (v,) and v/, = L}, (v;). Then

DTs(v,, vp) = ZDTT/M (v, 'p) -

ueld

Particularly, the subtable (DTs(v, vp)),, o, <y is uniquely determined by the differential tables
(DTv,)

w/uel:

Example 3.17. To illustrate Theorems 3.15 and 3.16, reorder the rows and the columns of the
differential table of S as presented in Figure 3.7. With this order, we can see the differential
table of p’ by considering the differential table of S coset by coset. In fact, Theorem 3.15 states
that the sum of all elements in the same row or column of the subtable DTs([u1], [u2]) is equal to
the coefficient (xy, x,) of DT,y multiplied by 22, where x; = L;l (u;). For instance, if we consider
the subtable

03 04 19 1E

09 | 4 -4 .
DTs([09),[03])=0E| - 4 - 4
13 | 4 , 4 .

14 | - I

we can see that the sum of each row or column is equal to 8 = 2% x DT, (5, 3) since Ly(5) = 09
and Li(3) = 03.

Finally, Theorem 3.16 ensures that the subtable DTs(V, V) = DTs(]00], [00]) is the sum of the
differential tables (DT, ) A

uel"

39



40 Partition-based Trapdoor Ciphers

=

|-

™ - o
eqf - - o
wsl -
ol - R
o o - o
o) (s |
el s - -
ol - ol =
|e = = |e
m - [
] - o
- -
o - o -
(=TT | —ﬂ
o - o
o4 o
- - -
al - of =
& = B
B ]
w0 e oo
W 0 ™
| oo =
e - T4 Lsy )
eaf o oea Lo
] Lo B = |
of @
o o N -

[o1]  [02] [03] [o8] [os]  [oA]  [oB]

[00]

1
H |- . w W, w i
- o - L R Rl '
= o« ] oy ¢ ]
2 o -4 - o o e o ow oo . -
- I - m a = =p - = 3 s - 2
= 1 T i 7 sl i 169 B B - =
i ] (] (] i i
= ] - o o w ot | : B B - =
m_. == - = == ER- R s M -
- I ' . - - - by N -
= e 2 slEd B oD DB Do
. i i i 1
b2 I - - [0 e ey S I R I R R R
I mm ‘e oo o Slma e ooa DEl e o oS ou
i 1 1 i .
2 e B R e T R T
. # . = il - k i & - '
= R R e e el . sl -
o - R T o ; - .
] [] ] ]
& R T B T o1 om 1 |- -=
1 ] ] ] ']
= . R R N R o0 el " I
-.k_. L SRR " - - : - ] lem . oem
5 B - Lo |- - - -
| (] ] ] i
=z - - L T 1w i - -
] [} 1 1
B |- - “lew oo ool - |- - -l - - - -
= L o e - P I M- I - . .
I 1 1 1 i
= ;- - | wp - T NE - e
i i 1 1 i
2 -= - e o oo ol -
ol ' w o ] - = =8 BB =1 o= - -
2 f : ik ) e
—{ i I T PE T 4 T w
i i i
@ " DGR 164 €4 o4 o4l 00
® sl oo el oo e =
b= T - B S W oW - TN e
Y m m P ——— b - . . = ¥y -
q-88w | T : o
b= I B 2. | i
5l o2 : o} " A
] i ] ]
EE SO ROl NI UNBRRAdRRRANERENERS

[00]!

[01]

[02]

[03]

[08]

[09]

[04]

[0B]

Figure 3.7. The reordered differential table of S.



Partition-Based Trapdoor Ciphers
http://dx.doi.org/10.5772/intechopen.70420

Corollary 3.18. The permutation S is at least 6-uniform for the differential cryptanalysis where
0 denotes the even integer directly greater than or equal to 2}—_1
Example 3.19. In Figure 3.7, we can see that S is differentially 12-uniform. Thus, this S-box

reaches the lower bound given by Corollary 3.18. A

3. The design of a trapdoor S-box

First, let us summarize the theorems of this section.

e Theorem 3.9 implies to reduce at most the linear uniformity of p’ to keep the one of S as
small as possible.

e  In the same way, Theorem 3.15 implies to reduce at most the differential uniformity of p'.

*  The same theorem also stresses that the greater the number of nonzero coefficients of DT
is, the better.

¢  Finally, Theorem 3.16 teaches us that the sum of the differential distribution tables DT,
should be as low as possible.

Now, to design the S-box S, one needs to pick a permutation p’ of Fy @ with the smallest
uniformities for linear and differential cryptanalysis. Then, one searches for permutations 7',
of F4 satisfying the last condition. This search can be conducted randomly over every d-bit S-
boxes. Finally, construct the S-box S as in the converse of Theorem 3.5. If the differential and
linear uniformities of S are too far from the lower bounds given by Corollaries 3.12 and 3.18
and by Remark 3.13, then start again. In practice, these bounds are reached (or almost reached)
after a small number of iterations.

Moreover, observe that the closer the dimension d of V from # is, the weaker the S-box S is
against linear cryptanalysis and the stronger S is against differential cryptanalysis. The lower
bounds given by Corollaries 3.12 and 3.18 and by Remark 3.13 are given in Figure 3.8 for each
3<n<8.

n\d 1 2 3 4 5 6 T n\d 1 2 3 4 5 6 T
3 4 4 : : : : 3 bt 4 .

4 4 8 8 . : : . 4 16 6 4 ;

5 ¥ 8 16 16 . : : ) 32 12 6 4

6 8 16 16 32 32 . : G 64 22 10 6 4 .

7T 12 16 22 32 64 64 . 7 128 44 20 10 6 4 .
8 16 23 32 64 64 128 128 8 256 B6 38 18 10 6 4

Figure 3.8. Lower bounds for the linear (left) and differential (right) uniformities of S.
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Finally, it should be highlighted that these results can be used to easily prove that a given S-box
does not map any linear partition to another one. For instance, the linear and differential
uniformities of the S-box of Rijndeal [11] are far below the lower bounds given by Corollaries
3.12 and 3.18, no matter what the dimension d of the subspace V is. As a consequence, this S-
box does not map any linear partition to another linear one.
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Backdoored Encryption Algorithm 1

BEA-1 [28] (Backdoored Encryption Algorithm) is an AES-like cipher together with a backdoor based
on the theory developed in Chapters 2 and 3. This cipher is designed to resist linear and differential
cryptanalysis. Nonetheless, the backdoor enables recovery of the full 120-bit cipher key in just a
few seconds on a laptop computer using 2'® chosen plaintext blocks, as presented in [29].

This chapter is organized as follows. First, the specification of the cipher BEA-1 and its security
analysis against linear and differential cryptanalysis are given in Section 1. Then, Section 2
explains the hidden property of the algorithm and its design. To conclude, the cryptanalysis
exploiting the backdoor is detailed in Sections 3 and 4.

1. Presentation of BEA-1

The cipher BEA-1 is directly inspired by Rijndael [7], the block cipher designed by Joan
Daemen and Vincent Rijmen, now known as the AES. Our algorithm encrypts 80-bit plaintext
blocks using a 120-bit cipher key. Unlike the AES, the internal state is not seen as a matrix of
bytes but as an array of 10-bit bundles. Therefore, the message and key spaces are respectively

(Fy’)" and (F3")".

1.1. Specification of the encryption process

The encryption consists in applying 11 times a simple keyed operation called round function to
the data block. A different 80-bit round key is used for each iteration of the round function.
Since the last round is slightly different and uses two round keys, the encryption requires twelve
80-bit round keys. These round keys are derived from the 120-bit cipher key using a key schedule.

Like any other substitution-permutation network, the round function is made up of three
stages: a key addition, a substitution layer and a diffusion layer.

*  The key addition is just a bitwise “exclusive or” (XOR) between the data block and the
round key.

¢  The substitution layer consists in the parallel evaluation of four different 10-bit S-boxes
and is the only part of the cipher that is not affine. These S-boxes are referred to as Sy, Sy,
S», Sz and are defined in Figures 5A, 7A, 9A and 11A given in Appendix. They should not
be confused with the secret S-boxes Sy, S1, S, and S3, only used in the design and the
cryptanalysis of BEA-1.

* Following the design principles of the AES, the diffusion layer comes in two parts: the
ShiftRows and the MixColumns operations. The first part is a bundle permutation. The
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second evaluates in parallel the linear transformation M : (IE‘%O)4 — (IE‘%O)4 processing four

10-bit bundles. Because of its linearity, M is only defined over the standard basis of (IF‘%O)4
in Figure 3A in Appendix. For convenience, its inverse M~ is also in the same figure.

The pseudo-codes for the key schedule and the encryption algorithm are both given in
Figure 4.1. To provide an overview of their structures, the first step of the key schedule and

Algorithm 1 - ExpandKey

Input. The 120-bit cipher key K = ( Ky, ..., K1) e (Fi")'.
Dutput. The twelve 80-bit round keys k], . k1] e (F17)5,

{:.ﬂ.'" _____ I..'“} £ {I‘i.‘n.....f‘i.‘”}

For i from 0 to 6 do

T+~ M(kiziaa, .- - K13ie11)

£+ [SJ[T.JHJH

T + (2o @ (3 mod 2'%), ry, 22, 3)

(Fizie1zs - - - Kiziss) < H‘m-mn-- kg )@ x

E'!flzulf-i- e 'L-'I:Eiflli] AT {L'er'+1n- .y K12ier ]ﬂ? [L'lzmz ----- -‘fuum]

[A‘u;-zn-- . :;"1I:Ei1r2:i:| = {-‘-‘12&.::“- . Kzien :l & {I".lil'f“;- ----- A‘umu}
For r from 0 to 11 do

“FE - “ﬁm-u'}:cu

Return kM1 ... kl11]

Algorithm 2 - Encrypt
Input. The 120-bit master key K € (F1")'? and the 80-bit plaintext block p € (F}")*
Output. The 80-bit ciphertext block ¢ € (F')*.

kO], .. k0] « ExpandKey (K)

For r from O to 9 do

x o+~ x@klr] AddRound?

A = |:5| i -|{-'l'|' ]jr'-cH

T + (Tp, L5, T3, T7, Ty, Ty, T4y Ty) Shi fitRow:

T I.r_..lf " :\Ij[i‘} Miallo Limm:
e II-E j;..[“.-l'] _. _.' .'_.'._ .|:|_'|:_'..|'|.:.
 H {Ela IIIIHI'I{'E-I]JF{H SubBundl
x + (o, Ts, T2, X7, T4, T1, Tg, Ta) Shi ftRow:
x « x@ k] AddRoundKey

: Return r

Figure 4.1. The key schedule and the encryption function of BEA-1.
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the round function is illustrated in Figure 4.2. This representation also emphasizes the similar-
ities between our algorithm and the AES.

Remark 4.1. The decryption is straightforward from the encryption since all the primitives are
bijective. Thus, to decrypt, we just have to apply the inverse operations in the reverse order. It
should be stressed that the key addition and the ShiftRows are involutions; therefore the same
operations are used in the decryption process. Finally, note that the inverse S-boxes are not

given here but can be computed by using the equation S;*(S(x)) = x holding for each x in F1’.

Bdla [} 1 p 3 ] L1 i 7 A ] 10 11
Bip (0-0ek 10-19 . | B ] - a8 --al BO-5% [} -0 LU EHLARE 10-108  LE0-109
)
'\-\. o - -
I3
-I L
|.'
Bnad b i} i 4 3 E 4 i ¥
Rt O -9 o | 030 d0-40 A5 Al F-T0

Figure 4.2. Diagrammatic representations of the key schedule and the round function of BEA-1.

45



46

Partition-based Trapdoor Ciphers

1.2. Differential and linear cryptanalysis

In [7], Daemen and Rijmen introduced the differential and the linear branch numbers of a linear
transformation. With an exhaustive search, it can be checked that the differential and linear
branch numbers of M are both equal to 5, which is the maximum. This implies that any 2-round
trail has at least 5 active S-boxes. Thus, a 10-round trail involves at least 25 active S-boxes.

Note that all the S-boxes are (at most) differentially 40-uniform and linearly 128-uniform.

Therefore, the probability of any 10-round differential trail is upper bounded by (1024)25
2719 and the absolute bias of a 10-round linear trail is upper bounded by (é%g)f’ 27,

Consequently, a differential cryptanalysis of the 10-round version of our cipher would require
at least 2''” chosen plaintext/ciphertext pairs and a linear cryptanalysis would require 2'%
known plaintext/ciphertext pairs.

Even if this is a rough approximation since it does not take into account the inter-column
diffusion provided by the ShiftRows operation, it suffices to prove the cipher’s practical
resistance against classical differential and linear cryptanalysis. In fact, there are only 2%
different plaintext/ciphertext pairs for a fixed cipher key.

2. Design of the backdoor

The presentation of secret structure of BEA-1 comes in two parts. First, Section 2.1 explains the
nature of this backdoor and provides all the results needed to address the cryptanalysis. Then,
the design of BEA-1’s primitives is given in Sections 2.2 and 2.3. The reader who just wants to
understand how the backdoor works can skip these two sections. Indeed, they are more
technical and are also independent of the remainder of this chapter.

2.1. The linear partitions throughout the encryption

As said in introduction, the backdoor of BEA-1 relies on the theoretical framework developed
in Chapters 2 and 3. Thus, it should not be surprising that linear partitions must play a key role

in it. For this purpose, let us introduce the following 5-dimensional subspaces of 3

Vo —span(266 343, 3ED, 354,17F), W, =span(16A,11B,306,05E, 0B8),

V1 =span(398,229, 34¢C,251,37B), W; =span(04B, 3B7,0D5,027,2C8),

) ( )
) ( )
V, = span(0Ba, 155,307, 37E,318), W, = span(1A9, 095,107, 36F, 2A3),
) ( )

V3 =span(1D1, 21E, 134,0DC, 154), W3 =span(OFO, 2FE, 191, 332, 1A6).

Then, define the 40-dimensional subspaces V = HZ:oVi mod 4 and W = HZZOWi mod 4 Of message

space (IF%O)S. Therefore, the linear partitions £(V) and £(W) are both made up with 2*° cosets,
each containing 2*° elements.
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The S-boxes Sy, S1, S; and S5 given in the specification of BEA-1 are actually derived from the
secret S-boxes Sy, S1, S, and S given in Figures 4A, 6A, 8A and 10A in Appendix. The relation
between the secret S-boxes S; and their modified versions S; will be detailed later in Section 2.2.
In the first place, let us state the following theorem relating BEA-1 to the theory of partition-
based backdoor ciphers.

Theorem 4.2. Consider the encryption function of BEA-1 where the modified S-boxes Sy, S1, Sy,
and S; are replaced with their secret counterparts Sy, S1, Sp, and S;. Then, the round function
preserves the linear partition £(V) of (IF%O)S and the last round maps £(V) to £(W), no matter
the round keys used. As a consequence, the full encryption maps £(V) to L(W).

More precisely, Figure 4.3 depicts the evolution of the linear partition £(V) throughout each
primitive of the (secret) encryption process. For instance, we can see that the S-box S; maps the
linear partition £(V;) to L(W;), and hence, the substitution layer maps £(V) to £(W). Simi-
larly, the diffusion layer comes back to the original partition, since it maps L(W) to L(V).

Vo Vi Va Va Vo L1 Va Va

= Vo Wi 1% Vi Vo L5 Va L
+ So S Sa Ss So S S, Sa
[E Wa W Wy Wy Wha Wy Wa Wy
=]
2 Wo Wy W Wy Wo W Wy Wi
|/ L

Vo Vi Va Va Vo ¥ Va Va

Vo Wi Va Vy Vo Vi Va Vs
EIlS S S S So || S S: || S
g e G5 B 6B 6 2O W Wi
=
P |

Wa Wy Wa Wy Wa W, Wa Wy

w“ W] Wj W3 W-ﬂ w:_ “'E W'-!

Figure 4.3. The linear partitions throughout the encryption.
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Remark 4.3. Theorem 4.2, as well as Theorem 18 stated hereinafter, will be proven in Sections
2.2 and 2.3. Indeed, they establish the main properties of the backdoor and are hence closely
related to the design of the cipher’s primitives.

Thanks to Theorem 4.2, we can now explain our choices for the V; and W;. Each of these subspaces
of Fy is a five-dimensional linear code whose minimal distance is equal to 4. This property
ensures that the Hamming distance of any two different elements lying in the same coset is at
least equal to 4. The subspaces V' nd Wof F5° inherit this property. Thus, if p is a plaintext, then any
other plaintext p’ lying in the same coset of V differs from p in at least four bits. Considering the
secret encryption function, Theorem 4.2 establishes that their ciphertexts ¢ and ¢’ belong to the
same coset of W. Thus, ¢ and ¢ have at least four different bits. As it will become clear in the next
two sections, the subspaces V; and W; could have been freely chosen among the five-dimensional
subspaces of F}’. We surmised that using linear codes with high minimal distance should reduce
the likelihood of observing the backdoor by accident, hence our choice for the V; and W;.

Having explained the main property of the secret encryption function, now is the time to
introduce the following theorem establishing a link between the secret cipher and BEA-1.

Theorem 4.4. Let F and E denote the round function and the encryption function of BEA-1
using the secret S-boxes. Let p = pl¥! be any plaintext. Define the following elements with

respect to the round keys k[o], s K10l

plitt = Fy (pl)) and pltl = F (p) for0<i <11,

Assume that the round keys k!%... k' are independent and uniformly distributed. The prob-
ability that all the equalities p'"! = p!l hold for each 1 <i < 11 is given by

6 N 1
944 925 11
— | X | =27
1024 1024
Therefore, the probability that p is encrypted equally with E and E can be approximated by 2~

Remark 4.5. The fact that the MixColumns operation is replaced with a key addition in the last
round of BEA-1 does not matter in Theorem 4.4. For the sake of simplicity, we then ignore this
detail. This explains why the last round key k'!! does not appear in the statement of this result.

Needless to say, the hypothesis that the round keys are independent and uniformly distributed
is mathematically wrong in any practical cryptanalysis. Indeed, the twelve 80-bit round keys
are all extracted from one 120-bit cipher key. However, the cipher key needs to have (at least)
960 bits to provide independence and uniform distribution to its round keys. Such a cipher key
must be related to the concept of long-key cipher defined in [30]. Nonetheless, if the cipher key
is uniformly distributed, the same applies for each round key.

In our cryptanalysis of BEA-1, we are given plaintexts with their ciphertexts encrypted under a
fixed cipher key. Even if we forget about the independence of the round keys, each plaintext
must be encrypted with a random cipher key to make use of Theorem 4.4.
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Fortunately, our experiments suggest that the proportion of the plaintexts encrypted equally
with Ex and Eg is approximatively 27!, even when the round keys are derived from a fixed

cipher key K. To put it another way, if P is a subset of the plaintext space (F1)%, it seems
reasonable to assume that

4P
#p €PIEK(p) = Ex(p)}= 7 - @)

Now, suppose that P is included in a coset of V denoted by x + V. As the secret encryption
function Ex maps L£(V) to L(W) (see Theorem 4.2), we know that the image of P under E is
included in a coset of W. More precisely, Lemma 2.8 establishes that Ex(P) is included in y + W
where y = Ex(x). Hence,

{peP|Ek(p) = Ex(p)} C {peP|Ex(p) € (y + W)}. (4.2)

Combining (4.1) with (4.2), we conclude that approximately #P x 2~ ciphertexts in C = Ex(P)
belong to y + W. In addition, we have observed that the ciphertexts ¢ = Ex(p) such that
Ex(p) # Ex(p) are spread over the 2*° cosets of W.

The backdoor of BEA-1 is hence the following. First, choose a set P of 2'° plaintexts uniformly
chosen in one coset x + Vand collect their ciphertexts C = Ex(P) encrypted under an unknown
cipher key K. Then search for the most represented coset of W in C and denote by y one of its
representatives. According to our experiments, this coset should have roughly 2'°'! = 32
elements, and the second most represented coset is unlikely to have more than six elements.
As a consequence of the preceding discussion, we know that the coset x + V'is mapped toy + W
by the secret encryption function Ex. This information can then be used to recover the cipher
key K with a low computation cost, as detailed later in Sections 3 and 4.

To conclude this section, observe that no particular property of the key schedule has been used.
It can be proven that each round of the key schedule preserves the linear partition £([].., W),
provided that the S-boxes S; are replaced with their secret equivalents S;. This implies that if two
cipher keys K and K’ are in the same coset of [\, W;, then we can approximate the probability

that each pair of round keys kil and ! are in the same coset of W by (944> - 925 . 2740)7 = 2735,
However, for this property to be easily exploitable, the round keys ought to stay in the same
coset of V instead of W (which can be simply achieved by switching the mappings M and (S |l
51115,11S3) in the key schedule). Therefore, if compared with our cryptanalysis, this property
appears not to be very useful and was intentionally left as a wrong track.

2.2. The substitution layer

The nature of the hidden property of BEA-1 having been emphasized, this and the following
sections detail the design of the cipher’s primitives and prove Theorems 4.2 and 4.4 stated
above. As explained in introduction, these two sections are aimed at the reader who wants to
understand how BEA-1 was made. For a first read, it is possible to jump directly to Section 3
explaining the basic principle of the cryptanalysis using the backdoor.
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Let {0*} and {*0} denote respectively the subspaces {05} x Fg and Fg x {05} of ]F%O. It should be
noted that {*0} is a complement space of {0*} in IF%O. The design of each secret S-box S, rests on a
permutation S/ of F}’ preserving the linear partition £({0 * }). Following Theorem 3.5, we just

need to choose a permutation p; of {*0} and a family (7; ,) | of permutations of {0*}. Then,

ue{x0
we define S/ for all x = u + v in F}’ by

Si(x) = Si(u +0) = p,(u) + T7u(0),

where u is in {*0} and v in {0*}. The permutations p; and 7;, were selected following the method
given in Section 3, in order to maximize the resistance of S against both differential and linear
cryptanalysis.

Figure 1A in Appendix defines the linear mappings Ly, and Lw, (for 0 <i <4) over the standard
basis of F°. It is worthwhile to note that these mappings are automorphisms of F}’. Moreover,
Ly,({0x}) = V; and Lw,({0 % }) = W;. By virtue of Proposition 2.15, we know that Ly, maps
L({0 % }) to L(V;) and that Ly, maps L({0 * }) to £L(W;). Last, but not least, define for each 0 <i <
4 the secret S-box S; by

Si=Lw,e° S'io (Lvi)fl .

These S-boxes are given in Figures 4A, 6A, 8A and 10A in Appendix. Obviously, (Ly) ™ maps
L(V;) to L({0 }), then S'; preserves L({0 = }), and Ly, maps L({0  }) to L(W;). This implies the
following proposition.

Proposition 4.6. For each 0 <i <4, the secret S-box S, maps L(V;) to L(W;).

Remark 4.7. If the reader is interested in an explicit definition of the permutations p; and the
families of permutations (7; ), 1+0)7 they can be recovered in the following way. First, compute
S'i = (Lw,) -1, S; o Ly, using the tables of Figures 1A and 4A (or 6A, 8A, 10A). As noted previously,
the permutation S'; preserves the linear partition £({0 * }). To obtain its decomposition, we just
have to follow the proof of Theorem 3.5. Thus, for each u in {*0}, define p;(1) as the unique element
of { x 0Ju(S';(u) + {0  }). It is not hard to see that p{(u) is simply equal to the element of F where
the five leftmost bits are exactly the ones of S';(1) and the five remaining bits are all zero. Finally,
for each u in {*0}, let 7;,, be the permutation of {0*} defined by 1; ,(v) = S';(1 + v) + p;(u). Again,
7;,(v) is just the 10-bit vector having its five leftmost bits all zero and its five rightmost bits
identical to the ones of S';(u + v). Naturally, the permutations p; and 1, can be seen as permuta-
tions of Fg (instead of {*0} and {0*}) to obtain the more convenient definition

S'i(ullo) = (p;(w)ll7;u(v)) -

The modified S-boxes S; given in the specification of BEA-1 are such that S;(x) = S;(x) for almost
all input x in F}°. For instance, So(x) = So(x) for all except 80 elements x in F3’. The images of
these 80 particular points are emphasized in Figures 4A and 5A. These modifications were
chosen so as to improve the differential and linear resistances of S, compared to the original
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secret S-box Sy. More generally, S; and S; have 80 different images for i in {0,1,2}. The last-
modified S-box S; is less close to it secret equivalent since S; and S; have 99 different images.

Consequently, if x is uniformly distributed over F3’, then the equality S;(x) = S;(x) holds with
probability g; where

944 925
%:%:qzzﬁ an 5/3:@'

This implies that when x is uniformly distributed over (Fi’)°, the images of x under the secret

and the modified substitution layers are equal with probability g = (], 4,)>

Let p = p!” be a plaintext. In the following, we use the notations of Theorem 4.4. If k' is
uniformly distributed, then so is p!" + k.. Thus, pl*!) = F ; (p!!) is equal to pl*!) = F ; (p!) with
probability g. Assuming moreover that the round keys are independent implies that the events
pl = p! for each 1 < i < 11 are independent. Therefore, the probability that the equalities p!” =
p" hold for all 1 <i< 11 is given by ¢'". This discussion proves Theorem 4.4.

2.3. The diffusion layer

Some components used to design the linear transformation M are defined over the finite field
[Fys. In order to have an explicit construction of this field, we consider the irreducible polyno-

mial X° + X* + 1 over I, and define F,s as the quotient ring F»[X]/(X° + X* 4 1). Let @ denote
the equivalence class of X in F,s. By construction, the equality a® +a*+1 =0 holds, or

equivalently, > = a® + 1. Each element of Fy can hence be uniquely written as Zioxiai
where (x,..., xo) belongs to F5. More precisely, the family (&),_s is a basis of F,s seen as a 5-
dimensional vector space over [F,. The field F,s will then be identified with (F,)° via the
isomorphism from F; to F,s mapping (xy,..., Xo) to Z?: Oxiai. For instance, the element a” + a

+1in F,s is identified with 07 in 5. Now define the 4 x 4 matrices M;; and My over F by

(4, 2 (3.2

i b c d a=uo"+a a=aoa’+a"+1,

b a d c b=a*+a®*+a’+a+1, b=a*+a°+a%+a,
MuZ Mvi

c d a b c=a®+a? c=a*+a’+a

d c b oa (d=a*+a%+1, d=ad.

It can be verified that these matrices are MDS. In other words, the [8, 4]-linear code having
G = [Ids, My] as generator matrix has minimal distance equals to 5, which is the maximum
achievable.

Each of these matrices naturally induces an automorphism of (IF25)4 and hence of (F1°)*. For
instance, M; maps the element x = (xo, x1, X2, x3) to x x M. Observe that we chose to see

elements of (]F;O)4 as row vectors to keep the common notations of linear codes.
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Example 4.8. To illustrate these notations, let us compute the image of the element
x = (00,02,00,00) of (IF‘%O)4 under the automorphism induced by M;,. First, x is identified
with the element (0, «, 0, 0) of (F25)4. Then,
(0,0,0,0) x My = (a(a* + @@ + &®> + a + 1), a(a* + a?), a(a* + a* + 1), a(a® + a?))
= (@+at+a®+a’+a a+ad, a®+at+a at+ad)

=@+ +a+lP+a*+L P +a*+a+1  at+ad).

Therefore, (00,02, 00,00) x My = (1B, 0D, OF, 18). A

As was the case for the secret S-boxes S;, the linear transformation M rests upon the linear
transformation M’ defined as follows

M (ER) (B
(i I vi)icq = (p(); | Tu(0);)ica
where p(u) = u x My and 7,(v) = v x My + Py_v(u). The strength of this construction is that

M’ inherits the linear and differential branch numbers of M;; and My, as stated in the proposi-
tion hereunder. But first, we introduce the following example.

Example 4.9. Let us compute the image of x = (000, 070, 000, ) under M'. As a first step,
observe that x can be written as

x = (00]|00,03]110, 00|00, 00[|00) = (uillvi);4 ,
where u =(00,03,00,00) and ©v=(00,10,00,00). Let ey =(00,02,00,00) and

elp = (00,01, 00, 00). Then u = eg + ey, it is indeed its decomposition over the standard basis
of (F3)*. Thus, for any linear mapping L, it holds that L(u) = L(eg) + L(e1). The image of u
under p can hence be computed by

p(u) = p(es) + p(e10) = (1B, OD, OF, 18) + (1F, 14, 15,0C) = (04, 19, 1A, 14).

In the same way,

1,(v) = v X My + Py_v(e9) + Pu—v(ew)
= (16, O, 14, 02) + (OF, 11,0C, 16) + (11, OF, 02, 02) = (08, 11, 1A, 1E).

Consequently, M'(x) = (04 || 08,19 || 11, 1A || 1A, 14 || 1E) = (088, 331, 353, 29E). A

Proposition 4.10. The linear and the differential branch numbers of M’ are both equal to 5.
Thus, M’ is a perfect diffusion layer.

Proof. Let x = (1; || v;),_, be a nonzero element of (Fi’)*. In order to prove that the differential
branch number of M’ is equal to 5, we need to show that w1 (x) + wio(M'(x)) is greater than
or equal to 5. First, assume that u = (u;);_, is nonzero. Using the fact that M; is MDS, we

obtain the inequality ws(u) + ws(u x My) = 5. Next,
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5<ws(u) +ws(p(u)) = wio((ui | 0);4) +wWio((p(u); 1| 0);4)
<wio((ui || 01);2q) +wio((p((); I Tu(v);)i2g) = W10(x) +wW1o(M'(x)).

Now, suppose that u = 0. It must be the case that v # 0 as x is nonzero by definition. Again, it
holds that ws(v) + ws(v X My) =5 because My is also MDS. Then,

5<ws(v) +ws(T0(v)) = wio((0 [l vi);4) + w10((0 || T0(v););4)
= wip(x) + wio(M'(x)).

We have proven that wyg(x) + wio(M'(x)) =5 for any nonzero element x of (Fi°)*. Conse-
quently, the differential branch number of M’ is greater than or equal to 5. The equality
Bp(M') =5 follows as 5 is the maximum achievable. Similarly, it can be proven that M’ has
also the maximum linear branch number. It follows that M’ is a perfect diffusion layer and the
result is proven. .

Recall that the notation {0*} denotes the subspace {05} x Fg and that the linear mappings Ly,
and Ly, (see Figure 1A) map respectively £({0 * }) to £(V;) and L({0 x}) to L(W;). It is then
easily seen that M’ maps {0*}* to itself. Thus, M preserves the partition £({0 * }*) by Proposi-
tion 2.15. Finally, define

M = (Ly, || Ly, || Ly, || Lv,) M’ o (Lw, |l Lw, Il Lw, Il Lw,) "

From its definition, it is straightforward to check that M maps the linear partition ﬁ(H?:O Wi)
to L(ITLo Vo).

Example 4.11. We are going to compute M( , 080, , ). First, we have that

(Lwo Il Lwy | Lw, |l Lw;) ™ (000,080, 000, 000)
= (Ljy; (000), Ly (080), Ly (000), Ly (000)) = (000,070, 000, 000).

Then, the image of ( ,070, , ) under M’ is (088,331,354, 29E), as already
established in Example 4.9. Finally,

M(000,080,000,000) = (Ly, || Ly, || Ly, |l Ly,)(088, 331, 354, 29E)
= (15E, OBF, 1E2, 04F).
Indeed, Ly,(088) = Ly,(080) + Ly,(008) = 21D + 343 = 15E. The three other bundles are
computed in the same manner. A

Because each mapping Ly, or Ly, operates on different bundles and is invertible, it is clear that
the linear and differential branch numbers of M are the same as M'. This discussion completes
the proof of the following corollary.

Corollary 4.12. The linear mapping M is a perfect diffusion layer, which maps £([]>_, W;) to
LT Vi)
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In conclusion, Proposition 2.13 ensures that any key addition preserves all the linear partitions,
and hence it preserves L(V). Next, it has been proven in Section 2.2 that every secret S-box S;
maps L(V;) to L(W;). Thus, the secret substitution layer maps £L(V') to L(W). It is clear that the
ShiftRows operation is linear and maps W to itself. According to Proposition 2.15, this
mapping preserves L(W). Finally, the MixColumn operation maps £L(W) to L(V') by Corollary
4.12. This discussion is summarized in Figure 4.3 and proves Theorem 4.2 previously given in
Section 2.1.

3. Main idea of the cryptanalysis

As we have seen in Section 2.1, the cipher BEA-1 does not map a linear partition to another one
but behaves as though it did for a nonnegligible fraction of the message space. This nontrivial
property can be used to recover the cipher key in an operational cryptanalysis. But before
considering the full cipher, we give the main idea of this attack.

3.1. A detailed example

To explain how to take advantage of this backdoor, we introduce a toy example. First, let us
mention that all the notations of this section are independent of the remainder of this chapter.

The message space of this toy cipher is simply FS. Then, consider the subspaces V and W of F§
defined by

V =span(01, 02, 10, 20) = {(x3, x2,0,0,x1, x0)|x EIF‘ZI},
W = span(01, 02, 04, 10) = {(0,x3,0,x, x1, xo)|x € F3} .

Thus, L(V) = {x + V|x {00, 04, 08, 0C}} and L(W) = {y + W|y {00, 08, 20, 28}}.

Let S be the permutation of F§ given in Figure 4.4. We defined another permutation S of F§
satisfying S(x) = S(x) for any input x in F§ except 00, 01, 04, 05, 08, 09, 0C and OD. The
images of these eight specific points under S are also given in Figure 4.4. By analogy with
Section 2, the permutation S represents the secret S-box used to design the trapdoor whereas S
represents the modified S-box given in the specification of the algorithm. Lastly, define the
following keyed mappings

iIC 1E iF 08 39 3A 3C 2A 13 05 02 03 37 20 24 31
OD 18 OA 1A 3B 2D 29 3E 14 07 11 10 256 26 21 36
iB 19 OB 1D 2B 2F 2C 28 15 01 16 06 27 36 30 32
OC 09 OF OE 3F 2E 3D 38 00 17 04 12 22 23 33 34

S(r) 39 05 13 1C 37 20

S()

™

Figure 4.4. The theoretical and the modified S-boxes.
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Fk:Fg—ﬂFg Fk:Fg—>]Fg
x> S(x) +k, x> S(x) +k,
representing respectively the secret and the modified round functions. Naturally, the key k can
be any element of .
It can be easily verified that the secret S-box S maps £(V) to L(W). In fact, we have that
S(00+V)=08+W, S(08+4+V)=00+W,
S(04+V)=28+4+W, S(oc+V)=20+W.

In contrast with the secret permutation S, the modified S-box S does not map L£(V) to L(W).
However, the equality S(x) = S(x) holds with probability /., assuming that x is uniformly
distributed over FS. This can be stated equivalently as

#Hx eF5|S(x) = S(x)} =2° — 8 =56.

It should also be noted that this statement remains valid when considering their inverse

mappings, that is #{y €F5|S'(y) = S™'(y)} = 56. Indeed, if x is an element of FS such that
S(x) = S(x), then y = S(x) satisfies the equality S~'(x) =S '(y). As a consequence,

#xeF5|S(x) = S(x)}<#{yeF5 |S ' (y) =S ' (y)}.

The converse inequality can be proven in the same way, establishing the equality.

Now, consider the subset P of S defined hereinafter. We assume that the round key is k = 37.
The image of P under S and its encryption with F3; are given below.

& (00+17) {04+ € (08+V) & (0C+V)

=t & p—— p——
P :{ 22 . 04,05,06,15,16.17,27.34,35.36, 18.3A , OD,0OF }
S(P)={ 0B , 39.3A,3C,2D,29,3E,28,3F,2E. 3D, 14,04, 20,31 }.
Fa(P) ={ 3C , OE,OD,0B,1A.1E. 09, 1F. 08,19, 0A , 23.33 , 17,06 }

Le—— 4y . . ]

e (28+W) € (08+W) £ (20+W) < (00+W)

It should be stressed that the coset 04 + V'is significantly more represented in P than any other
coset of V. Since F5;(P) maps the linear partition £(V) to L(W), the messages belonging to the
same coset of Vare all mapped to the same coset of W. Therefore, the most represented coset of
Win F3;(P) has also ten elements.

As we have seen above, the modified round function F;, does not map L(V) to L(W).
Figure 4.5 displays the differences between the encryption of P with F;, and its encryption
with F5, by highlighting the messages x in P such that S(x) # S(x) (thatis 04, 05, and 0D) and
their images throughout the encryption.
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To explain these differences, let us first consider the set Q of the ten messages lying in both P
and 04 + V. Knowing that the equality S(x) = S(x) holds with probability °¢/,, when x is
uniformly distributed, it seems reasonable to assume that only 10x°¢/ ., = 8.75 messages of
Q will remain in the same coset when computing their images under S. By comparing with the
actual messages in Q, we can see that this is a good approximation since eight messages in
S(Q) belong to the same coset of W.

Q ={ 04,05, 06,15,16,17,27,34,35,36 } =Pn(04+ V).
S(Q) ={ 13,1, 3C,2D,29, 3E, 28,3F, 2E,3D }.

&

£ (28+107) e [28+W7)

Needless to say, there are also eight messages in F3,(Q) lying in the same coset of W because
the key addition preserves L(W).

We focus now to the set P as a whole. According to the discussion above, we know that the
most represented coset of Win F3;(P) has at least eight elements. We have seen that the images
under S of messages lying in the same coset may not stay together. Nonetheless, the converse
can also be true, and messages in different cosets may end up in the same coset. This is exactly
what happens with the message 0D, as illustrated in Figure 4.5. Consequently, the most
represented coset in F3;(P) has actually nine elements.

Encryption of P with Fa; Encryption of P with Fi;
L] B & o - 8 -
15 1T 1w 8 18 1T @
o] ar 3% 37
R e SR u
(=] o o4 o
T 15 1 .
o E - m m W
n @A o« oo n A x»xw
e ;oo o [ B o e o0 mom 66
@ o 1E 1F TR 1K 1F
0 n @ -
1 x n *

Figure 4.5. Encryption with F5, and F.
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The fact that the most represented coset may not only lose but occasionally retrieve elements
should be seen as a side effect. Its impact remains low when

*  one coset has significantly more elements than all other cosets (say at least 5 times more), and
¢ when the number of messages is lower than the total number of cosets.

We must nevertheless keep this fact in mind to understand why the right key will not neces-
sarily have the best score.

It is now time to explain how to recover the round key using only the set C = F5,(P) of
encrypted messages. First, we have to determine the most represented coset in C. In our
example, this coset is 08 + W with nine messages, and u = 08 is one of its representatives.

Now, assume that k is the round key used to encrypt C. We need to find the coset of V which is
mapped to u + W by the secret round function F,. According to Lemma 2.8, Fy maps t + V to
Fi(t) + W. A representative of this coset of V is then t = S '(u + k). Finally, the score of the
guessed key k is the number of messages F; '(c) = S'(c + k) that belong to the theoretical
coset t + V] that is to say

score(k) = #{ceC|S  (c+ k) e (t+V)}.

Figure 4.6 illustrates the scoring process applied to the right key (37) and to a wrong key (07).
We naturally recover the set P and the coset t + V = 34 +V = 04 + V when using the right

Decryption — Right Key Deeryption — Wrong Key
o o8 0 W OB o OE e oF OF A R o |
ar LI iE F i 14 ik iF
Eo | M =
| 1 a0 a3 o]
' b |
- “k L ok oo o DR oF
i FL iF iE
o EL = IE FE R e
1] ¥ ¥ W ¥ ¥ a4 EL
LS |
i 1
o 06 o 4] aF == o 1
ik i@ IT B LU ) L]
Eel ar Ei EE] k. i
™ E 2 o iz 13 o W
A, . ]

Figure 4.6. Decryption with the right key and with a wrong key.
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Key 0B 12 1C 37 03 05 10 1D 20 21 22 2¢ 2F 35 36 38
score 11 10 10 10 9 9 9 9 9 9 9 9 9 9 09 9

ey 3B 3C 3D 00 01 02 04 08 OF 08 09 OA OE OF 11 13
Score 9 9 9 B 8 ¥ 8 8 8B & B8 # 8 8 8B &
Key 18 19 1E 1F 24 25 26 27 24 2B 2D 2E 30 34 39 3A
Score 8% 8 ® ® & ® B 8 8 ®H 8 B B 8 BB B

Key 0OC OD 14 15 16 17 1A 1B 23 28 29 31 32 33 3E 3F
Score T 7 (i 7 7

-1
-1
T
|
-1
g
-]
=]
-1
-1
-1

Figure 4.7. The scores for each key.

key. Thus, the score of k =37 is equal to 10. In the same way, the score of k = 07 is the number of
decrypted messages in the cosett +V = 32 +V = 00 + V, so score(07) = 8.

Let us now explain why a wrong key tends to have a lower score than the right key. First, the
addition of the wrong key randomizes the cosets and the messages within. Recall that when
the input x is uniformly distributed, the equality S~'(x) = S~ '(x) holds with probability >%/,.
The most represented coset after the addition of the wrong key should then lose some elements
by applying S™'. Thus, the score of any wrong key should be lower than or equal to 8.

It goes without saying that the previous discussion gives just the main idea of the cryptanaly-
sis. For some wrong keys, the side effects are significant, and their scores can even be higher
than the score of the right key, as shown in Figure 4.7. Indeed, the key 37 is one the four best
keys but is not the one that has the highest score (0B). For this reason, we will not only return
the best key but also the NbCand candidate keys having the highest scores when running this
cryptanalysis.

3.2. Formalization of the attack

The aim of this section is to formalize and to generalize the cryptanalysis introduced previ-
ously in Section 3.1. As we have just seen, this attack really begins in Figure 4.6. The very first
data needed is the set C containing the encrypted messages under the unknown key, given by

C = {04, 05,06,0D, OF, 15,16,17, 18,22, 27, 34, 35, 36, 3A}.

Naturally, C is included in the set ¥ = F§ of all possible ciphertexts. Similarly, the set of all
possible round keys is denoted by %" = FS. Next, define the keyed mapping

G: H xb— TS
(k,c)= S Hc+k).

Each mapping Gy : ¢~ G(k, ) is the inverse of the round function Fy. The secret counterpart of
Gis G: (k c)~ S *(c + k). Observe that for each round key k, the mapping G; maps L(W) to
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L(V).Itis also necessary to know the most represented coset u + Win C. Using these notations,
the cryptanalysis is formalized in Algorithm 3. Finally, to include potential information on the
round keys, this attack processes only a subset K of .%".

Algorithm 3 - SelectKeys(G, G, K. C, u, V, NbCand)
Input. See Section 3.2
Output. The set Cand containing the NbCand best kevs together with their scores

Cand + []
For each ke Kk do

Scaore « ()
For each ceC do
t+~ G(k,u)
If G(k,c) lies in t + 1 then
Score +~ Score+ 1

If the cardinality of Cand is lower than NbCand then
Insert (k,Score) in Cand
Else if Score is greater than the lowest score in Cand then
Remove the lowest scored key of Cand
Insert (k,Score) in Cand
Return Cand

More generally, the parameters can be outlined as follows.
*  The sets of all possible keys and ciphertexts are referred to as #" and %.

*  The keyed mapping G : # x ¥ — E typically undoes (or partially undoes) one or two
rounds of the encryption process.

e Its secret counterpart is denoted by G : #" x ¥ — E. It is assumed that G, maps a linear
partition £(W) to another partition £(V) no matter the key k used.

*  The set of the given ciphertexts is denoted by C. The set of the keys that must be scored by
this attack is denoted by K.

e [tis assumed that there is a coset of W containing significantly more ciphertexts than any
other coset. The element u of % is a representative of this coset.

e  Finally, NbCand is the number of candidate keys to return.

Remark 4.13. Taking a closer look at Algorithm 3, we can see that the structure Cand requires
an efficient way to remove the lowest scored key. In our implementation, Cand is a sorted
array of couples (s, L) where L is a list containing the keys having the score s. Since there are
very few different scores, the sorted insertion in Cand is (almost) in constant time. Removing
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the lowest scored key is also in constant time. Thus, the time complexity of this cryptanalysis is
O(#K x #C).

4. Cryptanalysis of BEA-1 using the backdoor

The algorithm SelectKeys (see Algorithm 3) detailed into the previous section enables
recovery of information on the last round key, using the fact that the round function acts as a
function mapping a linear partition to another one with high probability. In this section, we
explain how this algorithm can be used to recover the full 120-bit cipher key in just a few
seconds on a laptop computer.

This cryptanalysis requires N = 2'® chosen plaintexts and their corresponding ciphertexts
encrypted under one unknown cipher key K. As BEA-1 operates on 80-bit blocks, this amounts
to 2 x 640 KiB of data. The plaintexts only need to be uniformly chosen in one coset of V, and
there is no requirement on the cipher key.

Our cryptanalysis is naturally divided in five distinct parts. First, we give a brief overview of
each part. By hypothesis, all the plaintexts are in the same coset of V. As explained in Section
2.1, a coset of W should be more represented among the ciphertexts. The first part is aimed at
finding a representative u of this coset. The second part consists in using the algorithm
SelectKeys to find 2'° candidates for the full 80-bit last round key kI''l. Next, relying on a
property of the key schedule, SelectKeys is applied to these 2'° candidates to find the right
last key in a third part. So far, we have recovered 80 bits of the cipher key. Knowing the last
round key, it is then possible to undo the last round of each ciphertext. The fourth part is really
close to the first one and provides 2'° candidates for the 40 remaining bits. Finally, deduce the
2'° candidate cipher keys from k"'l and the preceding candidates. The last part involves testing
these cipher keys on the plaintext/ciphertext pairs available to find the right one.

The presentation of our cryptanalysis is structured as follows. First, we provide the full
attack in Algorithm 4. Then, each part of this algorithm is detailed in one dedicated section.
It should be noted that we keep the notations of Section 2 (and not those of Section 3) in
the remainder of this chapter. This work has been presented at the RusKrypto 2017 confer-
ence [31].

4.1. Part 1: finding the right output coset

Let P denote the set of the 2'° plaintexts uniformly chosen in one coset of V and let
C = {Ek(p)|p € P} denote the set of their ciphertexts. As said previously, we first need to find

the most represented coset of W in C. Let U; be the subspace of ;" defined by U; = Ly, ({ * 0})
for each 0 < i < 3. Since {*0} is a complement space of {0*} and Ly, is an automorphism, we

know that U; is a complement space of Ly, ({0 x }) = W;. Define U as the subspace HLO U; mod 4

of (]F%O)S. Of course, U is a complement space of W.
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Algorithm 4 - Cryptanalysis of BEA-1 Using the Backdoor
Input. The number N of plaintext /ciphertext pairs (typically, N = 213),
o A set P of N plaintexts uniformly chosen in one coset of V.
+ The corresponding ciphertexts encrypted under one (unknown) cipher key K
The set {Ex(p) | pe P} of these ciphertexts in denoted by C.
Output. The cipher key K or "Failure" in case of failure.

B
NbCand + 2'*
Part 1: find the representalive of the output coset.

u + the element e/ maximizing the cardinality of Cn(u+ W)

Fart 2: find the 2 best candidaies for A

E « {3}

Cand « {(ki)icr | ka e F}"}

For each idxe€[7,0,4,1,5,2,6] do
E+ Eu{idx}
Define Gy, Gg, Cr and Vp as in Section 4.2
Kg + {{H‘.‘}“:-; | Kiax € Fiu and {ﬁ‘.‘}u;-;,{m;l. £ C&-ﬁ-ﬂ}
Cand + SelectKeys(Gg, Gg. Kg,Cr. (W) g, Vi NbCand)

2 Part 3: find | among iis candidates.
E « {0,2,5,7)

Define G, < and V' as in Section 4.3

Cand +« SelectKeys(G. G, Cand,Cg, (u; )icg, V,NbCand)

k1 + the key with the highest score in Cand

Part 4: find the 2'* best candidates for (i 4
Define C' and u' as in Section 4.4
E + {4}

Cand « {(k!)ice | k) € F3°}
For each idx€[7,5,6] do
E + Eu{idx}
Define Gg, G, Cp and Vg as in Section 4.4
"E — {{A:}“f. I 'i‘;d-!: £ F._li“ and ["A‘:},‘l};xhdﬂ £ "::E.'I:I.ﬂ.}
Cand + SelectKeys(Gg, Gg, K5, Cf, (u! )i, Vi, NbCand)

3 Fart o find the cipher key .
For each (kf[10]), ;.4 €Cand do
(A1 )gin + ﬂj{[;,;:[lﬂl Jagicn)
K + the cipher key corresponding to (k!'""),.s and k[V
If Ex(p)=c for all plaintext/ciphertext pairs (p,c) then
Return K
2 Return "Failure"
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Let c be a ciphertext and u = (u;);_¢ be in U. Because both U and W are product spaces, it is
easily seen that u is the unique representative in U of the coset ¢ + Wif, and only if, ¢; and u; are
in the same coset of W44 for each i <8. We deduce the following efficient way to compute the
representative in U of the coset c + W. First, precompute the four tables RepW; such that, for
each x in F}", RepW;[x] gives the representative in U; of x + W;. These tables are just arrays of

1024 integers. Then, the representative of c = (¢;);_g is just u = (RepW; mod 4[Ci]);-g-

To find the most represented coset of Win C, we first compute the representative in U of each
ciphertext as described above. Then, we search for the representative that occurs the most. Any
naive algorithm should work since there are only 2'° representatives.

4.2. Part 2: obtaining candidates for the last round key

This part is intended to find candidates for the last round key k'l using the algorithm
SelectKeys (see Algorithm 3) to undo the last round of BEA-1. However, if this algorithm is
naively applied, then the last round has to be undone for each of the 2'° ciphertexts and 2%

possible values of k'], yielding an order of 2°° time complexity.

To solve this problem, the 215 candidates for k' are obtained bundle by bundle, as illustrated
in Figure 4.8. First, we partially decrypt the bundles of index 3 and 7. We begin by these

Ol DR BTOR BTOR BTUR BTOR FTON BT

Figure 4.8. Cryptanalysis using the backdoor (Part 2).
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bundles since they both involve the S-box S, being the most different from its secret equiva-
lent. Following the notations of SelectKeys, the set containing the ciphertexts is

Ci37) = {(c3, c7)|c €C}, and the set of the keys is K37 = {(ks, k7) |ks, k7 € Fi°}. The mapping used
to partially decrypt the last round of these ciphertexts is

Gpzy + (F)? x (F)? — (F3y°)?
((ks, k7), (c3, ¢7)) = (S5 (c3 +k3), S5 (c7 + k7)) -

Its secret equivalent G 7 is obtained by replacing S; with S;. The two remaining inputs of the
algorithm are the representative u = (us, uy) of the most represented coset of (W;)?, and the
subspace (V5)? of (F}*)%. It is worth observing that Gs 7y maps £((W3)?) to £((V3)?) as required
by the algorithm. Running SelectKeys with these arguments generates a set Cand
containing 2'° candidates for (ks['"), k;1") instead of 2%°.

From now on, each step seeks to add a new bundle to our candidates for the last round key
kM1 The next bundle to add has index 0. Let E denote the set {0, 3, 7} of the current bundle’s

indices. Since we have no information on the value of k', the set of the possible values for
(ki[ll])ieE is

Ke = {(ki)ieE|k0 € FEO, (k3, k7) € Cand}.

Following the idea of the first step, we define Cx = {(¢;);c|(ci);.s €C} and
Ge : (F))" x (FY)E — (F))E
((ki)icp (ci)ice) P (s;}md J(citki))i€E -
Then, define Gg by replacing S; with S; and let V denote the subspace [ [ Vimod 4 of (IF%O)E.

The set Cand obtained by running SelectKeys with these parameters contains 2'° candidates
for (ky!11, ksl11], k1),

According to Algorithm 4, the index of the next bundle is 4. Actually, the order of the bundle’s
indices was chosen such as to involve the S-boxes Ss, then Sy, S; and finally S,. The current
indices are in the set E = {0, 3,4, 7}. Similarly, we define

Ke = {(ki);cplka €FY, (ko, ks, k7) € Cand}

to include the information on k"'l gathered by the previous step. Finally, define Cg, G, Gr and
Vg as above. Again, the algorithm SelectKeys yields 2'° candidates for (kM)

ieE*

This time, let us take a closer look at the implementation of this step. Because #Kr= 2% and
#Cp=2'°, a straightforward implementation of SelectKeys requires 241 partial round
decryptions, as explained by Remark 4.13. Algorithm 5 provides our implementation of
SelectKeys for this step. As we can see, the previous candidates are used to filter the
ciphertexts before attacking k, by brute force. For each of the 2'° candidates, initializing the
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filter requires 2'° partial decryptions. On average, it remains roughly 2° ciphertexts after the
filtering process. The loop over k; hence requires 2'® partial decryptions. Consequently, this

implementation performs about 2** partial decryptions instead of 2*'.

Algorithm 5 - An implementation of the step idx=4 in part 2.
Cand + []
For each of the 21° candidates (ko.ks.kr) for (kL)' R &™) 4o

Filter « &
(to.ta.ts) =« (S5' (ko + o), S5 (ks + uy). 83 (ks + up))
For each ce( do
{!“J:;JT} = {H(:]{'E"H + -l"r|.:|. .";II U{:; + f':L}.S_.;!{L'j + l.",—}}
If fg€ (to+ HJ} and f; € (ty+ ]r,;} and fs € {t: + V3) then
Filter « Filter U {c}

For each k;¢F) do
Score + ()
t-_L — Sal [‘_Il.'_l + 11_1:]
For each ceFilter do
ty + S5 (kg +c4)
If f4¢ {t’ + l“|:| then
Score + Score+ 1

If #Cand < 2!® then
Insert ((ko,ky. ks k;),S5core) in Cand
Else if Score is greater than the lowest score in Cand then
Remove the lowest scored key of Cand
Insert ((ko,ks, kg, k7). Score) in Cand

Return Cand

Naturally, the 2'° candidates for the full round key kI''! are obtained by repeating this method
for the four remaining bundles. We will conclude by observing that the complexity of each step
decreases since the filtering process improves as the algorithm progresses.

4.3. Part 3: finding the last round key

So far, we have found 2'° candidates for the 80-bit key k!'*l. This part intends to recover the
right key among these candidates, relying on the key schedule’s structure. Let us consider the
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Figure 4.9. Cryptanalysis using the backdoor (Part 3).

last round of the key schedule in order to derive a relation between k"% and k', In
Figure 4.2:

o kP =(k, ..., k1 corresponds with (ky, ..., k7),
o K = (ko119 ..., k,[19) corresponds with (s, ..., kis),
o KM = (k, ..., k,M) corresponds with (kg ..., kn3).

It is then easﬂy seen that
10 10 10 10 11 11 11 11 11 11 11 11

Thus, the 40 leftmost bits of k!'! are determined by k!''l. Using this equality, it is possible to
partially decrypt the last two rounds for every candidate for k'''l. Again, the algorithm
SelectKeys is used to distinguish between candidates.

Instead of wasting time understanding the definition of G stated hereinafter, we encourage the
reader to compare it with Figure 4.9, which speaks for itself. Let us consider
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G’ : (F%® x (F1%){0,2,5,7} > (F10)4
((ki)icgs (¢i)iep257) P (Sp" (co + ko) + ko + ka, S (c5 + ks) + ki + ks,
Sy (o + ko) + ko + ke, S5t (c7 +k7) + ks + k).

Then, let G be the mapping from (F}*)® x (F10)%257) to (F1°)* given by

G=(So | S1 1S 1lS3) oMo .

Define G in the same way as before and let V' = []._, V. Finally, run Selectkeys as in line
12 of Algorithm 4. The candidate that has the highest score is then the last round key k!'"!,

To explain why Parts 2 and 3 of this cryptanalysis are complementary, let us take a closer look
at the 2'° candidates obtained previously. Most of them are in fact really close to k!''l; more
precisely, they have at most three bundles different from k!''l. This observation is not surpris-
ing because when decrypting the last round, each bundle of the key affects only one bundle of
the output. As a direct consequence, close candidates give rise to close one-round decrypted
ciphertexts. This explains why the algorithm SelectKeys, as used in Part 2, may assign
similar scores to close candidates.

By contrast, the mapping G defined above yields very different outputs when used with close
candidate keys. Such a property comes from the high diffusion provided by M. Thus, this
part is more effective where the previous part has its main weakness. Moreover, the side effects
are limited here since we decrypt two rounds instead of one.

4.4. Part 4: obtaining candidates for the remaining bits

The round function of the key schedule being bijective, it is sufficient to know the 120 output bits
of the last round to compute the cipher key. Until now, we have recovered the last round key k"),
accounting for 80 of these 120 bits. The 40 remaining bits are the 40 rightmost bits of k'), also

denoted by (k%) _,_q. This fourth part intends to find 2'° candidates for these unknown bits.

Since the key k' is now known, it is possible to undo the last round for every ciphertext. The
cryptanalysis is then reduced to the attack of the second to last round. However, the method
used in Part 2 cannot be directly applied here since the second to last round involves the MDS

mapping M. Let x and k be elements of (IF%O)4 and observe that

M(x) +k=M(x) + MM (k) = M(x + M (k) = M(x + ¥)

where k' = M~ (k). Thus, the key addition and the mapping M can be switched provided that
the key is replaced. According to this observation, define

(ki’ [10])4si<8 = M_l((ki[lo})4si<8) :
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Figure 4.10. Cryptanalysis using the backdoor (Part 4).

Therefore, the last two rounds of BEA-1 can equivalently be represented as in Figure 4.10.

Thanks to this representation, candidates for the key (K;1%),_. ¢ can be obtained using

4<i<
SelectKeys as in Part 2. To this end, we first need to partially undo the last round using
k', Following Figure 4.10, define

£ 5 (01249 @),
(ci)i€(1,3,4,6y > M (Sy " (ca + kal'™), 571 (c1 + ki M),
Sz—l(c6 + ké[ll])/ Sgl (CB + k3[11])) )

The set {f((c;)
coset representative is u' = f((u;);c (1 34¢))- To be more consistent with Figure 4.10, the bundles

iel1s, 476}) |c € C} of these “new” ciphertexts is denoted by C/, and the corresponding
of w’ and of the elements of C' are indexed from 4 to 7 included. The remainder of the attack is
similar to Part 2 as the candidates are obtained bundle by bundle. The first step gets candidates
for the bundle’s indices 4 and 7. The second and the third steps add the indices 5 and 6,
respectively. If E denotes the set of the current bundle’s indices, then the parameters of
SelectKeys are the set C'r = {(¢i);c|(¢'i)4<;5 €C'}, the mapping
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Ge : ()" x (F))E — ()"
((k/i)ieEf (Cli)ieE) = (Si_rlnod 4(C,i + k/i))ieE,

its equivalent G and the subspace Vi = H Vi mod 4 of (]F;O)E. The other details are given in

i€k
Algorithm 4. At the end of this part, every candidate k' = (K;),,_q for (K;1%),_,_¢ gives rise to
a candidate k = M(K') for (k%),_, .

4.5. Part 5: deducing the cipher key

Concatenating the candidates for (k;1%),_, ¢ with k'l yields 2'° candidates for the output of
the key schedule’s last round. To obtain the corresponding candidates for the cipher key, we
need to reverse the rounds of the key schedule.

Referring to Figure 4.2, the ith round of the key schedule maps the element (X, X;, X5) of
(F§0)3 to (Yo, Y3, Y3) according to the following equalities

Yo=Xo+f;(X2), Yi=Yo+Xi, Yo=Yi+Xo,

where f; denotes the permutation of (Fi°)* defined for each X by

fi(X) = (3 mod 2'°,0,0,0) + (So | S1 Il Sa Il S3)° M(X) .

Using these notations, it easily seen that

Xo=Yo+f(Y1+Y2), Xi=Yo+Y:i, Xo=Yi+Y>.

These equalities describe how to reverse each round of the key schedule, and thus how to
recover the 2'° candidate cipher keys.

Finally, it just remains to test these candidate cipher keys to complete the cryptanalysis. To be
efficient, choose one plaintext/ciphertext pair (p, c) and check whether or not the encryption of
p under the candidate K is equal to c. In case of equality, repeat this process for all pairs
available to prevent false positive results. Otherwise, the candidate is discarded. Obviously,
the right cipher key is the one that passes all tests.
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Conclusion

In this book, we have addressed the following issue: “is it possible to design a mathematical
backdoor which would rely mostly on suitable partitionning techniques of the plaintext and
ciphertext spaces, independently of the round keys?”. We had in mind initially to exploit
combinatorial properties of the core primitives.

The overall conclusion we get is that if we want to design such a backdoor, the only solution is
to stay in the algebraic domain and no specifically combinatorial tools or primitive are possi-
ble. Let us summarize in details the main results.

If we wish to design any encryption system that maps any partition A of the plaintexts to a
partition B of the ciphertexts, independently of the round keys then

¢ the round function must map a linear partition to another one, and
e  atleast one S-box must do the same.

Here, the backdoor is precisely the knowledge of the pair (\A, B). This result implies that the
partitions considered for the backdoor belong to the algebraic domain and not to the combi-
natorial one. We are condemned to consider highly structured algebraic objects.

For the candidate S-boxes which make it possible to design such a backdoor, we have
performed a detailed study with respect to their linear and differential tables. We have given
lower bounds on their linear and differential uniformities and we have explained how to
(nearly) achieve them.

The study presented in this book shows that the linear and differential tables of these
backdoor S-boxes are highly structured. Thus, we have proved that our backdoor class
implies necessarily a high algebraic structure. We conjecture that the reverse may be also
true: any algebraic structure can be used to design a backdoor cipher. In terms of backdoor
detectability, we also surmise that it is easy to detect and identify our backdoor from the results
presented in this book.

As future works, we would primarily address the two following issues. First, what would the
results be if we consider dependent round keys? In other words, we would like to consider a
key schedule algorithm which therefore would be part of the backdoor.

Second, we want to explore and formalize exhaustively a criterion which would help either to
design better hidden backdoors or, on the contrary, to evaluate the presence of a potential
backdoor. The first idea of criterion is the following. Let S denote the set of the S-boxes
mapping a linear partition to another linear partition. For any S-box S we define the distance
with respect to S as follows
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min{# Supp (7)|[t€ &(F}), Set€ S}.

This represents the minimal number of images under S we have to modify in order to obtain
an S-box lying in S. In other words, the aim is to have a distance measure to a backdoor S-
box. In Chapter 4, Section 2, we have first considered secret S-boxes mapping linear parti-
tions to another ones. Unfortunately, as mentioned previously, the structure of their linear
and differential tables is likely to betray the existence of a backdoor and can be used to find
it. This is the reason why, we have then modified the S-boxes. These new S-boxes “behave”
similarly to their secret counterparts with high probability. We have published a first-
algorithm proposal [32] denoted BEA-1 (Backdoored Encryption Algorithm version 1) whose
backdoor is based on this property. It operates on 80-bit data blocks using a 120-bit cipher
key and is directly inspired by the AES. The knowledge of the backdoor enables recovery
of the full cipher key in just a few seconds on a laptop computer using only 2'® chosen
plaintext blocks.

We also hope to develop our work further to explore the different classes of possible back-
doors. In order to have a clearer view of the research presented in this book, we outline a
tentative starting classification of backdoor techniques. Of course, we hope that other authors
will have a critical cross-view of it and will make it evolve.

*  Backdoors based on a single mathematical weakness. The backdoor is essentially put in the core
cryptographic primitives, exploits algebraic or combinatorial properties and is indepen-
dent of the key and the plaintext.

*  Backdoors based on the combination of mixed techniques. Here, the backdoor relies on the
combination of several factors: algebraic properties, combinatorial properties, environ-
mental use of the algorithm (for example the nature of the plaintext encoding). Each
aspects being taken separately, it is not possible to see the backdoor. Only the combined
and global view makes it possible to see it, possibly. This approach seems promising in the
light our study of real-life governmental encryption algorithms proposed in a more or less
recent past.

Laval, France

May 26th, 2017
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Appendix
See Figures 1A to 11A.
Ly(r) 334 259 21D OE4 193 266 343 3ED 354 17F
Ly(r) 3DA 306 39E 262 080 398 229 34C 251 37H
Lyw(r) 295 237 131 3D1 26B OBA 155 307 37E 3148
Ly(r) 200 15D OF8 2BE 25F 1D1 21E 134 ODC 15A
Lw,(r) 3EB8 386 067 19C 158 164 11BE 306 OSE OB8
Lw,(r) 364 33E 3A7 119 1D2 04B 3B7 OD5 027 2C8
Lw,(r) 324 188 3CBE 1BO 131 1A9 095 107 36F 243
Lw,(*) 262 1A5 34E (BT 3ED OF0 2FE 191 332 1A6
(Lv,)"Y(r) 3BF 268 OBB 379 17B 055 061 2F9 354 1F2
(Lv,)"'(r) 13D OAD 020 2CT 36D 2B4 314 047 OD7 14C
(Ly,)"'(r) 361 070 133 02A 2B8 3CC ODC 21A OBE 184
(Lvy)~'(x) 1E5 3D1 OBE 245 OF6 357 1DA 074 318 26D
(Lw,)""(r) 026 OE9 104 29D 351 053 207 3F9 332 187
(Lw,)"'(r) 142 1BO 070 3D3 196 088 2E0 OB7 2BB 398
(Lw.)"'(*) 020 OAA 205 OF1 375 194 3AF 1F2 339 265
{(Lw,)"'(r) OA6 3B3 045 32B 1E4 29A 2AD 27A 069 168
Figure 1A. The transformation mappings given over the standard basis of IF;O.
r % My % My By_v(z)
(10,00,00,00)  (0O7,06,1E,17) (OE,16,02,14) (07,01,1C,18)
(08,00,00,00)  (11,03,0F,19) (0O7,0B,01,04) (0S,16,14,03)
(04,00,00,00) (1A,13,18,1E) (11,17,12,08) (0A,01,1C,1C)
(02,00,00,00) (0D, 1B,18,0F) (1A 19,09,10) (02,1F, 1E 1()
(01,00,00,00)  (14,1F,0C,16) (0D, 1E,16,08) (01,1B,13,04)
(00,10,00,00)  (06,07,17,1E) (16,0E,14,02) (07,08,01,11)
(00,08,00,00)  (03,11,19,0F) (0B,07,04,01) (02,1E 1B, 1F)
(00,04,00,00)  (13,1A,1E,16) (17.11,06,12) (16,06, 1E,0D)
(00,02,00,00)  (1B,0D,0F,18) (19,1A,10,08) (OF,11,0C,16)
(00,01,00,00)  (1F,14,15,0C) (1E.0D,08,16) (11,0E,02,04)
(00,00,10,00)  (1E,17,07,06) (02,14,0E,16) (1F,0C,08,1B)
(00,00,08,00)  (OF,19,11,03) (01,04,07,0B) (17,15,17,18)
(00,00,04,00)  (15,1E,1A,13) (12,05,11,17) (1D,04,0E,00)
(00,00,02,00)  (18,0F,0D,1B) (09,10,1A,19) (11, 0E 19,15)
(0o0,00,01,00)  (0C,15,14,1F) (16,08,0D,1E) (16, 1F,06,14)
(00,00,00,10)  (17,1E,06,07) (14,02,16,0E) (OF,03,16,03)
(00,00,00,08)  (19,0F,03,11) (OA,01,0B,07) (0B,12,03,0D)
(00,00,00,04) (1E,15,13,1A) (05,12,17,11) (IF,1D,1B,02)
(00,00,00,02) (OF,18,1B,0D) (10,09,19,14) (18,12 04, 15)
(00,00,00,01)  (15,0C,1F,14) (08,16,1E,0D) (17,05,05,05)

Figure 2A. The linear mappings over (F)’)* associated to My;, My and the linear mapping Py; .
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000,000, 000, 200)
D00, 000, 000, 100)
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)00, 000, 000, 040)
00, 000, 000,020)
000, 000, 000,010)
)00, 000, 000, 008)
30, 000, 000, 004)
W00, 000, 1':1"11-,0'1]2}
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—

L=

L
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A A A A A i A e A e A A A e . A e A i G A e S .
i et e o = = = s = = - Bl - . e

M(r)
(13E, 20F, 253, 0BC)
(35C, 13E, 212, 110)
(32C, 199, 2C5,07A)
(3C6,010, 0EC, 261)
(231,120, 322, 016)
(2D9, 104, 0C4,085)
(215, 11F, 1E0, 2E7)
(23F, 15B, 0CT, 0A7)
(344,394, 342, 165)
(112, 1BC, 36C, 0C5)

(OES, OED, 314, 289)
(17E,011, 198, 3C5)
(15E, OBF, 1E2, 04F)
(006,131, 32E, 12B)
(39A. 062, 38C, 2EB)
(1F4, 1C5, 1FF, 31D)
(022, 37D, 08D, 304)
(13B, 2FA, 328, 38C)
(0CC, 32A, 014, 2DB)
(237,252,004, OF8)

(009, 175,254, 3ED)
(205, 29F, 072, 04D)
(09A, 1DD, 336, 34B)
(269, 2CC, 27E, 1CD)
(1B2, 0AT, 178, 208)
(189, 2AR, 146, 39D)
(oDC, 0B1, 061, 3DE)
(019, 08E, 280, 1A7)
(38B, 1A6, 221, 260)
(075,380,371, 2E9)

(099, 176, 3BC, 031)
(38E.3D2,2CD, 21C)
(1C7, 259, 17E, 0BE)
(165, 3BA, 19B, OFT)
(37F, 282, 3A4, 3D8)
(256, 130, 382, 067)
(370, 1D0, 3CD, 07F)
(22D, 1C8, 221, 18E)
(058, 044, 340, 281)
(28D, 172, 3EA, 24E)

M-1(z)
(208, 209, 353, 243)
{OF5, 1BD, 210, 210)
(1E9, 3FE, 238, 329)
{002, 246, 2E2, 380)
(322, 3FD, 3D5, OES )
{0AD, 337, 3C5, 2D4)
(08D, 04D, 016, 34C)
(1AB, 11E, O5F, 3A4)
(1AE, 1ES, 2CB, 245)
(10B, 221, 09D, 398)

(395, 295, 38D, 129)
(2D7, 1F4, 378, 157)
(OBD, 1B1, 18E, 2AB)
(3AA, 29E, 239, 1CO)
(309,069, 21B, 11B)
(06D, 1BE, 3EB, OBE)
(3D1, 236, 09D, 2F1)
(OEB, 2FD, 3C3, 176)
(055, 128, 25A, 17F)
(07D, 2BB, 037, 3C8)

(0A6, 050, 36D, 016)
(263, 36C, 361, 369)
(0C8, 111, 34B, 38E)
(169, 1A1, 02D, 39B)
(009, 109, 3CC, 131)
(141,222,031, 28A)
(1C7, 3F1, 063, 33C)
(084, 128, 167, 20B)
(0DO, 34D, 18C, 354)
(15E, 23B, 378, 376)

(03D, 208, 27E, 249)
(005, 38F, 215, 2DF)
(14F, 302, 0E2, 1CT)
(211,209, 1B2, 362)
(13C, 355, 058, 07F)
(194, OE6, 364, OF2)
(322,319, 244, 300)
(2BE, 1DD, 223, 1FA)
(044, 1EC, 1B6, 3B4)
{015, 371, 2DC, OE2)

Figure 3A. Specification of the diffusion M and its inverse M.
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Figure 4A. Specification of the secret S-box S,.
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Figure 5A. Specification of the modified S-box S.
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Figure 6A. Specification of the secret S-box S;.



76  Partition-based Trapdoor Ciphers

1 3 i ] ) -] A i F

Gl BB 3TA AR ODF 016 1FE 004 OTC BBE 141 39T 300 186 OOC 1AT
il ZFA 3AA ZER OBD 003 3CF 14k 18F 3BE 3B 172 ZE4 1EB OCF 3T3 375
2CA 326 6B 393 283 2E0 IBO 3E9 1IF 24T 308 OTE 188 146 30F 26T
3 I16C OIF Z2C OF8 10F 36D 36T 343 1EC 047 OO D62 IOF 306 36E 148
OB4 3E3 I5E 234 OD2 IFE 184 IFF 2EB 2BE 3W1 MF 32 108 2EL O4C
it 1Bl 3IFE 084 229 216 337 04 08D UF 035 184 33A 1AK 1B2 324E 1BF
245 25T DIE B4E 37TE 197 T 10D 140 190 ITE 5D QAT 3A3 338 303
010 3¢ 3850 114 369 2M/E F]E 0 1ET 30B 38E (A1 094 088 038 102

56 3E 112 OAk Q1B 260 31 04 30E 34 QEF OTR 34T 382 IIE OO0
1EE OBFT 278 20D 25B 060 216 MOE JED 055 FFR TR 363 1BS 106 364
i 025 IED 204 206 Q37 233 204 1XF 3BD 208 5TD 1AE 03D 116 1B2 2FA
266 333 O&F OB0 1B9 338 26F 1EA 1A9 O0BE 290 ZED ORE 162 1EE 362
168 351 20F 17D 08B 2D& 259 IT1 14F 2F5 011 3ET 14B 3591 248 OBZ

119 300 160 23E 084 0D 3C3 01C 171 303 349 D61 16F OFB 1DF 342

JE OB2 oo 218 2E9 MBI 20f P9 M) OB 234 161 OCE 2D OFE 056 O4B
E OF2 ODA O3& 015 Q49 3TO 14C 2B6 369 153 384 20E 081 A6 035 38T
10 24C OM) 315 ACK OA1 005 O2C POA 107 11 AFE 244 3EC 284 1085 108
11 122 090 3&F 28F 1A3 190 OBE 317 198 2BC 11T OED 2396 QBF 3TE 3E4
13 O4C AFE 103 266 308 11E 301 279 316 38C 2TT M6 081 074 113 IFT
3 35 005 IFC O9F 2S5 332 OSC 2F 334 OPE DD SFC OISF 111 AT 28O
14 ofd 39 106 10E 013 T3 ZEC 40 080 174 DB ACT 102 203 GEE  1BG
1 Q3F 204 384 131 QA6 I7E ODK 386 053 3DC 339 11A X1 O02A ITF QDE
1 18 7B 1TB 20T 1E4 286 OuC MED 3F4 1EF 003 3ER 30T Q8E 3P0 OER
17 200 208 OBB 3AE 139 1Ca U7 OB 3EE 064 2 126 150 BT OF9 ITC
16 Obd 2D 3F6 031 OB 20F 250 2l 00D 23T 06 22 1B3 101 BEQ 2R
15 104 360 200 285 4L ITF 206 3E1 200 OA2 1PG 20T OF1 040 1DE O
14 200 121 13 2B IFE 2TE ODT OTE 001 262 2TA IFF X8 AER 1FA 35F
263 006 128 36E 14E 28BS OFE 348 302 261 1TE 3ES 200 OBT 303 18K
O9T FIN 33E 166 305 OFC 139 38 3EF 1AC IFD 3B OAF 041 2CC OCA

238 IF3 320 OEC 314 204 03C 130 308 00D 358 3BC 3EB IIE O0EE 263

E 004 0B85 IBD 051 3EZ 153 013 OF3 IBE QA8 ITC G 30T 3BT 330 296
1F OBS ITC 3F1 396 194 009 0P 320 35A 368 0T OSD IFR 136 096 OME
H O6A 3AC 33E OEE QAT 186 b8 IVE 136 3B 110 OGF 1AE 33D 3CE IFC
i 11F 18 306 13C 2BD 261 355 O€5 1FS 3DF 162 OTA 086 1BE 306 184
! ODC 124 I5F O7TE ZET SPE O46 300 3XC ICE 30C BAF 208 006 3 12R
23 060 371 ZAF 12k ATE 5156 24D 10T 3TF BA2 21D 16T 3Qk 3FF 3B2 2DA
24 OFT1 3B 356 3F3 33D 260 144 08¢ NC OBA 10D 206 166 AAD OTT 3564
. 022 32F 329 2BC T4 1EE 30A 192 ICF 1BA OGE OQAD 1ITT 1B3 2BE U8
26 29C 130 333 122 331 204 381 OBC 26 008 3B 118 MF 2E3 1F1 3FE
. 31C 254 346 376 11C 000 243 0CA 381 O0E9 230 O1A 161 300 OFF 1EQ
Fi: 205 ITh D4F 304 1AF 2AZ 191 IFT 340 3eC ZET 3T OFT 1EB OFE 2FE
s OCL 30D 025 IF3 01D 103 OEC 138 109 20F 3HB TES 1BC OE1 3231 100
A 360 308 37T ADE 16D OOC O34 343 0TI 398 31D 0P 149 OF0 OB QA3
2R OEA O5T 350 300 38F A0 OB3 169 130 309 308 A0 355 3F1 108 043
Lk 268 203 IDE QA IEC 1ED ZAK OGF IDE 3CT OD3 374 14T @ 03D 2B3
L OG0T 13F 383 3DA JFED 284 OAKE IDC 301 3a4 350 3FI QLB A€ 394 014
2E #D2 353 408 OER ITO GED O0E D 1BE O6F 00 OfP OM4 138 234 044
AF ofB 268 348 380 1TE B4 OOT 3C2 3IF 21T 28T 073 1 1BE 03B 16T
B8 D0 340 OF4 OBD 2P0 BRI 100 1BA 204 00 M6 ICE OXB 1AZ 2ER

J! IF0 213 IBT 032 281 3BT D 048 3F2 a9 SBG XA 196 1BB IFB 10W
. 1EZ ORD 101 033 23F 23T OBE M6 OC2 230 OTD 288 3EF O0BS 3F1 ODE
ck] B304 OB 202 OD1 29B 006 120 OEE 13A OCY 092 OOD O£B 000 ATE 3B
ODg AC 27D 390 3AT 214 338 fAD 335 20E 109 QES 100 3DE 140 24N
ZB3 268 IF0 300 3A4 044 ORE 3C3 OBA OTE ID4 1E3 1EA 145 17D 2K
3 O0B 358 1A 137 2BF 16E ZME 241 1E1 083 334 381 136 3EE 3B ILH
ar 230 301 043 373 3BL IED OFA 337 OCR OB 103 36 3F8 JEE 1BC 18T
3 034 SFD 310 118 1D1 OTE B 143 380 338 OES ODS 3E4 199 309 3B5
A QEZ 185 10A 284 166 150 11D 155 30D 15D OCD 163 1AD 003 100 350
£l 180 1k6 321 O00E 276 OQ3IE ZHF ODE 189 206 D0 100 MDD HE 1TA 3FA
A 36E O3 35F 2F8 Q67 ZBA ZAE 180 309 2FD 20T 18E 113 OFD 313 QET
3 154 1BS O&A 239 O4B 384 OB3 3E6 JP4 18C 12E 017 3BC XM 136 284
3l OBh 311 240 13E QAE 24E OG89 2CB OFF 238 364 1M 244 JAE 1E8 31E
AE 132 23F 223 OT0 ZAE 3EA 249 023 258 OBO 330 214 38D ICE 1B4 172
3F 1F4 056 0OF 2EF 361 102 OB IC4 19E 282 1B4 3FT 94 142 209 OCE

Figure 7A. Specification of the modified S-box S;.
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Figure 8A. Specification of the secret S-box Ss.
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Figure 9A. Specification of the modified S-box S,.
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Figure 10A. Specification of the secret S-box S.
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Figure 11A. Specification of the modified S-box Ss.
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