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Abstract

An exact model for a single atom transistor was developed. Using two simplifying
assumptions (1) that the device is restricted to a narrow conducting wire and (2) that
the atom can be simulated by a point impurity potential, the model can be simplified
considerably and an exact analytical solution can be derived. Thus, analytical solution is
approximated to a close-form solution in three important regimes: at the vicinity of the
resonance energy (near the maximum peak), at the vicinity of the inverse resonance, i.e.,
Fano resonance (near the minimum), and at the threshold energy where a universal
transmission pattern appears. Finally, physical values are applied to demonstrate that
this device can operate as a transistor, when it is calibrated to work at the vicinity of its
maximum and minimum points.

Keywords: quantumdots, quantumpoint defect, point impurity, quantum transistor, single
atom transistor

1. Introduction

In accordance with the rapid growth of calculation power, the transistor dimensions shrink

exponentially. Surprisingly, more than 50 years after Gordon Moore made his observation in

1965 (or, more accurately, its revised form a decade later), that the number of transistors on a

single chip doubles every couple of years, this observation is still valid [1, 2]. The number of

transistors in a chip keeps growing despite the fact that the chip clock speed and its power

consumption seem to be stagnated.

To meet the demands of the current trend, the average transistor size should decrease to the

dimensions of a single atom, which is the smallest quantum dot, within about a decade.

The ability to move and manipulate single Xenon atoms (in Eigler and Schweizer lab at IBM’s

Almaden Research Center) in the early 1990s was a great leap in that direction [3].
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In the attempts to meet this requirement, scientists already demonstrated the operation on

several atoms and dopants [4–9] and even on single atoms [10–12]. The atom can be utilized as

a stationary gate [10] or as a dynamic switch [13].

Such a device indeed consists of a single atom, but its conductor leads are of mesoscopic

dimensions. Consequently, this is a complicated device to simulate and requires heavy

software.

However, since the process is dominated by resonant tunneling, the model can be simplified

considerably. In this case, only a single energy level of the quantum dot is relevant to the

process, and therefore, it can be simulated by a point defect potential.

A point defect potential has a single eigen bound state, and therefore, it can simulate a

quantum dot or a small atom in a relatively narrow spectral domain.

While a delta function can simulate a point defect in one-dimensional (1D) systems, a two-

dimensional (2D) delta function cannot scatter and therefore cannot simulate a quantum dot.

Azbel suggested to use an Impurity-D-Function (IDF) to simulate point defects in 2D quantum

systems [14, 15] (for a comprehensive discussion and derivations, see Ref. [16]).

Several years later, the IDF was utilized in simulations of resonant tunneling through an

opaque quantum barrier via a point defect in the presence [17] and absence [18] of a magnetic

field. However, in these models, it was taken that there is a degeneracy in the y-direction, i.e., it

was assumed that the barrier’s transverse dimension is infinite and therefore cannot be applied

in a system, where the current is carried by narrow wires (as in modern single atom transis-

tor’s devices).

On the other hand, conductance of nanowires with defects, but without a barrier, received lots

of attention in the literature, exhibiting a wealth of physical phenomena [4–9, 19–21].

It is the purpose of this chapter to integrate the two, i.e., to formulate a model, which incorpo-

rates resonant tunneling via a point defect and wire conductance. That is, both the potential

barrier and the impurity are located in the nanowire.

2. The model

The system is illustrated in Figure 1. It consists of two semi-infinite conducting wires, which

are separated by an insulating gap. Within this gap, there is a quantum dot, which character-

izes the resonance atom. To simplify the analysis, it is assumed that the wire boundaries in the

y direction are totally reflecting, i.e., the wire is bounded by an infinitely large potential.

Moreover, the single atom is modeled by a point defect potential.

It is also taken that this is a 2Dmodel, i.e., there are no variations in the third dimension. This is

a good approximation provided the wire is narrower in the z-dimension. Another advantage

in constructing the model in 2D is that point impurities potential cannot exist in higher than

two dimensions (see Ref. [16]).
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Therefore, the system can be described by the following stationary Schrödinger equation

�∇
2
Ψ x; yð Þ þ V xð Þ þU yð Þ �D r0 � r0ð Þ½ �Ψ x; yð Þ ¼ EΨ x; yð Þ (1)

in which normalized units (where Planck constant is ħ = 1, and the electron's mass is m = 1/2)

were used. In this equation,

U yð Þ ¼ 0 0 < y < w
∞ else

�
(2)

is the boundaries’ potential, which confines the dynamics to the wire geometry.

The potential of the gap between the wires is represented by the finite potential barrier,

V xð Þ ¼ V xj j < L
0 else

�
(3)

and for the point impurity potential, we use an asymmetric Impurity D Functions (see Refs.

[14, 15])

D rð Þ ¼ lim
ρ!0

2
ffiffiffiffi
π

p
exp �y2=ρ2

� �

ρln ρ0=ρ
� � δ xð Þ; (4)

where r ¼ bxxþ byy, and the location of the point impurity is r0 ¼ bxx0 þ byy0. ρ0 is the de-Broglie
wavelength of the impurity's bound eigenstate. The eigenenergy of the bound state of this

impurity is

E0 ¼ � 16exp �γð Þ
ρ2
0

ffi � 8:98

ρ2
0

(5)

where γ ffi 0.577 is Euler constant [22].
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Figure 1. Model schematic.
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It should be stressed that this point impurity potential is an excellent approximation to a small

quantum dot defect, i.e., a finite but small impurity, with a radius a and potential V0 provided

ρ0 ¼ 2a exp
2

V0a2
þ
γ

2

� �

: (6)

3. Derivation of the exact analytical solution

The solution of Eq. (1) reads (see Refs. [16, 19])

Ψ rð Þ ¼ Ψinc rð Þ �
Gþ r; r0ð ÞΨinc r0ð Þ

1þ

ð

dr0Gþ r0, r0ð ÞD r0 � r0ð Þ

ð

dr0D r0 � r0ð Þ (7)

where Ψinc(r) is the incoming wavefunction, G+(r, r0) is the outgoing 2D Green function, i.e.,

G+(r, r0) is the solution of the partial differential equation

�∇
2Gþ r; r0ð Þ þ V xð Þ þU yð Þ � E½ �Gþ r; r0ð Þ ¼ �δ r� r0ð Þ: (8)

Both the incoming wavefunction ψinc(r) and the Green function can be written as a superposi-

tion of the homogenous solution of Eq. (1) φþ
m,E rð Þ, i.e., solution of the equation where the

impurity is absent. These solutions are characterized by two quantum parameters: the energy

E and the mode number m, namely

�∇
2ϕ�

m,E rð Þ þ V xð Þ þU yð Þ � E½ �ϕ�
m,E rð Þ ¼ 0 (9)

where

ϕ�
m,E rð Þ ¼

ffiffiffiffi

2

w

r

sin mπy=wð Þχ�
E,m xð Þ (10)

and χ�
E,m xð Þ are the homogeneous solutions of the 1D equation

�
∂2

∂x2
χ�
E,m xð Þ þ V xð Þ þ mπ=wð Þ2 � E

h i

χ�
E,m xð Þ ¼ 0; (11)

where the superscript “+” and “�” stand for propagation to the right and to the left respec-

tively.

Similarly, it is convenient to formulate the 2D Green function in terms of the 1D one

[Gþ
1D x, x0; Eð Þ]:

Gþ r, r0ð Þ ¼
2

w

X

∞

n¼1

sin nπy=wð Þ sin nπy0=wð ÞGþ
1D x, x0; Enð Þ (12)
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where Em � E � (mπ/w)2 and Gþ
1D x, x0; Eð Þ solves the equation

� ∂
2

∂x2
Gþ

1D x, x0; Emð Þ þ V xð Þ þ Em½ �Gþ
1D x, x0; Emð Þ ¼ �δ x� x0ð Þ (13)

with the boundary condition

∂

∂x
Gþ

1D x, x0; Emð Þ∓ i
ffiffiffiffiffiffi

Em

p

Gþ
1D x, x0; Emð Þ ¼ 0forx ! �∞: (14)

Therefore,

Gþ
1D x, x0; Emð Þ ¼

χ�
E,m xð Þ=χ�

E,m x0ð Þ
χ�
E,m

0 xð Þ=χ�
E,m x0ð Þ � χ�

E,m

0 �xð Þ=χ�
E,m �x0ð Þ

x > x0

χ�
E,m �xð Þ=χ�

E,m �x0ð Þ
χ�
E,m

0 xð Þ=χ�
E,m x0ð Þ � χ�

E,m

0 �xð Þ=χ�
E,m �x0ð Þ

x < x0

8

>

>

>

>

<

>

>

>

>

:

(15)

where the tags stand for spatial derivatives.

In the case of a rectangular barrier (in a slightly different writing, see Ref. [23])

χþ
k,n xð Þ ¼

exp iknxð Þ þ tnRnexp �iknxð Þ x < �L

tnCnexp �Knxð Þ þ tnDnexp Knxð Þ xj j < L

tnexp iknxð Þ x > L

8

>

<

>

:

(16)

where

km �
ffiffiffiffiffiffi

Em

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� mπ=wð Þ2
q

and Km �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V � Em

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V � Eþ mπ=wð Þ2
q

;

tn ¼ exp �2iknLð Þ
cosh 2KnLð Þ þ i Kn=kn � kn=Knð Þsinh 2KnLð Þ=2

ffi 2
exp �2iknL� 2KnLð Þ

1þ i Kn=kn � kn=Knð Þ=2 ;
(17)

Cn ¼ 1

2
1� ikn

Kn

� �

exp KnLþ iknLð Þ; (18)

Dn ¼ 1

2
1þ ikn

Kn

� �

exp �KnLþ iknLð Þ (19)

and

Rn ¼ � i

2

Kn

kn
þ kn

Kn

� �

sinh 2KnLð Þ: (20)

The general Green function is then
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Gþ
1D x, x0; Emð Þ ffi

1

Mn

exp iknxð Þ

Cnexp �Knx0ð Þ þDnexp Knx0ð Þ
L < x

Cnexp �Knxð Þ þDnexp Knxð Þ

Cnexp �Knx0ð Þ þDnexp Knx0ð Þ
x0 < x < L

Cnexp Knxð Þ þDnexp �Knxð Þ

Cnexp Knx0ð Þ þDnexp �Knx0ð Þ
�L < x < x0

exp �iknxð Þ

Cnexp Knx0ð Þ þDnexp �Knx0ð Þ
x < �L

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(21)

where

Mn ¼ �Kn tanh Kn L� x0ð Þ þ iθ knð Þ½ � þ tanh Kn Lþ x0ð Þ þ iθ knð Þ½ �½ �

and then

Gþ
1D x; x0;Emð Þ ¼

tanh Km L�xð Þþiθ kmð Þ½ �
tanh Km L�x0ð Þþiθ kmð Þ½ �

�Km tanh Km L� x0ð Þ þ iθ kmð Þ½ � þ tanh Km Lþ x0ð Þ þ iθ kmð Þ½ �½ �
for xj j < L (22)

using

tanθ kð Þ ¼ �k=K: (23)

Then

Gþ
1D x0; x0;Emð Þ ¼

1

�Km tanh Km L� x0ð Þ þ iθ kmð Þ½ � þ tanh Km Lþ x0ð Þ þ iθ kmð Þ½ �½ �

ffi
1

�2Km 1� 2exp �2KmL� 2iθ kmð Þ½ �cosh 2Kmx0½ �
� 	

(24)

where the last term is an approximation in the limit of opaque barriers.

When the incoming wavefunction is the mth mode

Ψinc rð Þ ¼ sin
mπy

w


 �

χþ
E,m xð Þ (25)

then, the solution (in all space) reads

Ψ rð Þ ¼ sin
mπy

w


 �

χþ
E,m xð Þ

þ

sin
mπy0
w


 �

χþ
E,m x0ð Þ

2

w

X

∞

n¼1

sin
nπy

w


 �

sin
nπy0
w


 �

Gþ
1D x; x0;Enð Þ

1

2π
ln

ρ0

ρ

� �

þ
2

w

X

∞

n¼1

sin 2 nπy0
w


 �

Gþ
1D x0; x0;Enð Þexp �

nπρ

2w


 �2
� �

(26)
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which can be written as

Ψ x > L, yð Þ ¼
X

p

sin
pπy

w


 �

χþ
E,p xð Þ

� δ p�mð Þ �

sin
mπy0
w


 �

sin
pπy0
w


 �χþ
E,m x0ð Þ

χþ
E,p x0ð Þ

2

w
Gþ

1D x0; x0;Ep

� �

1

2π
ln

ρ0

ρ

� �

þ
2

w

X

∞

n¼1

sin 2 nπy0
w


 �

Gþ
1D x0; x0;Enð Þexp �

nπρ

2w


 �2
� �

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

:

(27)

In the case where the incoming particle’s energy satisfies

π=wð Þ2 < E < 2π=wð Þ2

then only a single mode propagates, in which case

Ψ x ! ∞, yð Þ ¼ sin
πy

w


 �

χþ
E,1 xð Þt11 (28)

where t11 is the transmission coefficient to remain at x ! ∞ in the first mode, which is

t11 � 1�
sin 2 πy0

w

� �

2
wG

þ
1D x0; x0;E1ð Þ

1
2π ln

ρ0
ρ


 �

þ 2
w

X

∞

n¼1

sin 2 nπy0
w


 �

Gþ
1D x0; x0;Enð Þexp �

nπρ

2w


 �2
� � (29)

A plot of T11 = |t11|
2 as a function of the incoming particle’s energy is presented in Figure 2.

Clearly, a resonance occurs when the real part of the denominator of Eq. (29) vanishes, i.e.

when

1

2π
ln

ρ0

ρ

� �

þ
2

w

X

∞

n¼1

sin 2 nπy0
w


 �

ℜGþ
1D x0; x0;Enð Þexp �

nπρ

2w


 �2
� �

¼ 0: (30)

In general, it is a complex transcendental equation; however, in case of an opaque barrier,

Eq. (24) can be further simplified to

G1D x0; x0;Enð Þ ffi �
1

2Kn
þ iεn (31)

when

εn �
exp �2KnL½ � sin 2θ knð Þ½ �cosh 2Knx0ð Þ

Kn
¼ �2

exp �2KnL½ �kncosh 2Knx0ð Þ

V
; (32)
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and sin 2θ k1ð Þ½ � ¼ �2kK

K2 þ k2
¼ �2kK

V
: (33)

Then, Eq. (30) can be approximated as

1

2π
ln

ρ0

ρ

� �

� 2

w

X

∞

n¼1

sin 2 nπy0
w


 � 1

2Kn
exp � nπρ

2w


 �2
� �

¼ 0 (34)

In the case where the conducting wires is very narrow or the barrier is very high, i.e.,

π=wð Þ2 þ V >> E0 (35)

then

1

2π
ln

ρ0

ρ

� �

� 1

w
sin 2 πy0

w


 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V � Eþ π=wð Þ2
q � 1

π

X

∞

n¼2

sin 2 nπy0
w


 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 1
p exp � nπρ

2w


 �2
� �

¼ 0 (36)

since

X

∞

n¼2

sin 2 nπy0
w


 � 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 1
p exp � nπρ

2w


 �2
� �

ffi �ln 4ρ=w
� �

=2π (37)

then

1

2π
ln

4ρ0

w

� �

¼ 1

w
sin 2 πy0

w


 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V � Eþ π=wð Þ2
q (38)

Figure 2. Plot of the T11 = |t11|
2, i.e., the probability to remain in the first mode of propagation as a function of the normalized

energy. The barrier parameters were L = 2w and V = 2/w2, and the defect parameters were ρ0 = 300w, x0 = 0, and y0 = w/2. The

dotted line represents the barrier’s energy Eb = V + π2/w2, and the dashed line represents the resonance energy Eres.
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which has a solution provided 4ρ0 > w, otherwise the impurity can be regarded as a perturba-

tion and does not carry a resonant level.

When the resonant level exits, then the resonance energy ER is approximately

ER ffi V þ
π2

w2
1� sin 4 πy0

w


 � 1

2
ln

4ρ0

w

� �� 
�2
( )

(39)

In Figure 2, the resonance energy is presented by a dashed line.

In this approximation,

Ψ rð Þ ffi sin
πy

w


 �

χþ
E,1 xð Þ

1

K1
w
2π ln

4ρ0
w


 �

= sin 2 πy0
w

� �

� 1þ i2K1εnð Þ
(40)

Since in this regime only, one transverse mode is propagating, the system in practice

reduces to a 1D problem, where the 2D impurity can be replaced by a 1D delta function

potential

V xð Þ ¼ �λδ xð Þ (41)

where

λ ¼
4π

wln 4ρ0=w
� � sin 2 πy0

w


 �

: (42)

Therefore, in the 1D analogy the point potential depends not only on the impurity’s de-Broglie

wavelength in free space, but on its location (y0) and the wire’s width as well.

In this case, the barrier’s transmission can be as high as 1. It depends on the location of the

point defect in the horizontal dimension, namely, at the resonance energy

Ψ rð Þ ¼ i sin
πy

w


 �

exp ik1xð Þ
exp �2ik1Lþ iΞð Þ

cosh 2K1x0ð Þ
(43)

where

tanΞ ¼ � K=k� k=Kð Þ=2: (44)

However, there is a point where a minimum occurs. When the incoming particle’s energy

satisfies

1

2π
ln

ρ0

ρ

� �

þ
2

w

X

∞

n¼2

sin 2 nπy0
w


 �

ℜGþ
1D x0; x0;Enð Þexp �

nπρ

2w


 �2
� �

¼ 0 (45)

which at the vicinity of the second mode threshold can be approximated by
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1

2π
ln

ρ0

ρ

� �

� 1

w
sin 2 2πy0

w

� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V � Eþ 2π=wð Þ2
q � 1

π

X

∞

n¼3

sin 2 nπy0
w


 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 4
p exp � nπρ

2w


 �2
� �

¼ 0 (46)

or

1

2π
ln

3:8ρ0
w

� �

¼ 1

w
sin 2 2πy0

w

� �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V � Eþ 2π=wð Þ2
q : (47)

Again, we see that this equation does not always have a solution. It is required that 3.8ρ0 > w,

in which case

Emin ¼ V þ 2π

w

� �2

1� sin 4 2πy0
w

� �

ln
3:8ρ0

w

� �� 
�2
" #

(48)

This minimum is presented in Figure 3 by a dotted line.

In which case, the denominator of Eq. (29) is exactly sin 2 πy0
w

� �

2
wG

þ
1D x0; x0;E1ð Þ, and therefore at

this point, the transmission is exponentially small, and not zero as in the zero potential case, i.e.,

Ψmin rð Þ ¼ sin
πy

w


 �

χ
þ
E,1 xð Þi sin

2 2πy0=w
� �

sin 2 πy0=w
� �

ℑGþ
1D x0; x0;E2ð Þ

ℜGþ
1D x0; x0;E1ð Þ

¼ � sin
πy

w


 �

χ
þ
E,1 xð Þi sin

2 2πy0=w
� �

sin 2 πy0=w
� � 2K1ε2

(49)

Figure 3. Plot of T11 = |t11|
2, i.e., the probability to remain in the base (1) mode of propagation as a function of the

normalized energy. The barrier parameters were L = 2w and V = 2/w2, and the defect parameters were ρ0 = 30w, x0 = 0, and

y0 = 0.2w. The dotted line represents the minimum transmission point Emin, and the dashed line represents the resonance

energy Eres.
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which is an exponentially small value. This result agrees with Ref. [24].

It should be stressed, however, that this is a pure 2D phenomenon, which is a consequence of

the interaction between the point defect and the wire, and therefore, this minimum disappears

in the 1D approximation.

In Figures 4–9, a 2D probability density plots (of |ψ(x, y)|2) for various energies are presented.

In Figure 4, the energy is too low for the particles to penetrate the barrier, and therefore, almost

all of them are reflected from the barrier.

In Figure 5, the particle’s energy is close to the resonance energy, and therefore, a quasi-

bound state is generated at the vicinity of the defect, and the transmission probability

is high.

Figures 6 and 7 are examples for local minimum and local maximum respectively.

In Figure 8, the particle’s energy is close to the minimum (Eq. (48)), which was generated by

the interplay between the waveguide and the point defect.

Another important working point is when Kp = 0, i.e., V � E + (pπ/w)2 = 0 and kp ¼
ffiffiffiffi

V
p

.

At this energy, a universal behavior appears. The scattered wavefunction reads

Figure 4. A false colors presentation of the probability density |Ψ(x, y)|2 when the incoming particle’s energy is lower

than the barrier’s height: E = 10.5w� 2 < (π/w)2 + V ffi 11.87w� 2. The parameters are same as in Figure 3. The dashed lines

represent the barrier’s boundaries, and the cross at the center of the circle represents the impurity’s location.
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Figure 5. Same as Figure 4 but when the income particle’s energy is close to the resonance energy, i.e. E = 11.69w� 2
ffi Eres.

Figure 6. Same as Figure 4 but when the income particle’s energy is close to a local minimum at E = 12.45w� 2.
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Figure 7. Same as Figure 4 but when the income particle’s energy is close to a local maximum at E = 15.4w� 2.

Figure 8. Same as Figure 4 but when the income particle’s energy is close to a local minima at E = 40.02w� 2.
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Ψ rð Þ ¼ sin
mπy

w


 �

χ
þ
E,m xð Þ þ

sin
mπy0
w

� �

χ
þ
E,m x0ð Þ sin pπy

w

� �

Gþ
1D x; x0;Ep

� �

sin
pπy0
w

� �

Gþ
1D x0; x0;Ep

� � : (50)

This expression is universal in the sense that it is independent of the point defect potential. It

depends only on its location. In case this is a surface defect, i.e., y0/w < < 1 then even the

dependence on the vertical location vanishes

Ψ rð Þ ¼ sin
mπy

w


 �

χ
þ
E,m xð Þ þ

m

p
χ
þ
E,m x0ð Þ sin

pπy

w


 � Gþ
1D x; x0;Ep

� �

Gþ
1D x0; x0;Ep

� � : (51)

This universality agree with Ref. [25].

For |x| < L Eq. (51) reduces to the simple form

Ψ xj j < L, yð Þ ¼ sin
mπy

w


 �

χ
þ
E,m xð Þ þ

sin
mπy0
w

� �

sin
pπy0
w

� � χ
þ
E,m x0ð Þ sin

pπy

w


 �

(52)

and in the case of a surface defect, it reduces to even a simpler expression

Ψ xj j < L, yð Þ ¼ sin
mπy

w


 �

χ
þ
E,m xð Þ þ

m

p
χ
þ
E,m x0ð Þ sin

pπy

w


 �

(53)

Figure 9. At the transition level E = V + (π/w)2, a universal pattern appears.
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The fact that the second part is independent of x is also in agreement with Ref. [25].

But unlike Ref. [25], due the barrier, the second mode does propagate, but the expression is still

generic (in the sense that it is independent of the impurity’s parameter), beyond the barrier it

reads

Ψ xj j > L, yð Þ ¼ sin
mπy

w


 �

χ
þ
E,m xð Þ þm

p
χ
þ
E,m x0ð Þ sin pπy

w


 �

exp i
ffiffiffiffi

V
p

xj j � Lð Þ

 �

: (54)

This special universal case is illustrated in Figure 9, and it is a manifestation of the effect of Ref.

[25], where the footprints of the defect are clearly seen but without any fingerprints. That is,

the defect is clearly there, but the scattering is independent of its strength (its eigenenergy).

4. Physical realization and implementation

Let us apply this model to a 1.5-nm wide silicon wire, which is contaminated by a single

phosphorous atom. In this case w = 1.5 nm, the phosphorous atom radius is a = 0.098 nm, the

effective electron mass in silicon is me ffi 0.2m. Then the wire transmission (proportional to

the device’s conductivity in units of e2/h) as a function of the potential at the atom’s center V0,

Eq. (6) (which is proportional to the transistor gate voltage) is plotted in Figure 10 for two

scenarios. In the first scenario, the electron’s energy, i.e., the Fermi energy, is E = 0.9 eV and in

the second, it is equal to E = 3 eV. In the former scenario, the device works at the vicinity of

the quantum dot’s resonance, and in the latter, it works at the vicinity of the fano-(anti)

resonance.

In both scenarios, a change of about a volt in the gate voltage can change drastically the wire’s

current. Therefore, it can be implemented as a simplified but rich model for a single atom

transistor.

Figure 10. The wire’s transmission as a function of the potential on the atom. In the left plot, the electron energy is

E = 0.9 eV and in the right plot, E = 3 eV. The other parameters are w = 1.5 nm, me ffi 0.2m, a = 0.098 nm, L = 2w = 3 nm, and

the potential barrier V = 0.15 eV.
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