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Abstract

Metal ions are the least sophisticated chemical species that interact or bind to biomol-
ecules. The yeast Saccharomyces cerevisiae represents a versatile model organisms used 
in both basic and applicative research, and one of the main contributors to the under-
standing of the molecular mechanisms involved in the transport, accumulation, and 
homeostasis of heavy metals. With a negatively charged wall, the yeast cells are very 
good biosorbents for heavy metals.  In addition to biosorption, the metabolically active 
cells take up heavy metals via the normal membrane transport systems. Once in the cell, 
the toxicity of the heavy metals is controlled by various mechanisms, including seques-
tration by metal-binding proteins, such as the metallothioneins. Metallothioneins are 
cysteine-rich proteins involved in the buffering of excess heavy metals, both essential 
(Cu and Zn) and nonessential (Cd, Ag, and Hg). S. cerevisiae has two innate metallo-
thioneins, Cup1 and Crs5, intensively investigated. Additionally, S. cerevisiae served 
as a host for the heterologous expression of a variety of metallothioneins from different 
species. This review focuses on the technological implications of expressing metallothio-
neins in yeast and on the possibility to use these transgenic cells in heavy metal-related 
biotechnologies: bioremediation, recovery of rare metals, or obtaining clonable tags for 
protein imaging.
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1. Introduction

Biotechnology, which makes use of living organisms for technological purposes, is one of the 

applied fields that constantly benefited from the rapid advancements made in understanding 
life at molecular level. It is undoubtedly that the budding yeast Saccharomyces cerevisiae is one 

of the biotechnology’s most versatile tools. Used since ancient times in bakery, brewery, and 
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wine making, the advent of molecular biology brought new glitter to this eukaryotic micro-

organism, and S. cerevisiae was practically reinvented. With an easy-to-manipulate genomics, 

with elegant and simple genetics, hosting molecules and biochemical processes well con-

served along evolution, this microorganism served as a model organism for the discovery 

and understanding of numerous essential life mechanisms. Apart from playing an unique 

and undisputed role in basic research of life science, S. cerevisiae kept on adding value to its 

role in biotechnology, especially due to its capacity to heterologously express proteins, with 

various scopes: large-scale production of recombinant proteins of technological significance 
(enzymes, antibodies, and hormones); selection of strains with targeted characteristics and 

performances (metabolic engineering); environmental biotechnology (yeast surface display); 

and scientific reasons, such as elucidating the role of proteins from various organisms organ-

ism (yeast two-hybrid technique, expression of homologous counterparts from higher organ-

isms in yeast, design yeast as model for human diseases, etc.) [1].

Metallothioneins (MTs) represent one of the numerous examples of proteins whose func-

tions were investigated by heterologous expression in S. cerevisiae cells. MTs are low-molec-

ular weight proteins that exist in most organisms from bacteria to humans, including yeasts 

[2]. MTs constitute an extremely heterogeneous family of cysteine-rich proteins (close to 

30% of their amino acid content) that give rise to metal-thiolate complexes ensuing on 

metal ion coordination. MTs are considered to have many roles, being involved in pro-

tection against toxic metals, homeostasis/chaperoning of physiological metals, free-radical 

scavenging and antioxidative stress protection, control of oxidative state of the cell, anti-

apoptotic defense, etc. While some roles still remain obscure, it is widely accepted that all 

MTs have an undisputed capacity to buffer intracellular metal ions, especially Zn(II) and 
Cu(I) [3].

Heavy metals belong to a group of nondegradable chemicals naturally present in the environ-

ment. Numerous anthropogenic activities, especially the ones related to massive industrializa-

tion, intensive agriculture, or rapid urbanization led to important perturbations (accumulation, 

or in some cases, depletion) in heavy metal balance, with ecological, nutritional, and environ-

mental impacts [4–10]. Some of the heavy metals (Co, Cu, Fe, Mn, Ni, and Zn) are essential 

for life in trace amounts, playing a pivotal role in the structure of enzymes and other proteins. 

Other heavy metals (Cd, Sb, Cr, Pb, As, Co, Ag, Se, and Hg) albeit not essential, interfere easily 

with the metabolism of essential heavy metals, competing for the various physiological trans-

port systems as well as for the biomolecules they bind to. Essential or not, when present in 

high concentrations, heavy metals are strongly deleterious to living organisms due to nonspe-

cific binding to proteins, often inducing oxidative stress, or disrupting biological membranes. 
Defense mechanisms against nonphysiological concentrations of heavy metal ions include 

excretion, compartmentalization in cell organelles, or increased synthesis of metal-buffering 
molecules, such as the MTs.

S. cerevisiae has been thoroughly investigated, and many mechanism involved in heavy 

metal transport and homeostasis have been elucidated in this organism [11–16], preparing 

the grounds for development of techniques used to engineer S. cerevisiae cells for increased 
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heavy metal accumulation and improved tolerance. The present review focuses on the studies 

that relate heterologous expression of MTs in S. cerevisiae to the metal-binding characteristics 

observed and to the possibility to use them for biotechnological purposes.

2. Innate and heterologous expression of MTs in S. cerevisiae

Apart from being classified on the basis of their structural homology or on taxonomic criteria, 
MTs are also classified on molecular functionality grounds, starting from their innate metal-
binding abilities, into Cu(I)- and Zn(II)-thioneins, with the representative nonessential mod-

els Ag(I) and Cd(II), respectively [3, 17]. This is based on the formation of homometallic MT 

species when they are produced in metal-enriched media; this classification is not regarded 
as absolute, since cross-affinity is often noticed for Zn(II)-thioneins binding Cu(I) and vice 
versa [3].

S. cerevisiae has two structurally different MTs, Cup1, and Crs5. Cup1 has been classified as 
the strictest Cu(I)-isoform (genuine Cu(I)-thionein) [3]. Cup1 biosynthesis is copper-activated 

at transcriptional level via the copper-binding transcription factor Ace1/Cup2 [18–21] pro-

viding the principal method of cellular removal and sequestering the extremely toxic Cu(I) 

[21–23]. Although substantially divergent from vertebrate and plant MTs, the arrangement 

of 12 cysteine residues, which is a hallmark of metal-binding proteins, is partially conserved. 

In contrast to the MTs from higher eukaryotes, Cup1 is responsible only for Cu(I) and Cd(II) 

ion tolerance in vivo [24, 25], albeit capable of binding other metal ions in vitro [26]. This is in 

contrast to the MTs found in higher eukaryotes, which are typically capable of detoxifying an 

array of metal ions.

Considered a secondary copper-resistant agent in S. cerevisiae, Crs5 is nonhomologous to 

the paradigmatic Cup1, determining survival under Zn(II) overload in a CUP1-null back-

ground. Its overexpression prevents the deleterious effects exhibited on the cup1Δ crs5Δ 

double knock-out mutant by exposure to combined Zn(II)/Cu(II), similarly to mouse MT1 

Zn-thionein, but not to Cup1. Numerous similar observations denoted that Crs5 has a dual 

metal-binding behavior, being significantly closer to Zn(II)-thioneins than to Cu(I)-thioneins 
[23, 27, 28].

Following the discovery and characterization of Cup1, many newly discovered MTs were 

characterized by heterologous expression in S. cerevisiae (Table 1).

In plants, the first evidence for the role of MTs in Cu(II) and Cd(II) tolerance was provided 
by expressing two Arabidopsis thaliana MT genes in MT-deficient yeast cells. For example, 
when expressed in cup1Δ knock-out mutant, both AtMT1 and AtMT2 complemented the 

cup1Δ mutation by providing a high level of resistance to CuSO
4
 and moderate resistance 

to CdSO
4
 [29]. Later, all four types of plant MTs were checked as metal chelators by express-

ing A. thaliana MT cDNAs (AtMT1a, AtMT2a, AtMT2b, AtMT3, AtMT4a, and AtMT4b) in the 

Cu(II) and Zn(II)-sensitive yeast mutants, cup1Δ and zrc1Δ cot1Δ, respectively. All four types 
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MT expressed Source organism Behavior in S. cerevisiae Reference

AtMT1a, AtMT2a, 

AtMT2b, AtMT3, 

AtMT4a, and AtMT4b

Arabidopsis thaliana

Model plant organisms, metal 

nonaccumulator

Complement Cu(II) and Cd(II) 

sensitivity of a cup1Δ mutant; AtMT4a, 

and AtMT4b conferred greater Zn(II) 

tolerance and higher accumulation 

of Zn(II) than other MTs to the zrc1Δ 
cot1Δ mutant

[29, 30]

JcMT2a Jatropha curcas L.

Technical plant: biofuel 

production

Complements Cu(II) and Cd(II) 

sensitivity of a cup1 mutant

[31]

HaMT1, HaMT2, 

HaMT3, HaMT4

Helianthus annuus

Technical plant: nutritional oil. 

Seeds tend to accumulate Cd(II), 

Pb(II), and Hg(II)

Complement Cu (II) (all), Cd(II) 

(HaMT4-1), and Zn(II) (HaMT3, 

HaMT4-1) sensitivity

[32, 33]

NcMT1, NcMT2 Noccaea (Thlaspi) caerulescens

Cd(II)/Zn(II) hyperaccumulator

NcMT1, and to a lesser extent NcMT2 

complement Cu(II), Cd (II), and Zn(II) 

sensitivity

[35]

SvMT2b, SvMT3 Silene vulgaris (Moench) Garcke

Cu(II)-hypertolerant plant

Restore Cd(II) and Cu(II) tolerance to 

yeast sensitive strains

[36, 37]

OsMT1-1b Oryza sativa Confers tolerance to Cd(II), H
2
O

2
, and 

ethanol

[38]

OsMT1a Oryza sativa L. cv. Iapar 9 Confers tolerance to Zn(II) [39]

rgMT Oryza sativa Confers vigorous growth under 

surplus CuCl
2
, FeCl

2
, NaCl, NaHCO

3
, 

and H
2
O

2

[40]

PutMT2 Puccinellia tenuiflora

Alkaline/saline tolerant grass

Tolerance to H
2
O

2
, NaCl, NaHCO

3
, 

Zn(II), Fe(II), Fe(III), Cd(II), Cr(VI), 

and Ag(I); sensitivity to Mn(II), Co(II), 

Cu(II), Ni(II)

[41]

CvMT1 Chloris virgata Swartz

Alkaline tolerant grass

Tolerance to salinity, alkaline 

conditions, and oxidative stress

[42]

ThMT3 Tamarix hispida

Alkaline/saline tolerant plant

Tolerance to Cd(II), Zn(II), Cu(II), and 

NaCl stresses; increased accumulation 

of Cd(II), Zn(II), NaCl, but not of 

Cu(II)

[43]

GintMT1 Glomus intraradices

Arbuscular mycorrhizal fungus; 

confers heavy metal tolerance to 

exposed plants

Complements Cu(II) and Cd(II) 

sensitivity of a cup1 mutant

[44]

HcMT1 and HcMT2 Hebeloma cylindrosporum

Ectomycorrhizal fungus; confers 

heavy metal tolerance to exposed 

plants

Complement Cu(II) and Cd(II) 

sensitivity of cup1 and yap1 mutants

[45]
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of AtMTs provided similar levels of Cu(II) tolerance and accumulation to the cup1Δ mutant, 

while the type-4 AtMTs (AtMT4a and AtMT4b) conferred greater Zn(II) tolerance and higher 

Zn(II) accumulation to the zrc1Δ cot1Δ mutant [30]. Metal-gained tolerance was also tested in 

yeast mutants expressing MTs from technical plants. Thus, the Cu(II) and Cd(II) sensitivity of 

yeast mutants was complemented by expression of MT2a isolated from Jatropha curcas L., a 

technical plant used for biofuel production [31]. In a different study, expression of MTs from 
Helianthus annuus (sunflower) overcame the Cu(II), Zn(II), or Cd(II) sensitivity, depending on 
the MT type expressed ([32], Table 1). Along with high nutritional value and significant oil 
content, the seeds of H. annuus tend to accumulate Cd(II), Pb(II), and Hg(II) [33], and HaMTs 

are major candidates to be one of the determinants for the high metal accumulation properties 

of this plant.

Other MTs studied in yeast were isolated from heavy metal hypertolerant or hyperaccumulat-

ing plants. Hyperaccumulating plants belong to a small group of species capable of growing 

on metalliferous soils without developing toxicity symptoms [34]. The MTs from the inten-

sively studied hyperaccumulator Noccaea (Thlaspi) caerulescens were expressed in yeast, and 

it was revealed that NcMT1, and to a lesser extent NcMT2, complemented the Cu(II), Cd(II), 

and Zn(II) sensitive phenotypes [35]. The Silene vulgaris (Moench) Garcke population with 

high levels of copper tolerance was shown to owe this hypertolerance to increased transcripts 

of SvMT2b gene; expression of SvMT2b in yeast restored Cd(II) and Cu(II) tolerance in dif-

ferent hypersensitive strains [36]. In a different study, SvMT3, whose gene has been locally 

duplicated in a tandem arrangement in S. vulgaris genome was shown to restore the Cu(II) 

tolerance along with increased Cu(II) accumulation in a Cu(II)-sensitive yeast mutant, and 

that both duplicated genes were functional [37].

MT expressed Source organism Behavior in S. cerevisiae Reference

PiMT Paxillus involutus

Ectomycorrhizal fungus; confers 

heavy metal tolerance to exposed 

plants

Complements Cu(II) and Cd(II), but 

not Zn(II) sensitivity.

[46]

DmMTo, DmMTn Drosophila melanogaster Complement Cu(II) sensitivity [47]

sMTIII Porcine brain cDNA

Growth inhibitory factor (GIF)

Confers metal resistance to yeast cells [48]

MmMT2a Mus musculus

Canonical Zn(II)-thionein

Complements Zn(II) sensitivity [33]

MmMT1 Mus musculus Clonable tag for electron microscopy [82]

hMT2, GFP-hMT2 Homo sapiens Increased Cu(II) tolerance and capacity 

to remove Cu(II) when expressed from 

yeast CUP1 promoter

[72]

Table 1. Heterologous expression of MTs in S. cerevisiae.
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Expression of plant MTs in S. cerevisiae cells sometimes determined other MTs-related phe-

notypes, besides metal tolerance and accumulation, indicating that heterologous MTs can be 

fully functional in yeast cells. Thus a heterologous expression in S. cerevisiae of OsMTI-1b, 

a MT isoform from Oryza sativa (rice), enhanced Cd(II), H
2
O

2,
 and ethanol tolerance [38], 

while OsMT-1a from a Brazilian variety of rice conferred Zn(II) tolerance [39]; rgMT from the 

same species conferred vigorous growth to transgenic yeast cells when exposed to surplus 

CuCl
2
, FeCl

2
, NaCl (salinity), NaHCO

3
 (alkalinity), or H

2
O

2
 (exogenous oxidative stress) [40]. 

Encompassing a wider range of stresses, expression of PutMT2 from the saline/alkaline grass 

Puccinellia tenuiflora increased the tolerance of transgenic yeast cells to H
2
O

2
, NaCl, NaHCO

3
, 

and also to a series of metal ions: Zn(II), Fe(II), Fe(III), Cd(II), Cr(VI), and Ag(I), while con-

ferring sensitivity to Mn(II), Co(II), Cu(II), and Ni(II) [41]. Expression of CvMT1 from the 

alkaline grass Chloris virgata Swartz significantly increased the yeast cell tolerance to salinity, 
alkaline conditions, and oxidative stress [42]. In the same line of studies, ThMT3 isolated from 

the alkaline/saline-resistant plant Tamarix hispida conferred the transgenic yeast cells increase 

tolerance to Cd(II), Zn(II), Cu(II), and NaCl stresses, triggering increased accumulation of 

Cd(II), Zn(II), NaCl, but not Cu(II) [43].

Often, plants acquire heavy metal tolerance when growing on contaminated sites due to sym-

biosis with the radicular, arbuscular mycorrhizal fungi that penetrate the cortical cells of the 

roots of a vascular plant; one MT isolated from such fungus, Glomus intraradices, was also 

shown to complement the Cu(II) and Cd(II) sensitivity of a cup1 mutant [44], while MT1 and 

MT2 from the ectomycorrhizal fungi Hebeloma cylindrosporum and Paxillus involutus function-

ally complemented the Cu(II) and Cd(II) sensitivity of yeast mutants [45, 46].

Studies on animal MTs expressed in yeast are less numerous [33, 47, 48, 72] and are used 

mainly for technical purposes. One notable example though is mouse MmMT1a, a canoni-

cal Zn(II)-thionein (yeast Cup1 is considered a canonical Cu(I)-thionein) [3] shown to confer 

tolerance when expressed in Zn(II)-sensitive yeast mutants [31]. S. cerevisiae was also used 

to express human MTs, but mainly as a host for large-scale production of hMTs [49–51], for 

which the more productive methylotrophic yeast Pichia pastoris is currently preferred [52].

3. Biotechnological relevance of MTs expression in S. cerevisiae

The main function of MTs resides in their structure: small proteins with a significant number 
of cysteine residues (15–30% of the total amino acid number) [53], a characteristic that con-

fers them a remarkable capacity to bind heavy metal ions by forming metal-thiolate clusters. 

MTs are natively bound to Cu(I) or Zn(II), exhibiting various affinities for the two metals, in 
between the canonical Cu(I)-thionein (S. cerevisiae Cup1) and canonical Zn(II)-thionein (C. 

elegans MT1) [3]. Ag(I) and Cd(II) can be used as respective models of Cu(II) and Zn(II) for the 

study of the metal-binding sites of MTs, particularly in those techniques that require isotopi-

cally active nuclei (note that copper is in the cuprous form Cu(I) when bound to MT, but the 

environment contains the more stable cupric ion Cu(II); when taken up by the cell, Cu(II) can 

be reduced to Cu(I) by Fe(III)/Cu(II)-reductases, or simply by the reductive milieu of the cell).
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With high thermodynamic stability combined with kinetic lability, MTs are important candi-

dates for biotechnology applications. In the nonmetalate form, MTs are highly reactive and 

can virtually bind to any d10 metal [53], a trait that makes them interesting candidates for bio-

technology. In this case, two aspects of MT reactivity are highly relevant: (1) metal uptake and 

release and (2) metal exchange [54]. Due to the polydentate thiolate nature of all MTs and their 

high affinity for most heavy metal ions, there are data available for binding of Cu(I), Cu(II), 
Cd(II), Hg(II), Ag(I), Au(I), Bi(III), As(III), Co(II), Fe(II), Pb(II), Pt(II), and Tc(IV) [55]. Another 

important feature of MT reactivity is the dynamic behavior, with metal uptake and release 

between species of different degrees of metalation. It is widely accepted that the binding of 
metal ions to MTs occurs rapidly, between 10 and 30 min, although longer stabilization times 

are required for certain ions, such as Hg(II) or Pb(II) [3].

Studies on metal exchange in MTs have also been done (usually with either Zn(II)- or Cu(I)-

thioneins), starting with a metal-loaded MT forced to exchange its initially bound metal ions 

with other ions. Considering the series of affinity order of heavy metal ions for the thiolate 
ligands: Fe(II) ≈ Zn(II) ≈ Co(II) < Pb(II) < Cd(II) < Cu(I) < Au(I) ≈ Ag(I) < Hg(II) < Bi(III) [56], 

the Zn(II)-loaded MTs would be more reactive than Cu(I)-loaded MTs. It was noted that metal 

exchange occurs at a much slower pace than metal binding to apo-MTs. For example, it was 

revealed that binding of four equivalents of Cu(I) to Zn(II)-Cup1 required a stabilization time 

of 24 h to produce a mixture of Cu4-Cup1 and Cu8-Cup1 species by total displacement of the 

initially bound Zn(II) [3, 57]. It is interesting to note that many xenobiotic metal ions (Cd(II), 

Pb(II), and Hg(II)) show higher affinity for thiolate ligands than Zn(II) or Cu(I) does, and 
thus, in case of intoxication, MTs can work as detoxifying agents [53]. This is highly relevant 

especially when designing a biotechnology system aimed for removal of toxic ions, as in the 

case of bioremediation. In the following paragraph, studies on metal accumulation by MTs 

expressing S. cerevisiae cells are presented, and also summarized in Table 2.

3.1. Display of MTs on the surface of S. cerevisiae cells

Cell surface engineering has wide applicability due to the fact that virtually any protein 

can be produced and autoimmobilized on the cell exterior of an engineered cell (usually a 

microorganism). S. cerevisiae is suitable for this technique by which functional heterologous 

proteins/peptides can be displayed on cell surface by fusion with parts of cell wall- or cell 

membrane-anchoring proteins [58–62]. S. cerevisiae, generally regarded as safe (GRAS), is a 

more suitable host for cell surface engineering than other microorganisms in which the cell 

surface display system has been established, because yeast possesses a quality-control system 

for proteins and glycosylation systems of secreted proteins. In addition to the general advan-

tages, high-molecular-mass proteins or proteins that require glycosylation modification can 
be displayed on yeast cell surface with maintenance of their activities, unlike when displaying 

them on bacteria [63]. Surface engineered cells can be subsequently treated as microparticles 

covered with the targeted protein [64].

S. cerevisiae cells are very good biosorbents for heavy metal ions due to the cell wall constitu-

ents, which readily sequester heavy metals once they encounter them. These constituents pos-

sess numerous metal-loving functional groups, including carboxylate, phosphate, sulfate, and 
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sulfhydryl, which decorate the outer mannan-protein layer of the wall [65]. The metal-binding 

innate capacity of the cell wall can be substantially increased by expressing metal-binding pep-

tides/proteins at the cell surface [59, 61]. Using this technique, yeast cells were modified for 
bioremediation of Cd(II) using a cell-surface display system of its own MT, Cup1, fused with a 

hexahistidyl residue, by using an α-agglutinin-based display system [66]. Surface-engineered 

yeast cells with Cup1 and hexa-His fused in tandem (Cup1-His6, originally named YMT-

hexaHis) showed superior cell-surface adsorption and recovery of Cd(II) under EDTA treat-

ment on the cell surface compared to the His6-displaying cells, through an additive effect on 
chelating ability. Remarkably, the expression of Cup1-His6 did not have a strong effect on the 
adsorption of Cu(II). The same study revealed that yeast cells displaying Cup1-His6 exhibited 

a higher potential for the adsorption of Cd(II) than Escherichia coli cells displaying the same con-

structs. Additionally, cells displaying tandem Cup1-His6 showed increased resistance to Cd(II) 

through active and enhanced adsorption of the toxic ion, indicating that Cup1-His6-displaying 

yeast cells are unique biosorbents with a superior functional chelating ability.

Metal 

investigated

Expressed MT MT provenience Yeast gained characteristics due to 

expression of MT

Reference

Cd(II) Cup1/His6

Yeast surface display

S. cerevisiae Cd(II) tolerance, Cd(II) increased 

adsorption; selectivity against Cu(II)

[66]

Cd(II) Δ1–8Cup1

(Δ1–8Cup1)
4

(Δ1–8Cup1)
8

Surface display of 

tandem repeats of 

head-to-tail yeast 

MT lacking the first 8 
amino acids

S. cerevisiae Cd(II) tolerance and adsorption were 

dependent on the number of tandem 

repeats; 4 and 8 repeats determined 

increased Cd(II) adsorption/recovery 

5.9 and 8.9 times, respectively

[67]

Cd(II) SnMT2a, SnMT2c, 

SnMT2d, and SnMT2e

Yeast surface display

Solanum nigrum

(Cd(II)/Zn(II) 

hyperaccumulator)

Increased Cd(II) tolerance and 

adsorption; concentration of Cd(II) 

from ultra-trace media; selectivity to 

Cd(II) against Cu(II) and Hg(II)

[69]

Cd(II) SaMT2 Sedum alfredii Hance

(Cd/Zn 

hyperaccumulator)

Increased Cd(II) tolerance and 

accumulation

[76]

Cd(II) ThMT3 Tamarix hispida

Alkaline/saline 

tolerant plant

Increased Cd(II) tolerance and 

accumulation

[43]

Cu(II) hMT2, GFP-hMT2 Homo sapiens Increased Cu(II) tolerance and capacity 

to remove Cu(II) when expressed from 

yeast CUP1 promoter

[72]

Zn(II) AtMT4a and AtMT4b Arabidopsis thaliana Increased accumulation of Zn(II) [30]

Zn(II) ThMT3 Tamarix hispida

Alkaline/saline 

tolerant plant

Increased Zn(II) tolerance and 

accumulation

[43]

Table 2. MTs heterologously expressed in yeast that determine increased accumulation of metal ions.
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Adsorption of heavy metal ions at the cell surface has certain advantages compared to intra-

cellular accumulation. First, surface adsorption allows recycling of the adsorbed ions, whereas 

intracellular accumulation necessitates disintegration of the cell for extraction. Second, surface 

adsorption is possible even in nonviable cells, providing that sufficient biomass can be pro-

duced. This is particularly important when cells are used to remove heavy metals from con-

taminated waters, and the conditions necessary to sustain living cells are difficult to achieve. 
And third, surface-engineered yeast cells can be used repeatedly as bioadsorbents since the 

recovery and treatment of the heavy metal ions does not greatly damage the cells [66]. In a 

sequel study, Cup1 was expressed as tandem head-to-tail repeats of the yeast MT lacking the 

first 8 amino acids (known to be nonsignificant for metal binding). Three types of constructs 
that were surface displayed contained 1, 4, and 8 tandem MT repeats [67].

The transgenic cells obtained were tested against excess Cd(II), and it was revealed that the 

adsorption and recovery of Cd(II) on the cell surface was increasingly enhanced with increas-

ing the number of tandem repeats under conditions that allowed complete occupation of 

the Cd(II)-binding sites in the MT tandem repeats. Considering the relationship between 

cell-surface adsorption and protection against heavy metal ion toxicity, the tolerance of these 

surface-engineered yeasts to Cd(II) was found to be also dependent on the number of dis-

played MT tandem repeats, indicating that the characteristics of surface-engineered yeasts as 

a bioadsorbents correlated with the ability of the displayed proteins to bind metal ions [67]. 

Unfortunately, these promising studies soon came to a halt and no other metal ions or other 

MTs were taken into consideration to be used in this technique. It took ten years before another 

group displayed at the surface of yeast cells four type-2 MTs from Solanum nigrum (SnMT): 

SnMT2a, SnMT2c, SnMT2d, and SnMT2e [68]. S. nigrum is an ornamental shrub (nightshade) 

and a Cd(II)/Zn(II) hyperaccumulator, apparently due to the four SnMTs subtypes (SnMT2a, 

SnMT2c, SnMT2d, and SnMT2e) shown to have an important role in metal detoxification [69]. 

Yeast strains displaying the SnMTs specified above on the cell surface were obtained, and 
these strains were shown to develop both Cd(II) tolerance and increased Cd(II) adsorption, 

exhibiting a higher affinity for Cd(II) than for Cu(II) or Hg(II) [68]. Notably, these displaying 

strains could effectively adsorb ultra-trace Cd(II) and accumulate it under a wide range of 
pHs (between 3 and 7), without disturbing the co-exising Cu(II) and Hg(II) [68]. Moreover, 

apart from showing a high potential for removing Cd(II) from contaminated waters, the yeast-

surface engineered strains expressing SnMT showed a remarkable resistance to Cd(II): while 

the nonengineered cells were stopped from dividing by 80 μM Cd(II), the engineered strains 

could live in 500 μM Cd(II) [68], a very high concentration for aqueous environments. While 

the study does not present accumulation data on other heavy metal ions, it is notable that the 

engineered strains expressing SnMT could concentrate ultra-trace Cd(II) on the cell surface, 

encouraging further attempts to display other MTs on yeast surface (from hyperaccumulating 
species) with the final scope of concentrating rare metal ions from ultra-traces environments.

3.2. MT-expressing S. cerevisiae cells for bioremediation

Heavy metal bioremediation is an appealing approach for decontaminating polluted environ-

ments, especially because standard physico-chemical methods are ineffective and very often 
a source of pollution themselves [5]. An ideal heavy metal bioremediator would have certain 

metal-related characteristics: tolerance to high concentrations, increased accumulation, and 
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substantial biomass production for effective removal of heavy metal ions from the contaminated 
sites. These traits fall into the characteristics of the heavy metal hyperaccumulating plants, 

with the exception that they usually do not produce sufficient biomass [70]. S. cerevisiae is an 

example of an organism that could be engineered for bioremediation purposes. The cell sur-

face display of metal-binding peptides/proteins presented above may not be the best approach 

for obtaining hyperaccumulating yeasts, since the metal binding is restricted to cell surface. 

Rather, (over)expressing nontoxic metal-binding proteins within yeast cell may increase the 

chances of obtaining hyperaccumulating strains fit for bioremediation purposes. S. cerevisiae 

is not a heavy metal accumulator due to a very active excretion system which extrudes excess 

metal ions from the cell [71, 72]. However, the excess free ions could be retained within the cell 

in a nontoxic form through sequestration by an abundant metal-binding protein, such as an 

overexpressed MT. Recently, an increased Cu(II) bioremediation ability of new transgenic and 

adapted S. cerevisiae strains was described [73]. In this study, S. cerevisiae cells were manipu-

lated to integrate human MT2 (hMT2) and GFP-hMT2, expressed from either the constitutively 

pADH1 yeast promoter or the Cu(II)-inducible pCUP1 yeast promoter. It was shown that only 

cells that expressed hMT2 from the CUP1 promoter exhibited both increased Cu(II) tolerance 

and capacity to remove Cu(II) ions from growth media [73].

3.3. Heterologous expression of MTs from heavy metal hyperaccumulators

The natural heavy metal hyperaccumulators, mostly belonging to a small group of plants [34, 70], 

are the species whose metal-related characteristics initially prompted the ideas of bioremediation, 

biomining, and bioextraction. To accumulate heavy metals without developing toxicity symp-

toms, these organisms utilize a variety of chemical ligands capable of coordinating the metal ions 

in a nontoxic form. Although MTs are important candidates for sequestering heavy metal ions, 

the studies relevant for correlating MT expression with heavy metal accumulating phenotype are 

scarce and hardly encouraging [74, 75]. The examples of MT from hyperaccumulating organisms 

expressed in yeast are few, and they mainly focus on functional complementation tests [33, 36–38, 

69, 76]. One example is worth mentioning here though, as it deals with an unusual hyperaccumu-

lating phenotype: Ag(I)-hyperaccumulation due to three distinct MT genes of the ectomycorrhizal 

fungus Amanita strobiliformis [77, 78]. Although expressed in S. cerevisiae only to test the restoration 

of Cd(II), Cu(II), and Zn(II) tolerance to sensitive mutants, further employment of AsMT for cel-

lular handling of Ag(I) is worth considering.

3.4. Metallothionein as clonable tags

Due to their small size and metal-binding capacity, metallothioneins may be interesting can-

didates for tagging proteins for imaging, especially by electron microscopy (EM) [79–81]. 

Localization of proteins in cells or complexes using EM relies upon the use of heavy metal 

clusters, which can be difficult to direct to sites of interest. For this reason, a metal-binding 
clonable tag, such as it is green fluorescent protein (GFP) for light microscopy, has been pur-

sued for a long time, and would be unvaluable for imaging by EM techniques. In this respect, 

MT is a very good candidate, because instead of fluorescing like GFP, it would initiate for-

mation of a heavy metal cluster adjacent to the protein to be analyzed. A suitable clonable 

tag for EM is expected to have certain properties: small size and low molecular weight, so 
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as not to disrupt protein kinetics/function in vivo. Using MTs as clonable tag implies work-

ing on either macromolecular assemblies or cells, but avoiding issues of heavy metal toxic-

ity by delaying the addition of metal until the samples that include a protein-MTH chimera 

are in preparation for EM. Two successful procedures: (1) adding heavy metal to sections of 

samples that have already been rapidly frozen, fixed by freeze substitution, and embedded 
in a hydrophilic plastic and (2) adding metal during the process of freeze substitution have 

been described [82]. Using S cerevisiae as an expression system, it was shown that MT can be 

localized in the complex environment of a cell, and with a very good signal-to-noise ratio [83]. 

Thus, mouse MT1 used to tag the yeast centrosomal protein Spc42 allowed the localization 

the MT-tagged Spc42 in the outer layer of the central plaque of the mature yeast spindle pole 

body. Nevertheless, although very promising, MT tagging for protein localization may not be 

universally applicable as this approach did not work with protein components of the nuclear 

pore complex [82]. Another potential use of MT as clonable tag for imaging would be the yel-

low luminescence observed for Cu(I)-MT complexes [84, 85].

4. Concluding remarks

The numerous studies on MTs stand for the uniqueness of these small proteins whose undis-

puted trait is binding to heavy metal ions. This is evidently due to the cysteinyl residues, 

which represent more than 20% of the total number of MT amino acids, whereas the usual 

percentage of cysteinyl residues seldom surpasses 5% in most proteins. The intrinsic charac-

teristic of sequestering metal ions in thiolate clusters make MTs very interesting biomolecules 

for various biotechnological application. Since S. cerevisiae represents a very good cellular sys-

tem for heterologous expression of MTs from virtually any species (including itself), the use 

of MT-(over)expressing yeasts is a promising starting point for biotechniques such as heavy 

metal bioremediation and bioextraction. The data summarized in Table 1 reveal that until 

now MT-expressing S. cerevisiae cells have been used for functional complementation studies 

(mainly MTs from plants and mycorrhizal fungi) rather than to investigate their biotechno-

logical potential. Moreover, most of the studies concern the ions that naturally bind to MTs, 

Cu(I) and Zn(II), and their nonessential counterparts Ag(I) and Cd(II), along with few studies 

on sulfur-loving metal ions such as Hg(II) and Pb(II). Although other interesting noncanoni-

cal metal ions such as Mn(II), Ni(II), and Co(II) have been shown to strongly bind to MTs [55, 

56], very few studies actually determined the MT binding to these ions in vivo (Table 2), and 

MT-expressing yeast cells would be very good models for filling this gap. Especially, obtain-

ing heavy metal hyperaccumulating yeast cells by heterologous (over)expression of recombi-

nant MTs would open new opportunities for bioremediation, bioextraction, and for emerging 

techniques, such as synthesis of clonable heavy metal nanoparticles [86]. Another promising 

biotechnique involving MTs is obtaining new clonable tags for cell imaging. While some timid 

progress has been reported on imaging by EM of proteins tagged with MT in yeast cells [82], 

the possibility to use the yellow luminescence of Cu(I)-MT for imaging MT-tagged proteins 

is largely unexplored. In this direction, construction of a systematic collection of S. cerevisiae 

strains that express all the MTs identified so far would be not only a challenge but also a pre-

requisite for systematic investigation of MTs for various biotechnology purposes.
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