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Abstract

Protein phosphorylation plays a key role in the synthesis and degradation of dry seed 
storage proteins. In contrast, no evidence for phosphorylation has been reported to date 
in vegetative storage proteins (VSPs). The patatin multigene family encodes the major VSP 
of the potato, Solanum tuberosum L. This study addresses for the first time the identification 
and mapping of phosphorylated patatin forms based on high-resolution two-dimensional 
electrophoresis (2-DE) profiles. Patatin isoforms from mature tubers of cultivar Kennebec 
were separated by 2-DE and subsequently identified by tandem mass spectrometry. In-gel 
identification and mapping of phosphorylated isoforms were performed using the mul-
tiplex phosphoprotein-specific staining Pro-Q DPS. We found that phosphorylation is 
a ubiquitous post-translational protein modification associated with isoforms of patatin. 
In addition, protein dephosphorylation with hydrogen fluoride-pyridine coupled to 2-DE 
was used for quantitative profiling of phosphorylated patatin. This experimental approach 
showed that patatin comprises multiple isoforms with very different phosphorylation level. 
Thus, phosphorylation rates over isoforms ranged from 4.6 to 52.3%. Overall, the identifica-
tion and mapping of differentially phosphorylated patatin opens up new exploratory ways 
to unravel the molecular mechanisms underlying its mobilization along the tuber life cycle.

Keywords: patatin, Solanum tuberosum, seed storage proteins, storage protein mobilization, 
tuber phosphoproteome, vegetative storage proteins

1. Introduction

Potato storage proteins provide necessary nutrients for the development of tuber, mature-to-

sprouting tuber transition and successful plant growth [1–4]. The patatin is the major VSP of  

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



S. tuberosum, accounting for up to 45% of the total soluble protein [1, 4–7]. However, the molec-

ular mechanism that triggers the cleavage of the patatin along the tuber life cycle has not to date 

been identified. The regulatory mechanisms involved in the synthesis and degradation of stor-

age proteins are better known in dry seeds [8–13]. Phosphorylation has proven to be a key 

regulator mechanism in the maturation, dormancy and germination of seed storage proteins 

(SSPs). Thus, reverse phosphorylation of the phytohormone abscisic acid (ABA) seems to play 

a crucial regulatory role in the synthesis of SSPs at the transcriptional level [11, 12]. More spe-

cifically, phosphoproteome studies in rapeseed and rice reported that cruciferins and cupins 
achieve higher levels of phosphorylation at the late maturation stage [9, 13]. In addition, mobi-

lization of the major SSP in the common bean, phaseolin, was found to occur in germinating 

seeds through degradation of highly phosphorylated isoforms [10]. It suggests that degradation 

of SSPs in dry-to-germinating seed transition occurs through a phosphorylation-dependent 

regulatory mechanism.

The past few years have witnessed a steady discovery of phosphorylated SSPs such as cruci-

ferins, napins, cupins, legumins and vicilins [8–10, 14, 15], but no evidence of phosphorylated 

isoforms has been reported to date in patatin or other VSPs such as sporamins and ocatins. 

Therefore, elucidating the question of whether patatin can be phosphorylated is a mandatory 

initial step in follow-up research concerning the molecular processes underlying its mobi-

lization. First of all, the term patatin applies to a group of glycoproteins encoded by a gene 

family constituted by ~10–18 genes per haploid genome, most of them organized as a single 

gene cluster at the end of the long arm of chromosome 8 [16–18]. Patatin gene family mem-

bers exhibit a very high degree of nucleotide sequence identity [19, 20]. In addition, patatin 

is a family of immunologically indistinguishable isoforms with similar structural properties 

and thermal conformational stability [21, 22]. Overall, extensive heterogeneity in molecu-

lar mass (40–45 kDa) and isoelectric point (4.5–5.2) seems to be the most salient differential 
molecular features among isoforms [21–25].

The 2-DE has provided the most complete information about the heterogeneity in molecular 

mass (M
r
) and isoelectric point (pI) of the patatin [23–25]. Specifically, a total of 17–23 spots 

with variations in M
r
 and/or pI were detected in 2-DE patatin profiles obtained from different 

potato cultivars [25]. Variations in M
r
 seem to be mainly due to differential N-glycosylation 

at three specific asparagine residues of the amino acid sequence by N-linked oligosaccharide 

side chains or glycans [21, 22, 25]. Charge differences among isoforms could be explained 
by variations in positively and negatively charged amino acids [22]. However, variable 

phosphorylation has potential to change the pI of proteins by substituting hydroxyl groups 

on amino acid residues with negatively charged phosphate groups [26]. Therefore, phosphor-

ylation could be a plausible but unexplored factor contributes to explain charge heterogeneity 

among patatin isoforms on 2-DE gels.

In this study, we undertook a proteomic approach addressed to the identification 
and mapping of phosphorylated isoforms of the patatin multigene family based on high-

resolution 2-DE. First, relatively abundant tuber proteins were successfully separated 

from low-abundance proteins by loading low amounts of total protein sample into 2-DE 
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gels. Subsequently, high-abundance patatin proteins were identified and distinguished 
from other tuber abundant proteins on 2-DE gels using mass spectrometry (MS) tech-

niques. Second, direct and rapid in-gel multiplex identification and mapping of phosphor-

ylated isoforms of the patatin were achieved using the Pro-Q Diamond phosphoprotein 
stain (Pro-Q DPS), which specifically binds to the phosphate moieties of phosphoproteins 
[27]. Third, quantitative profiling of phosphorylated patatin isoforms was assessed by 
chemical dephosphorylation of phosphoproteins with hydrogen fluoride-pyridine (HF-
P) [28–30]. For this purpose, the volume difference between phosphorylated and dephos-

phorylated 2-DE patatin spots was used to quantify protein phosphorylation levels. This 

experimental pipeline is a highly valuable top-down proteomic approach for the identifi-

cation and mapping of phosphorylated isoforms of high-abundance storage proteins. It 

has been instrumental in unravelling the quantitative profiling of phosphorylated phaseo-

lin isoforms in common bean seeds as well as their dynamic changes in dry-to-germinat-

ing seed transition [10]. Proteomic analyses were performed from total protein extracts 

of mature tubers of cultivar Kennebec. The obtained results will facilitate follow-up stud-

ies for better understanding of the regulatory mechanisms underlying patatin degradation 
and its biochemical status along the tuber life cycle.

2. Materials and methods

2.1. Plant material

Proteomic analyses were performed from mature potato tubers of cv. Kennebec (2n = 4x = 48). 
Larger pieces of lyophilized tuber were homogenized with a pre-cooled mortar and pestle. 

The samples were stored at −80°C until protein extraction. Four biological replicates were 
used for experiments.

2.2. Protein extraction and quantification

Total tuber proteins were extracted using the phenol extraction method. A 200 mg sample 

of lyophilized tuber was transferred to an extraction buffer (500 mM Tris-HCl, 500 mM 
EDTA, 700 mM sucrose, 100 mM KCl pH 8.0, 2% DTT and 1 mM PMSF). Tris-HCl (pH 
6.6–7.9) saturated phenol was added and the phenol phase was collected using centrifuging 

(4500 rpm at 4°C). Protein precipitation solution of 0.1 M ammonium acetate in cold metha-

nol was added. Protein pellet was washed with 0.1 M ammonium acetate and 10 mM DTT, 

and with 80% acetone and 10 mM DTT. The resuspended protein pellet was then diluted 

in lysis buffer (7 M urea; 2 M thiourea; 4% CHAPS; 10 mM DTT, and 2% PharmalyteTM 

pH 3–10, GE Healthcare, Uppsala, Sweden). Protein concentration was evaluated using 

the commercial CB-X protein assay kit (G-Biosciences, St. Louis, MO, USA) according 

to the instructions of the manufacturer for interfering agent removal and use with a micro-

plate reader. The bovine serum albumin (BSA) was used as standard protein to generate 

calibration curves.
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2.3. Two-dimensional electrophoresis (2-DE)

High-resolution 2-DE profiles of patatin isoforms were obtained following the procedure 
described in López Pedrouso et al. [10]. Briefly, total protein samples (75 μg of protein) of each 
biological replicate were loaded into immobilized pH gradient (IPG) strips of 24-cm long 

and 4–7 pH linear gradient (Bio-Rad Laboratories, Hercules, CA, USA). First dimensional iso-

electric focusing (IEF) was performed in a PROTEAN IEF Cell System (Bio-Rad Laboratories) 
after IPG strip rehydration for 12 h at 50 V. Rapid voltage ramping was subsequently applied 

to reach a total of 70 kVh. Equilibration of IEF strips was performed before running second 

dimension using equilibration buffers. The second dimension (SDS-PAGE) was performed 
on 10% polyacrylamide gels using an Ettan DALTsix large vertical electrophoresis system (GE 
Healthcare). Second-dimension gels were run using a constant electric current of 16 mA per 

gel for 15 h at 25°C.

2.4. Enzymatic deglycosylation of patatin

Patatin deglycosylation was performed with the enzyme protein-N-glycosidase F (PNGase F, 
New England Biolabs, Ipswich, MA, USA) according to the manufacturer specifications. A 75 μg  
sample of total protein extract from mature tuber was incubated with PNGase F (25 U/mL) 
and diluted in reaction buffer (New England Biolabs) until a final volume of 20 μL. The mix-

ture was incubated for 12 h at 37°C. Patterns of deglycosylated patatin isoforms on 2-DE gels 
were obtained as described earlier.

2.5. Pro-Q staining for phosphoproteins

Pro-Q Diamond phosphoprotein stain (Pro-Q DPS, Molecular Probes, Leiden, The Netherlands) 
was used for the in-gel detection of phosphorylated patatin polypeptides, as described pre-

viously [31]. Briefly, gels were fixed with 50% methanol and 10% acetic acid for 60 min 
and washed twice for 15 min each with distilled water. The gels were subsequently incubated 

for 120 min with two-fold water-diluted Pro-Q DPS, destained four times (30 min per wash) 
with 50 mM sodium acetate and 20% ACN pH 4.0, and washed again twice with distilled 
water (5 min per wash). The PeppermintStick™ (Molecular Probes) phosphoprotein marker 

was added to tuber protein extracts before 2-DE. Phosphorylated (ovalbumin, 45.0 kDa; 
and β-casein, 23.6 kDa) and unphosphorylated (β-galactosidase, 116.25 kDa; bovine serum 
albumin, 66.2 kDa; avidin, 18.0 kDa; and lysozyme, 14.4) PeppermintStick proteins were used 
as positive and negative controls of phosphorylation, respectively.

2.6. Chemical dephosphorylation of patatin

The chemical dephosphorylation of patatin was performed with hydrogen fluoride-pyridine 
(HF-P) as previously described [28, 29], with some modification [10]. An amount of 1 mg 

of total protein extract from tuber of cv. Kennebec was dissolved in 250 μL of 70% HF-P 
and incubated on ice for 2 h. The mixture was neutralized by addition of 10 M sodium 

hydroxide solution. Proteins were desalinated using Amicon Ultra-4 centrifugal filter devices 
(Millipore, Billerica, MA, USA) and then eluted in 300 μL of lysis buffer. Prior to 2-DE, protein 
purification was performed using the Clean-up kit (GE Healthcare).
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2.7. SYPRO Ruby staining for total protein

2-DE gels were stained with SYPRO Ruby fluorescent stain (Lonza, Rockland, ME, USA), 
for total protein density following the manufacturer’s indications. Pro-Q DPS-stained gels 
were also post-stained with SYPRO Ruby to detect total protein.

2.8. Image analysis

The 2-DE images from gels stained with Pro-Q DPS or SYPRO Ruby fluorescent dyes were 
acquired using a Gel Doc XR+ system (Bio-Rad Laboratories). Digitalized gels were analyzed 

with PDQuest Advanced software v. 8.0.1 (Bio-Rad Laboratories). Gel matching, spot iden-

tification and quantification of spot volumes were performed after background subtraction 
and normalization based on total density in valid spots. Automatic matches were manu-

ally checked. Only the reproducibly detected patatin spots across replicates were selected 

for quantitative analyses. Experimental pI-values over spots were determined using the lin-

ear scale of IEF-strips as reference, whereas M
r
-values were assessed using PeppermintStick 

(Molecular Probes) molecular weight markers and standard molecular mass markers ranging 

from 15 to 200 kDa (Fermentas, Ontario, Canada).

2.9. In-gel digests

Protein spots of interest were excised from polyacrylamide gels and subjected to in-gel diges-

tion with trypsin as described previously [32]. Briefly, disulfide reduction and alkylation 
of the excised protein spots were performed with 10 mM DTT (Sigma-Aldrich, St. Louis, MO, 

USA) in 50 mM ammonium bicarbonate (Sigma-Aldrich) and 55 mM iodoacetamide (Sigma-

Aldrich) in 50 mM ammonium bicarbonate, respectively. The gel pieces were washed with 50 mM  

ammonium bicarbonate in 50% methanol (HPLC grade, Scharlau, Barcelona, Spain), dehy-

drated with acetonitrile (ACN, HPLC grade) and subsequently dried in a SpeedVac (Thermo 
Fisher Scientific, Waltham, MA, USA). Dry gel pieces were incubated with modified porcine 
trypsin (Promega, Madison, WI, USA) at a concentration of 20 ng/μL in 20 mM ammonium 
bicarbonate, at 37°C for 16 h. After digestion, peptides were recovered by incubation (three 
times/20 min) in 40 μL of 60% ACN in 0.5% formic acid. The resulting tryptic peptides were 
concentrated in a SpeedVac and stored at −20°C.

2.10. Mass spectrometry (MS)

Protein identification was performed by MALDI-TOF and MALDI-TOF/TOF MS as reported 
by López-Pedrouso et al. [10]. Peptides were dissolved in 4 μL 0.5% formic acid and then 
were mixed with an equal volume (0.5 μL) of matrix solution, containing 3 mg of α-Cyano-
4-hydroxycinnamic acid (CHCA) dissolved in 1 mL of 50% ACN in 0.1% trifluoroacetic 
acid (TFA). The mixture was deposited using the thin layer method, onto a 384 Opti-TOF 

MALDI plate (Applied Biosystems, Foster City, CA, USA). Peptide MS and MS/MS data 

were acquired with a 4800 MALDI-TOF/TOF mass spectrometer (Applied Biosystems). MS 

spectra were acquired in positive-ion reflector mode with an Nd:YAG laser (355 nm wave-

length) and an average number of 1000 laser shots. Each spectrum was internally calibrated 

with at least three trypsin autolysis products. All MS/MS spectra were performed by  selecting 
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 precursors ions with a relative resolution of 300 full width at half maximum (FWHM) 
and metastable suppression. The 4000 Series Explorer Software v. 3.5 (Applied Biosystems) 

was used for mass data analysis. Combined peptide mass fingerprinting (PMF) and MS/MS 
fragment-ion spectra were interpreted with GPS Explorer Software v. 3.6 using Mascot soft-

ware v. 2.1 (Matrix Science, Boston, MA, USA) to search against the S. tuberosum UniProtKB/
Swiss-Prot databases. Mascot database search parameters were: precursor mass tolerance 
of 50 ppm, MS/MS fragment tolerance of 0.6 Da, one missed cleavage allowed, carbamido-

methyl cysteine (CAM) as fixed modification and oxidized methionine as variable modifi-

cation. Identification of patatin phosphopeptides was also performed from spectrum data 
allowing phosphor-serine (PhosphoS), phosphor-tyrosine (PhosphoY) and phosphor-threo-

nine (PhosphoT) residues as variable modification to search against the UniProtKB/Swiss-
Prot databases. Analysis of phosphorylation sites was implemented using the Plant Protein 

Phosphorylation DataBase (P3DB) [33]. All identifications and spectra were manually checked 
for validation. Proteins with at least two matched peptides and statistically significant (p-value 

< 0.05) MASCOT scores were selected as positively identified.

2.11. Data analysis

The phosphorylation rate at each spot was quantified using the measure PR [10]. It is defined 
as PR = [(T − D)/T] × 100, where T and D are the volumes of a given spot on 2-DE gels untreated 

(total protein volume) and treated (dephosphorylated protein volume) with HF-P, respec-

tively. Non-parametric bootstrap confidence intervals (CIs) were obtained for mean values 
of PR across four biological replicates by the bias-corrected percentile method [34]. For each 

observed mean of PR, 2000 bootstrap samples of size N = 4 were drawn with replacement by 
applying a Monte Carlo algorithm. The 95 and 99% CIs for the observed mean of PR were con-

structed from distribution of 2000 bootstrap mean replications. The bootstrap estimate of bias 

was obtained from the proportion of bootstrap mean replications lower than the original 

estimate of the mean, and bias-corrected CIs were then calculated using the theoretical nor-

mal distribution as described by Efron [34]. PR data were clustered by using the unweighted 

pair-group method with arithmetic averaging (UPGMA). The UPGMA dendrogram derived 

from the matrix of pairwise PR-values was generated using NTSYSpc v. 2.1 software (Applied 
Biostatistics, Setauket, NY, USA). Descriptive statistics and Spearman’s correlation test were 
calculated with the IBM SPSS Statistics 20 (SPSS, Chicago, IL, USA) statistical software 

package.

3. Results and discussion

3.1. Map of patatin isoforms based on 2-DE

Patatin isoforms in mature potato tuber of cv. Kennebec were first recognized on our 2-DE gels 
according to the previously reported studies on 2-DE patatin profiles [23–25]. We found that 
patatin profiles were constituted by a complex constellation of different spots showing large 
variations in M

r
 and/or pI (Figure 1). Specifically, 2-DE resolved a total of 20 spots distributed 
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into three main levels with M
r
 between 40.1 and 43.0 kDa and pI range varying from 4.8 to 5.3. 

A total of 20 spots were excised from gel and identified by MALDI-TOF and MALDI-TOF/
TOF MS. The identification results are listed in Table 1. All but one small and weakly stained 

spot (spot 3) were confidently identified. MS analyses confirmed that, indeed, those spots 
contained only patatin polypeptides. However, most of the identifications were ambiguous 
and compatible with the occurrence of different types of patatin. This uncertainty is a conse-

quence of the well-known high degree of sequence homology (at least 90%) among isoforms 

[19, 20]. Only protein spots with higher M
r
 (spots 1, 2 and 4) were unambiguously identified 

as Patatin-3-Kuras 1 (PT3K1). It can be understood by considering that the pt3k1 gene exhibits 
the most differentiated sequence from other patatin genes according to the phylogenetic tree 
inferred from cDNA sequence analysis [24].

The two-dimensional map of the patatin was implemented with the location of glycosyl-

ated isoforms using the enzyme PNGase F. It is an effective enzymatic method for remov-

ing almost all N-linked oligosaccharides (glycans) from glycoproteins through the hydrolysis 

of the glycosamide linkage between the terminal GlcNAc and the Asn amide nitrogen [35]. 

We found that the three main spot levels in M
r
 on 2-DE gels obtained from untreated samples 

merged to a single spot level after incubation with PNGase F, with an apparent decrease 
in M

r
 (not shown). It indicates that variable degrees of glycosylation are a major contributor 

to the M
r
 heterogeneity detected on 2-DE gels. High M

r
 difference among patatin isoforms has 

been explained by the presence of up to three potential N-glycosylation sites at Asn residues 
[22, 24, 25, 36]. The mapping of glycosylated isoforms on 2-DE gels can be useful in future 

studies investigating the functional role of this post-translational protein modification (PTM) 
of the patatin.

Figure 1. High-resolution 2-DE reference map of the patatin isoforms in mature tuber of cv. Kennebec. The enlarged gel 
image shows patatin spots consecutively numbered in the order of the lower to the higher pI. 2-DE was performed using 

a 24-cm long IPG strip of linear pH 4–7 gradient in the first dimension and SDS-PAGE (10% by mass) in the second. 
The protein loading was 75 μg and the gel was stained with SYPRO Ruby fluorescent stain. The arrows indicate 
ovalbumin (45.0 kDa) marker position on the gel. The M

r
 of spots was assessed from ovalbumin and standard molecular 

mass markers ranging from 15 to 200 kDa and their pIs from strips of linear pH.
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3.2. In-gel identification of phosphorylated patatin isoforms

Pro-Q DPS was used for in-gel multiplex identification of phosphorylated patatin iso-

forms. Representative 2-DE images of patatin in mature tuber of cv. Kennebec on the same 
gel stained with Pro-Q DPS and post-stained with SYPRO Ruby are shown in Figure 2. 

The PeppermintStick markers used as positive and negative controls of protein phosphory-

lation validated the specificity of the recognition of phosphoproteins by Pro-Q DPS under 
our experimental conditions. It was found that all 20 patatin spots of the reference pattern 
exhibited Pro-Q DPS fluorescent signal. Similar result was obtained for patatins from mature 
tubers of cvs. Agria, Amanda and Ivory Russet (not shown). We can conclude, therefore, that 
phosphorylation is a ubiquitous PTM associated with isoforms of the patatin.

Spot no.a Exp. pI b Match./cov. (%)c Mascot score Protein name (type)d No. phosphopeptides/

phosphosites

1 4.84 7/24 191 Patatin (PT3K1) 1/1

2 4.88 13/58 571 Patatin (PT3K1) 7/17

3 4.90 – – Unidentified –

4 4.93 5/16 158 Patatin (PT3K1) –

5 4.96 3/8 106 Patatin (various) –

6 4.96 5/21 >60–187 Patatin (various) –

7 5.02 11/40 >60–200 Patatin (various) –

8 5.02 6/25 >60–297 Patatin (various) –

9 5.05 7/28 >60–324 Patatin (various) 1/1

10 5.08 5/11 >60–199 Patatin (various) 1/1

11 5.12 9/32 >60–337 Patatin (various) 3/7

12 5.13 8/30 >60–298 Patatin (various) –

13 5.14 9/31 >60–475 Patatin (various) 1/1

14 5.16 9/31 >60–267 Patatin (various) –

15 5.20 2/11 >60–103 Patatin (various) 4/9

16 5.20 10/40 >60–440 Patatin (various) 4/10

17 5.23 5/25 >60–123 Patatin (various) –

18 5.25 9/31 >60–259 Patatin (various) 5/9

19 5.29 3/9 >60–129 Patatin (various) –

20 5.27 10/41 >60–550 Patatin (various) 4/8

aGel position of assigned spots is shown in Figure 1.
bExperimental pI value.
cMatched peptides and percentage of the polypeptide sequence covered by matched peptides.
dPT3K1, abbreviation for Patatin-3-Kuras 1.

Table 1. Protein, phosphopeptides and phosphosites along 2-DE patatin spots of cv. Kennebec, identified from MALDI-
TOF and MALDI-TOF/TOF MS data.
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A prospective identification of phosphopeptides and phosphosites by MASCOT search 
using spectra data from MALDI-TOF and MALDI-TOF/TOF MS revealed 22 non-redundant 

patatin phosphopeptides containing 49 non-redundant phosphorylation sites (Table 1). 

Comparison with large-scale phosphoproteomic screens in other species using the Plant 

Protein Phosphorylation DataBase (P3DB) [33] suggests that most phosphorylation sites 

identified are novel to this study. Thus, no phosphorylated ortholog sites were identified 
in other plant phosphoproteomics data for Arabidopsis thaliana, Brassica napus, Glycine max, 

Medicago truncatula, Oryza sativa and Zea mays. It is noteworthy that enrichment methods 

of underrepresented phosphorylated proteins or peptides can be conducted prior to high-

resolution MS analysis to precisely identify and map phosphorylation sites, but the amount of 

protein  collected in a spot is often insufficient for downstream enrichment methods [37]. 

Figure 2. Mapping of phosphorylated patatin spots in mature tubers (cv. Kennebec) on 2-DE gel. (a) Reference profile 
of patatin spots on gel stained with the non-specific-protein SYPRO Ruby stain. (b) Profile of phosphorylated patatin 
spots from the same gel stained with the specific-phosphoprotein Pro-Q DPS fluorescent dye. The phosphoprotein 
ovalbumin was used as a marker of the reliability of Pro-Q DPS under our experimental conditions.
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Consequently, it would be difficult to assign phosphorylation sites to the specific isoforms 
found along 2-DE patatin patterns. At the present time, the 2-DE map of phosphorylated iso-

forms appears to be more informative than the exact identification of phosphosites in order 
to evaluate their biological meaning. Regardless of this, phosphorylation site prediction anal-

ysis is an additional evidence for phosphorylation of patatin.

3.3. Quantitative profiling of phosphorylated patatin isoforms

Changes in the phosphorylation level across patatin spots of cv. Kennebec were assessed by 
chemical dephosphorylation of total tuber protein extracts with HF-P coupled to 2-DE. This 

experimental approach provides more efficient information than Pro-Q DPS to the identifi-

cation and quantification of phosphorylated proteins on 2-DE gels [10]. The reason is that 

the Pro-Q DPS fluorescent signal of spots containing low-abundance phosphopeptides is seri-
ously suppressed by abundant non-phosphorylated phosphopeptides. The chemical dephos-

phorylation method has the advantage of using SYPRO Ruby stain, which combines good 

sensitivity with excellent linearity [38].

Representative 2-DE gel images of the patatin pattern before and after HP-F treatment 
are shown in Figure 3. First of all, note that spots of the protein phosphorylation marker, 

ovalbumin, underwent a basic shift on pI after HF-P treatment. This indicates that HF-P 

had sufficient time to achieve a complete dephosphorylation of polypeptides. With respect 
to the 2-DE profiles of dephosphorylated patatin, we can highlight two important observa-

tions. First, all spots observed in untreated samples were also present after dephosphoryla-

tion, but with an apparent decrease in volume. This suggests that patatin spots contained 

a mixture of phosphorylated and unphosphorylated isoforms. Accordingly, other factors 

together with protein phosphorylation must be contributing to charge heterogeneity along 

2-DE patatin patterns such as difference in charged amino acids over isoforms [22]. Second, 

newly arisen spots (spots 21–27) found in dephosphorylated patatin patterns appeared 
on more basic positions of 2-DE gels. MS analysis confirmed that these new spots contained 
patatin (data not shown), and thereby they are isoforms that underwent a basic shift on pI 

after dephosphorylation with HF-P.

The phosphorylation level of each spot was evaluated with the measure PR using volumes 

obtained by PDQuest software from phosphorylated and dephosphorylated profiles. Mean 
(±SE, standard error) values of PR for each spot together with bias-corrected 95 and 99% 

bootstrap CIs are shown in Table 2. Interestingly, we found that spots were not uniformly 

phosphorylated: mean PR-values across spots were in the range of 4.6–52.3% and aver-

aged (±SE) 34.4 ± 2.8%. The bootstrapped 95 and 99% CIs revealed statistically significant 
differences (p-value < 0.05) between many pairs of spots. Patatin spots were subsequently 
grouped into clusters from PR-values using a dendrogram UPGMA. The resulting den-

drogram showed that spots cluster in three main groups with statistically significant 
mean differences in PR (p < 0.01) assessed by bias-corrected 99% bootstrap CIs (Figure 4). 

In particular, spots of the group 3 (spots 13 and 20) formed a well-separated cluster (mean 

PR = 8.3%) from the two remaining groups (the mean PR of groups 1 and 2 was 44.0 

and 30.1%, respectively).
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Elucidating whether changes in abundance of protein phosphorylation reflect either changes 
in phosphorylation status or changes in the abundance of the protein itself is a major challenge 

in the interpretation of quantitative phosphoproteomics studies [39, 40]. Thus, phosphopeptide 

enrichment methods prior to high-resolution MS permit the identification of low-abundance 
phosphoproteins but prevent joint quantitation of phosphorylation status and abundance 

of proteins [39]. However, our experimental approach allowed us to successfully tackle this 

problem. Thus, we have detected a statistically significant negative relationship between 
patatin spot volumes and their corresponding PR-values by Spearman’s non-parametric cor-

relation test (r
s
 = −0.42, p < 0.001, n = 70). In addition, PR-values were negatively correlated 

with spot pIs (r
s
 = −0.31, p < 0.01, n = 70). As expected under a differential phosphorylation 

Figure 3. 2-DE profile of dephosphorylated patatin with HF-P in mature tuber (cv. Kennebec). (a) Reference profile 
of patatin without dephosphorylation treatment on gel stained with SYPRO Ruby stain. (b) Profile of patatin after 
chemical dephosphorylation on gel stained with SYPRO Ruby. Closed circles represent newly arisen spots on gel 

after dephosphorylation as compared to the reference profile. Identification of new spots as patatin was performed by 
MALDI-TOF and MALDI-TOF/TOF MS.

Identification and Mapping of Phosphorylated Isoforms of the Major Storage Protein of Potato...
http://dx.doi.org/10.5772/intechopen.70400

75



hypothesis, isoforms located on acidic gel positions tended to be more highly phosphorylated 

than those of basic positions. It is also noteworthy that phosphorylation levels were estimated 

using the measure PR, which takes into account the amount of protein at each spot. Therefore, 

differential phosphorylation along patatin spots seems to be genuine and cannot be explained 
only by changes in protein abundance.

The control of tuber sprouting is a major target in potato breeding because premature tuber 

sprouting during their lengthy storage leads to important quality and economic loss [41–43]. 

However, the molecular mechanisms controlling dormancy release and tuber sprouting are 

not yet sufficiently known [42–44]. The identification and mapping of phosphorylated  isoforms 

Spot no.a pI Mean (± SE) PR
P (   θ 

^

    
B
   ≤  θ 

^

   )b
95% bootstrap  

CI (CL, CU)c

99% bootstrap  

CI (CL, CU)c

1 4.84 39.75 ± 2.53 0.53 35.6, 44.1 34.6, 44.3

2 4.88 41.21 ± 6.07 0.57 31.9, 52.9 30.1, 54.5

3 4.90 43.05 ± 2.88 0.55 37.5, 47.9 37.4, 49.3

4 4.93 28.11 ± 4.35 0.76 23.8, 32.5 23.8, 32.5

5 4.96 42.83 ± 2.02 0.56 40.1, 46.9 39.4, 48.3

6 4.96 52.34 ± 4.10 0.57 46.4, 60.4 44.5, 61.8

7 5.02 39.01 ± 4.11 0.51 32.4, 45.6 30.4, 45.7

8 5.02 27.19 ± 5.61 0.52 16.9, 35.0 15.3, 35.0

9 5.05 32.48 ± 3.30 0.51 26.7, 37.3 22.9, 38.0

10 5.12 30.48 ± 4.72 0.57 23.3, 40.2 22.6, 42.4

11 5.12 25.13 ± 4.31 0.57 18.8, 33.1 16.6, 34.1

12 5.13 51.39 ± 5.52 0.55 41.2, 60.6 40.0, 62.1

13 5.14 4.60 ± 2.04 0.75 2.6, 6.6 2.6, 6.6

14 5.16 44.34 ± 9.37 0.52 25.7, 57.3 25.0, 59.0

15 5.20 41.87 ± 3.80 0.52 35.7, 49.3 34.7, 51.2

16 5.20 26.99 ± 8.37 0.58 18.1, 37.0 10.4, 37.0

17 5.23 35.96 ± 2.42 0.53 32.9, 40.9 32.2, 42.8

18 5.25 34.16 ± 4.09 0.53 26.2, 39.6 25.6, 40.0

19 5.29 N/Ad N/A N/A N/A

20 5.27 11.95 ± 4.63 0.55 6.8, 20.9 5.6, 20.9

Volume of spots for untreated and dephosphorylated protein samples with HF-P were assessed by PDQuest software.
aGel position of assigned spots is shown in Figure 1.
bThe bootstrap distribution is median biased if the probability (P) of (   θ   

∧
    
B
   ≤  θ   

∧
   ) ≠ 0.50, which was calculated from 2000 

bootstrap replicates;    θ   
∧
    
B
    and   θ   

∧
    are the bootstrap mean and the sample mean estimates, respectively.

cCI—Confidence interval; CL—lower bound; CU—upper bound.
dN/A = not available, weakly stained spot with a volume below the limit of detection.

Table 2. Mean (±SE) values of PR for patatin spots estimated from four replicates from dormant tubers of cv. Kennebec.
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Figure 4. Evaluation of the differential PR along 2-DE patatin spots (mature tuber). (a) UPGMA dendrogram from 

the matrix of mean differences in PR between pairs of patatin spots. Spot numbers refer to numbers in Figure 1. (b) 

Mean PR values for each of the three main spot groups clustered by UPGMA. Bootstrapping (2000 replicates) was used 

to determine 99% CIs for mean PR-values at each group. PR-values over spots were calculated using the formula 

PR = [(T − D)/T] × 100, where T and D represent the gel-spot volume in reference and dephosphorylated patatin profiles, 
respectively. Spot volumes over quadruplicate 2-DE gels were determined using the PDQuest software.
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of the patatin opens up new exploratory ways to unravel the molecular mechanisms underly-

ing mobilization of VSPs. The finding of differentially phosphorylated isoforms is particularly 
relevant because increase (or decrease) in phosphorylation status without a parallel change 

in the amount of protein has been considered to be a useful indicator for a specific functional 
change [39, 40, 45]. In this regard, systematic follow-up studies on VSPs will be needed to assess 

whether their degradation takes place through a phosphorylation-dependent regulatory mecha-

nism, as it occurs in common bean during dry-to-germinating seed transition [10]. The establish-

ment of a 2-DE-based reference map of patatin can be a very efficient tool to address this challenge 
in potato by monitoring changes in the phosphorylation status along the tuber life cycle.

Acknowledgements

This research was supported by funds from the Consellería do Medio Rural (Xunta de Galicia, 

Spain).

Author details

Javier Bernal1, María López-Pedrouso1, Daniel Franco2, Susana Bravo3, Lucio García2 and 

Carlos Zapata1*

*Address all correspondence to: c.zapata@usc.es

1 Department of Zoology, Genetics and Physical Anthropology, University of Santiago de 

Compostela, Santiago de Compostela, Spain

2 Meat Technology Center of Galicia, Ourense, Spain

3 Proteomics Laboratory, CHUS, Santiago de Compostela, Spain

References

[1] Liu Y-W, Han C-H, Lee M-H, Hsu F-L, Hou W-C. Patatin, the tuber protein of potato 
(Solanum tuberosum L.) exhibits antioxidant activity in vitro. Journal of Agricultural 

and Food Chemistry. 2003;51:4389-4393. DOI: 10.1021/jf030016j

[2] Racusen D. Lipid acyl hydrolase of patatin. Canadian Journal of Botany. 1984;62:1640-
1644. DOI: 10.1139/b84-220

[3] Shewry PR. Tuber storage proteins. Annals of Botany. 2003;91:755-769. DOI: 10.1093/
aob/mcg084

[4] de Souza Cândido E, Pinto MFS, Pelegrini PB, Lima TB, Silva ON, Pogue R. Plant stor-

age proteins with antimicrobial activity: Novel insights into plant defense mechanisms. 
The FASEB Journal. 2011;25:3290-3305. DOI: 10.1096/fj.11-184291

Advances in Seed Biology78



[5] Müntz K. Deposition of storage proteins. Plant Molecular Biology. 1998;38:77-99. DOI: 
10.1023/A:1006020208380

[6] Racusen D, Foote M. A major soluble glycoprotein of potato tubers. Journal of Food 

Biochemistry. 1980;4:43-52. DOI: 10.1111/j.1745-4514.1980.tb00876.x

[7] Paiva E, Lister RM, Park WD. Induction and accumulation of major tuber proteins of 
potato in stems and petioles. Plant Physiology. 1983;71:161-168. DOI: 10.1104/pp.71.1.161

[8] Agrawal GK, Thelen JJ. Large-scale identification and quantitative profiling of phospho-

proteins expressed during seed filling in oilseed rape. Molecular & Cellular Proteomics. 
2006;5:2044-2059. DOI: 10.1074/mcp.M600084-MCP200

[9] Meyer LJ, Gao J, Xu D, Thelen JJ. Phosphoproteomic analysis of seed maturation 

in Arabidopsis, rapeseed, and soybean. Plant Physiology. 2012;159:517-528. DOI: 10.1104/
pp.111.191700

[10] López-Pedrouso M, Alonso J, Zapata C. Evidence for phosphorylation of the major 

seed storage protein of the common bean and its phosphorylation-dependent degra-

dation during germination. Plant Molecular Biology. 2014;84:415-428. DOI: 10.1007/
s11103-013-0141-1

[11] Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: Keys 
to the function of the versatile plant hormone ABA. Trends in Plant Science. 2007;12:343-
351. DOI: 10.1016/j.tplants.2007.06.013

[12] Ghelis T, Bolbach G, Clodic G, Habricot Y, Miginiac E, Sotta B, Jeannette E. Protein tyro-

sine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent 

processes in Arabidopsis seeds and suspension cells. Plant Physiology. 2008;148:1668-
1680. DOI: 10.1104/pp.108.124594

[13] Han C, Wang K, Yang P. Gel-based comparative phosphoproteomic analysis on rice dur-

ing germination. Plant & Cell Physiology. 2014;55:1376-1394. DOI: 10.1093/pcp/pcu060

[14] Irar S, Oliveira E, Pagès M, Goday A. Towards the identification of late-embryogenic-
abundant phosphoproteome in Arabidopsis by 2-DE and MS. Proteomics. 2006;6:S175-S185. 
DOI: 10.1002/pmic.200500387

[15] Wan L, Ross ARS, Yang J, Hegedus DD, Kermode AR. Phosphorylation of the 12 S glob-

ulin cruciferin in wild-type and abi1-1 mutant Arabidopsis thaliana (thale cress) seeds. 

The Biochemical Journal. 2007;404:247-256. DOI: 10.1042/BJ20061569

[16] Ganal MW, Bonierbale MW, Roeder MS, Park WD, Tanksley SD. Genetic and physi-
cal mapping of the patatin genes in potato and tomato. Molecular & General Genetics. 
1991;225:501-509. DOI: 10.1007/BF00261693

[17] Stupar RM, Beaubien A, Jin W, Song J, Lee M-K, Wu C, Zhang H-B, Han B, Jiang 
J. Structural diversity and differential transcription of the patatin multicopy gene 
family during potato tuber development. Genetics. 2006;172:1263-1275. DOI: 10.1534/
genetics.105.051219

Identification and Mapping of Phosphorylated Isoforms of the Major Storage Protein of Potato...
http://dx.doi.org/10.5772/intechopen.70400

79



[18] The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber 
crop potato. Nature. 2011;475:189-195. DOI: 10.1038/nature10158

[19] Mignery GA, Pikaard CS, Hannapel DJ, Park WD. Isolation and sequence analysis 
of cDNAs for the major tuber protein, patatin. Nucleic Acids Research. 1984;12:7987-
8000. DOI: 10.1093/nar/12.21.7987

[20] Mignery GA, Pikaard CS, Park WD. Molecular characterization of the patatin multigene 
family of potato. Gene. 1988;62:27-44. DOI: 10.1016/0378-1119(88)90577-X

[21] Park WD, Blackwood C, Mignery GA, Hermodson MA, Lister RM. Analysis of the het-
erogeneity of the 40,000 molecular weight tuber glycoprotein of potatoes by immunolog-
ical methods and by NH2-terminal sequence analysis. Plant Physiology. 1983;71:156-160. 
DOI: 10.1104/pp.71.1.156

[22] Pots AM, Gruppen H, Hessing M, van Boekel MAJS, Voragen AGJ. Isolation and charac-
terization of patatin isoforms. Journal of Agricultural and Food Chemistry. 1999;47:4587-
4592. DOI: 10.1021/jf981180n

[23] Lehesranta SJ, Davies HV, Shepherd LVT, Nunan N, McNicol JW, Auriola S, Koistinen 
KM, Suomalainen S, Kokko HJ, Kärenlampi SO. Comparison of tuber proteomes of potato 
varieties landraces, and genetically modified lines. Plant Physiology. 2005;138:1690-
1699. DOI: 10.1104/pp.105.060152

[24] Bauw G, Nielsen HV, Emmersen J, Nielsen KL, JØrgensen M, Welinder KG. Patatin, 
Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras. 
The FEBS Journal. 2006;273:3569-3584. DOI: 10.1111/j.1742-4658.2006.05364.x

[25] Bárta J, Bártová V, Zdráhal Z, Šedo O. Cultivar variability of patatin biochemical charac-
teristics: Table versus processing potatoes (Solanum tuberosum L). Journal of Agricultural 
and Food Chemistry. 2012;60:4369-4378. DOI: 10.1021/jf3003448

[26] Zhu K, Zhao J, Lubman DM. Protein pI shifts due to posttranslational modifications 
in the separation and characterization of proteins. Analytical Chemistry. 2005;77:2745-
2755. DOI: 10.1021/ac048494w

[27] Romero-Rodríguez MC, Abril N, Sánchez-Lucas R, Jorrín-Novo V. Multiplex staining 
of 2-DE gels for an initial phosphoproteome analysis of germinating seeds and early 
grown seedlings form a non-orthodox specie: Quercus ilex L. subsp. ballota [Desf.] Samp. 
Frontiers in Plant Science. 2015;6:620. DOI: 10.3389/fpls.2015.00620

[28] Kuyama H, Toda C, Watanabe M, Tanaka K, Nishimura O. An efficient chemical 
method for dephosphorylation of phosphopeptides. Rapid Communications in Mass 
Spectrometry. 2003;17:1493-1496. DOI: 10.1002/rcm.1078

[29] Kita K, Okumura N, Takao T, Watanabe M, Matsubara T, Nishimura O, Nagai 
K. Evidence for phosphorylation of rat liver glucose-regulated protein 58, GRP58/ERp57/
ER-60, induced by fasting and leptin. FEBS Letters. 2006;580:199-205. DOI: 10.1016/j.
febslet.2005.11.074

Advances in Seed Biology80



[30] Woo EM, Fenyo D, Kwok BH, Funabiki H, Chait BT. Efficient identification of phosphor-

ylation by mass spectrometric phosphopeptide fingerprinting. Analytical Chemistry. 
2008;80:2419-2425. DOI: 10.1021/ac702059p

[31] Agrawal GK, Thelen JJ. Development of a simplified, economical polyacrylamide gel 
staining protocol for phosphoproteins. Proteomics. 2005;5:4684-4688. DOI: 10.1002/
pmic.200500021

[32] Jensen ON, Wilm M, Shevchenko A, Mann, M. Sample preparation methods for mass 
spectrometric peptide mapping directly from 2-DE gels. In: Link AJ, editor. Methods 
in Molecular Biology: 2-D Proteome Analysis Protocols. Totowa, NJ, USA: Humana 
Press; 1999. pp. 513-530. DOI: 10.1385/1-59259-584-7:513

[33] Yao Q, Bollinger C, Gao J, Xu D, Thelen JJ. P3DB: An integrated database for plant protein 
phosphorylation. Frontiers in Plant Science. 2012;3:206. DOI: 10.3389/fpls.2012.00206

[34] Efron B. The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional 
Conference Series in Applied Mathematics No. 38. Philadelphia, Pennsylvania: Society 
for Industrial and Applied Mathematics; 1982. pp. 75-92

[35] Tarentino AL, Gómez CM, Plummer TH. Deglycosylation of asparagine-linked glycans 

by peptide-N-glycosidase F. Biochemistry. 1985;24:4665-4671. DOI: 10.1021/bi00338a028

[36] Sonnewald U, Sturm A, Chrispeels MJ, Willmitzer L. Targeting and glycosylation 
of patatin, the major potato tuber in leaves of transgenic tobacco. Planta. 1989;179:171-
180. DOI: 10.1007/BF00393687

[37] Silva-Sánchez C, Li H, Chen S. Recent advances and challenges in plant phosphopro-

teomics. Proteomics. 2015;156:1127-1141. DOI: 10.1002/pmic.201400410

[38] Rabilloud T, Lelong C. Two-dimensional gel electrophoresis in proteomics: A tutorial. 
Journal of Proteomics. 2011;74:1829-1841. DOI: 10.1016/j.prot.2011.05.040

[39] Wu R, Dephoure N, Haas W, Huttlin EL, Zhai B, Sowa ME, Gygi SP. Correct interpre-

tation of comprehensive phosphorylation dynamics requires normalization by pro-

tein expression changes. Molecular & Cellular Proteomics. 2011;10:M111.009654. DOI: 
10.1074/mcp.M111.009654

[40] Kim M-S, Zhong J, Pandey A. Common errors in mass spectrometry-based analy-

sis of post-translational modifications. Proteomics. 2016;16:700-714. DOI: 10.1002/pmic. 
201500355

[41] Suttle JC. Involvement of endogenous gibberellins in potato tuber dormancy and early 
sprout growth: A critical assessment. Journal of Plant Physiology. 2004;161:157-164. 
DOI: 10.1078/0176-1617-01222

[42] Aksenova NP, Sergeeva LI, Konstantinova TN, Golyanovskaya SA, Kolachevskaya OO, 
Romanov GA. Regulation of potato tuber dormancy and sprouting. Russian Journal 

of Plant Physiology. 2013;60:301-312. DOI: 10.1134/S1021443713030023

Identification and Mapping of Phosphorylated Isoforms of the Major Storage Protein of Potato...
http://dx.doi.org/10.5772/intechopen.70400

81



[43] Sonnewald S, Sonnewald U. Regulation of potato tuber sprouting. Planta. 2014;239:27-
38. DOI: 10.1007/s00425-013-1968-z

[44] Mani F, Bettaieb T, Doudech N, Hannachi C. Physiological mechanisms for potato dor-

mancy release and sprouting: A review. African Crop Science Journal. 2014;2:155-174

[45] Myernik JA, Hajduch M. Seed proteomics. Journal of Proteomics. 2011;74:389-400. DOI: 
10.1016/j.jprot.2010.12.004

Advances in Seed Biology82


