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Abstract

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the 
USA and currently there are minimal therapies specific for the treatment of COPD. To 
advance our knowledge on COPD pathogenesis and develop new therapeutics, animal 
models are needed that represent key clinical and pathologic features of the human dis-
ease. The primary animal models utilized to study COPD rely on several factors associated 
with disease progression, i.e. genetic and epigenetic changes, environmental exposures 
and the microbial flora of the lungs. Here, a systematic approach was taken to summa-
rize and evaluate the current animal models employed to study COPD pathogenesis, 
comorbidities and exacerbations. The strengths and limitations of these disease models 
are also delineated. The rodent COPD models have been extensively utilized but several 
studies have highlighted the potential of larger animals as an additional approach. Due 
to the inherent heterogeneity of COPD, the usefulness of certain animal models may be 
limiting but still represent helpful means to explore gene functional studies, testing new 
therapeutics and the exploring the significance of microbial floral changes. Therefore, 
interpreting the findings from animal models for the study of COPD represents a critical 
approach in deciding possible future human therapeutics.

Keywords: disease models, COPD, animal, cigarette smoke, lung remodeling, comorbidities, 
exacerbation

1. Introduction

Chronic obstructive pulmonary disease (COPD) is one of the major cause of morbidity and 

mortality worldwide and a significant economic and social burden worldwide [1, 2]. COPD 
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is defined as a disease state characterized by airflow limitation that is not fully reversible, 
associated with an abnormal inflammatory response of the lungs to noxious particles or 
gases [3]. Airflow is limited by airway inflammation [4], loss of lung elasticity [5], lung tis-

sue destruction [6] and the narrowing of small airways [7, 8]. Most pulmonologists believe 
that parenchymal destruction (emphysema) and small-airway obstruction (chronic bron-

chitis) are the most significant phenotypes of COPD, as they both contribute to airflow 
limitation [9]. Therefore, when designing models of disease these two phenotypes are cru-

cial when interoperating data to clinical significance. Emphysema is further characterized 
by augmented inflammation, irreversible destruction of alveolar walls leading to airspace 
enlargement, loss of elastic recoil and hyperinflation [10]. Most COPD models investigate 
emphysema characteristics.

Cigarette smoke (CS) inhalation is the primary etiologic risk factor associated with COPD. 
The age-adjusted mortality for COPD has increased over the past three decades [11] high-

lighting the need for better therapies [12, 13], increased COPD research and enhanced utili-

zation of research models. In the US, the CS prevalence is estimated to be 15–19% of the US 
population (age 18 or older) [14] and smoking will remain a major public health issue in the 

coming years. It is estimated that 16% of all 8th graders have tried smoking and 17% of high 
school students continue smoking beyond graduation [15]. The smoking prevalence glob-

ally remains high, with CS rates at 28% in China [16], 27% in Germany, and 36% in Russia 
[17, 18]. These statistics will ensure that this disease continues to be a major public health 
issue for the foreseeable future and CS-induced COPD will likely continue to rise over the 

next decades. Projects predict COPD to be the third leading cause of death globally by 2030 
[19]. Beyond smoking cessation, very limited options currently exist for therapeutic inter-

vention to halt COPD progression. The mechanistic basis underlying the pathogenesis of 
both emphysema and chronic bronchitis is very complex, involving a combination of recur-

rent inflammation, enhanced autophagy, oxidative stress, protease/antiprotease imbalance, 
tissue injury, repair and cell death [20]. These changes are all modulated by environmental 
exposures and host genetics [21]. Clinical studies demonstrate that all smokers experience 
a range of pulmonary inflammation but only 15–20% of smokers develop severe progres-

sive emphysema [22]. This disparity underscores the importance of susceptibility factors, 
a subset of which are almost certainly controlled by host genetics in addition to environ-

mental exposures. Chronic bronchitis is almost three times more frequently diagnosed 
compared to emphysema in the COPD population in the US but emphysema is associated 

with a greater frequency of patient deaths [23]. To this extent, new research approaches 
are required to advance our understanding of the key players involved in COPD develop-

ment and to identify new therapeutics for future treatment of both emphysema and chronic 

bronchitis.

To better understand this complex disease, multiple research model approaches are need. 
Much of our current understanding of the normal functioning of the lung and mechanisms of 
lung disease comes from these studies utilizing animals. A model is defined as a simplified 
system that is accessible and easily manipulated. The natural course of COPD in humans can 
take decades. However, the ideal models of COPD would involve inexpensive species which 
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could grow quickly and in which disease induction occurs over a short period of time while 
still mimicking the human condition. There are other factors that must be discussed as well 
when considering a model of COPD, such as sex, age, animal strain/background, exposure 
dosing and frequency which can all significantly impact on data interpretation. In this chapter, 
we will outline several animal models that have been used to study the biological processes 

believed to play major roles in the pathogenesis of COPD. Currently, the majority of COPD 
research is conducted in rodents. We will also discuss whether data obtained from rodents can 
shed light on COPD in humans.

2. Models of COPD

While cigarette consumption is the main risk factor for COPD, up to 10–15% of COPD cases 
are not related to CS exposure. Therefore, other factors can contribute to COPD initiation and 
progression, and multiple models are required to decipher the key mechanisms driving the 
disease. At this time, the majority of animal models for COPD research focus on emphysema-

tous characteristics. Three major experimental approaches are commonly employed for the 
induction of emphysema-like symptoms in animals: elastase lung instillation, CS exposure 
and genetic manipulation. These three approaches are employed because CS is the primary 
etiologic risk factor associated with COPD and its comorbidities, an imbalance between elas-

tase and anti-elastase activity results in enzymatic degradation of elastin and emphysema 
formation [24], and predisposing genetic factors are associated with COPD initiation and pro-

gression [25–27]. It is also known that CS has a major impact on elastase imbalance [28] and 

can also modulate gene expression [29]. Therefore, CS inhalation is the preferred approach 
and the following sections will outline these exposure models. Several other models of 
chronic bronchitis will also be discussed in addition to the emphysema models. The primary 
approaches to establish a model of COPD in animals is summarized in Figure 1.

2.1. Elastase model

In 1963, Laurell and Eriksson reported that patients deficient for α1-antitrypsin developed 
emphysema at an earlier time in life due to an abundance of elastase [30]. This discovery is 
the primary clinical observation that influenced the development of the elastase model of 
emphysema. In 1965, Gross et al. [31] developed the first animal model of protease-induced 
induction of emphysema in rats by instillation of the plant protease, papain, into the lung. 
Subsequently, numerous other proteases have been utilized to induce emphysema [32–35], 

including cathepsin B and proteinase 3. The most common protease utilized currently in ani-
mal models is elastase, primarily isolated from porcine. Porcine pancreatic elastase (PPE) is 
inexpensive and administration of PPE has been shown to induce features that resemble pan-

acinar emphysema and lung damage throughout the organ. This approach has been utilized 
in many species of animals for several decades. The most frequently documented species, 
administration routes of PPE and exposure outcomes are summarized in Table 1, and will be 

discuss here in depth.
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As mentioned already, well-established genetic rodent background strains that utilize PPE-
induced emphysema have been widely used as a model of COPD. Employing these strains/
backgrounds, data from multiple studies are more reproducible and can be compared between 

groups. The animal genetic background is also critical for an appropriate control. Each strain 
has unique background alleles that may interact with and modify the expression of other 
genes upon establishment of a disease model or upon a stimulus, such as CS or elastase. 
Mice with different genetic backgrounds show disparate susceptibility to the development of 

Figure 1. Typical mouse models for COPD. (A) Mice are administered a single or multiple intratracheal doses of PPE to 
induce an emphysema phenotype. One weeks onwards, there is significant evidence for airspace enlargements. Images 
show a typical profile following a single 1.2 Unit intranasal dose of PPE or saline and examination of the airways 3-weeks 
later by H&E staining. (B) A nose or head only (NHO) cigarette smoke exposure system requires animals to be restrained 
while they inhale the cigarette smoke. The whole-body system streams CS into a larger exposure system chamber and 
allows animals access to food and water without restraint.
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Animal Reference Strain Administration Outcomes

Mouse [41, 44–49] C57BL/6 and 
C57BL/6J

Intratracheal PPE Enhanced airspace enlargements, lung 

volume and capacity, lung dendritic 

cells, MMPs, fibronectin degradation, 
epithelial cell apoptosis, alveolar 

epithelial damage, macrophages, 

neutrophils, lymphocytes, eosinophils, 

NK cells, CD8+ cells, A2M, HMOX1, 
MMP2, TIMP1, TNF-α, IL-1β, IL-4, 
IL-5, IL-6, IFN-γ and TGF-β. Reduced 

α1-antitrypsin, VEGF and DFCO

[39, 41, 50] BALB/c and 
BALB/cJ

Intratracheal PPE Enhanced airspace enlargements, lung 

volume and capacity, compliance, 

hyperinflation, elastic and collagen 
fiber content, BALF hemoglobin 
content, M1 macrophages, neutrophils, 
lymphocytes, eosinophils, NK and 
NKT cells, CD4+ and CD8+ cells, NRF2, 
A2M, HMOX1, Arg1, Fizz1, MMP12, 
MMP2, TIMP1, SLPI, PrxI, HO-1, 
GST-Yc, NQO1, TNF-α, IL-1β, IL-4, 
IL-5, IL-6, IL-18, iNOS, IL-17A, IFN-γ 
and TGF-β. Reduced α1-antitrypsin, 
VEGF and DFCO

[51, 52] A/J Endotracheal PPE Enhanced airspace enlargements and 

lesions in the lung parenchyma distal to 

the terminal bronchioles

[53, 54] Swiss Intratracheal PPE Enhanced airspace enlargements, 

hyperinflation of the alveoli, alveolar 
collapse, MMP9 and TNF-α. Reduced 

VEGF and lung elastance

[55, 56] FVB/J Intratracheal PPE Enhanced airspace enlargements, lung 

volume, BALF hemoglobin content and 
alveolar surface area. Increased TGF-β, 
FGF-2 and GAG in BALF

Rat [57–59] Wistar Intratracheal PPE Enhanced airspace enlargements, NO 
release and leukocyte infiltration

[60] Sprague-Dawley Intratracheal PPE Enhanced airspace enlargements and 

increased dynamic compliance

Hamster [61, 62] – Intratracheal PPE Increased secretory cell metaplasia

Guinea pig [63–65] – Intratracheal PPE Evidence of interstitial edema, 

degradation of fibrous tissue, elastin 
degradation and enhanced alveolar 

enlargements. Loss of epithelial 
cilia and detachment of epithelial 

cells from the basement membrane. 
Increase tracheal hyperresponses to 

histamine, diaphragm fatigue, PMNs 
in tracheal submucosa blood vessels 

and infiltration of macrophages into the 
parenchyma

Animal Models of Chronic Obstructive Pulmonary Disease
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emphysema, when utilizing the elastase model of emphysema [36]. Globally, C56BL/6 mice 
are the primary background strain used to generate many types of genetically engineered 

mice, but they are one of many strains. Other strains, including BALB/c mice, are documented 
to be more sensitive to dose and time dependent to PPE injury, as demonstrated by signifi-

cantly greater mortality, weight loss, decline in lung function, immune cell infiltration and 
loss of alveolar tissue [36]. This may be due to several genetic differences between strains. 
BALB/c and C57BL/6J mice have differing type 1 and type 2 cytokine-mediated inflammation 
responses that could play key roles in determining the resistance or susceptibility to many 

diseases. Altered allergy responses in subgroups of patients is frequently observed in COPD, 
frequently coinciding with eosinophilia and enhanced allergy responses or independent of 
allergies [37, 38]. Therefore, it is critical to select the appropriate mouse background when 
utilizing mice for COPD studies and the correct controls.

Most PPE-induced emphysema studies highlight the proteolytic activity of elastase on lung 
structural changes, such as higher airspace enlargements (measured by mean linear intercept) 

both in mice and in rats (Table 1). Furthermore, several studies report changes in extracellular 
matrix (ECM) composition, such as disorganized elastin, degradation of proteoglycans, and 
abnormal collagen remodeling [39]. However, these effects are dependent on several factors, 
including animal strain, PPE dose at each instillation, and number of PPE challenges. Mice sub-

jected to repeat PPE administrations within 1-week developed a more severe phenotype, with 

Animal Reference Strain Administration Outcomes

Rabbit [62, 66, 67] – Intratracheal PPE Enhanced airspace enlargements, 

apoptosis and 8-OHdG in lung tissues 
and reduced DLCO

[68, 69] New Zealand 
White

Endotracheal 
aerosolized PPE

Enhanced airspace enlargements, static 

compliance increase and decrease in 

expiratory flow and conductance

Pig [70] Yorkshire PPE instilled into 
left lower lobe 

bronchus

Evidence of early edema, panlobular, 

centrilobular and paraseptal 

emphysema

Dog [33, 71] – Endotracheal PPE Enhanced airspace and septal 

destruction and enhanced airway 

enlargements

[72] Beagle PPE injected 
through bronchi

Emphysema determined by chest 
computed tomography and histology

Sheep [73–75] – Endotracheal and 
intrabronchial PPE

Enhanced lung resistance, 

bronchoconstriction and BALF levels 
of tissue kallikrein. Decreased tracheal 

mucus velocity

Abbreviations: GAG, glycosaminoglycan; NO, nitric oxide; PMNs, polymorphonuclear leukocytes; 8-OHdG, 8-hydroxy-
deoxyguanosine; MMP, matrix metalloproteinases; NK, natural killer; IL, interleukin; TIMP, tissue inhibitor of 
metalloproteinases; TNF, tumor necrosis factor; IFN, interferon; TGF, transforming growth factor; NO, nitric oxide; 
SLPI, secretory leukocyte peptidase inhibitor; iNOS, nitric oxide synthases; VEGF, vascular endothelial growth factor; 
DLCO, diffusing capacity of the lungs for carbon monoxide; FGF, fibroblast growth factors; GAG, glycosaminoglycans.

Table 1. Animal models of COPD induced by elastase.
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enhanced alveolar destruction, weight loss, diaphragmatic dysfunction, exercise intolerance, 
and pulmonary arterial hypertension observed [40]. The pulmonary changes observed in PPE-
induced emphysema in mice persisted for 6 months after injury induction [40] and therefore 

make this exposure model a useful tool in studying lung repair. Limjunyawong and colleagues 
[41] performed the most extensive study on PPE-induced emphysema in mice, utilizing two 
mouse strains, multiple doses of PPE over several weeks and extensive pulmonary function 
analysis. This study found strain, time and dose dependence on PPE-induced mortality, body 
weight loss, decline in lung function, lung inflammation and loss of alveolar tissue [41]. They 
also found heterogeneity in signaling associated with emphysema in each mouse strain.

Over the past few decades, other rodents have been utilized in models of PPE-induced COPD, 
such as rat, guinea pig, and hamster. These and other animal models are utilized as the mouse 
lung differs to human lungs in total lung capacity, left lung lobe number, lung pleural thick-

ness, parenchyma percentage of the lung, alveoli size, blood-gas barrier thickness, trachea 
cartilage structure, number of respiratory bronchioles and airway generations, epithelium 

thickness and airway lumen size [42]. These other rodent models have several phenotypes that 
more closely reflect the human lung than the mouse. The lung volume and alveolar size have 
a closer resemblance to human lungs [42]. The airway of most rodents (except guinea pig) do 
not respond to leukotrienes, important mediators that cause bronchoconstriction in humans 

[43]. Depending on the species utilized, several confounding factors may not be functional in 
the model. Larger animal models of PPE-induced emphysema, utilizing rabbits, dogs, pigs 
and sheep, have observed enhanced airspace and septal destruction, and enhanced airway 

enlargements (see Table 1). Despite the many advantages of these larger species as an animal 
model of COPD, these species have not been widely used, probably due to limitations in terms 

of cost and reagent availability. Larger animal models do offer better understanding of lung 
structure than smaller animal models but most PPE-induced studies in these species were 
performed over 40 years ago, and the imaging and pulmonary function equipment was lim-

ited to address many parameters. Revisiting this approach in these species may be beneficial.

Overall, the intrapulmonary administration of tissue degrading enzymes, such as elastase, 
represents a useful approach to studying emphysema, especially when focusing on mecha-

nisms to repair. PPE-based models are an attractive approach, since it is a simple exposure 
protocol with a single (or multiple) lung administration leading to significant and rapid 
changes. However, comparing this rapid method to the lifetime development of human 
COPD is very difficult since this method bypasses a large number of biological mediators. 
Equally, this method may reflect one subtype of emphysema and may not represent other sub 
groups of the disease. Therefore, the protease based models encompass several important fea-

tures of human COPD but other methods, such as inhalation exposures, may also be required 
to better represent the phenotype of the human disease. The elastase model may be suited to 
tissue repair research.

2.2. Smoke exposure models

Like PPE-induced emphysema, a variety of animal species have been exposed to CS to mimic 
the human disease. Rodents (mice, rats, guinea pigs and hamsters) are the most commonly uti-
lized species in CS exposure systems, but rabbits, ferrets, pigs, sheep and dogs have also been 
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used (see Table 2 for a summary of multiple studies). In parallel to PPE models, the severity of 
emphysema induced by the CS exposure model can be influenced by a variety of factors, such 
as differences in animal strains, smoke concentration, and duration of exposure, and the sex of 
the animal. The background strain of a mouse is an important factor in CS exposure with dif-
fering strains having varying susceptibilities or resistances to the development of CS-induced 

emphysema [76]. Smoke concentration measured in total particulate matter (TPM) per liter 
can also affect CS-induced emphysema development. Mice exposed to NHO CS inhalation, at 
concentrations of 75, 250, and 600 mg of TPM/L, show only a 13% increase in airspace enlarge-

ments (mean linear intercept) in animals exposed to 600 mg TPM/L after 28 weeks of exposure 
[77]. The TPM of mainstream CS is comprised of 4–9% of the total weight of cigarette smoke 
and is made up of many components, including polycyclic aromatic hydrocarbons, nitrosa-

mines, phenol and nicotine. The TPM measurement excludes the gas and vapors in smoke. 
Therefore, regulated smoke concentration and the duration of CS exposure are critical steps in 
establishing a CS exposure model in animals. To prevent contrasting results when doing CS 
studies, Kentucky reference cigarettes (from the Center for Tobacco Reference Products) are 
used by many research groups throughout the world to aid in the standardization of the CS 
exposure model. Other species are very susceptible to CS-induced COPD, such as guinea pigs 
[78] and ferrets [79]. They develop COPD-like lesions and emphysema-like airspace enlarge-

ment within a few months of active CS exposure. By contrast, rat strains seem to be more 
resistant to the induction of emphysema-like lesions [80–83]. Equally, animal sex has been 
reported as a confounding factor in COPD susceptibility. One example are female A/J mice 
which develop emphysema 6 weeks earlier than their male counterparts [84].

Animal Reference Strain Exposure Outcomes

Mouse [87, 89, 94] C57BL/6 NHO Enhanced lung hyperinflation, total lung capacity, 
compliance, alveolar enlargements, systolic blood 

pressure, circulating platelets and erythrocyte 

numbers, attenuate alveolar macrophage responses 
to inflammation, production of reactive oxygen 
species in heart and kidney and lipid peroxidation in 
heart, liver and kidneys. Decreased total nitric oxide 
plasma concentration

[29, 109–113] C57BL/6 Whole-body Enhanced airspace enlargements, lung capacity, 

compliance, lung inflammation, serum TNF-α, 
vascular and myocyte dysfunction, TLR9 signaling, 
protease activity, lung cell apoptosis, and cytokine 

production. Reduced weight gain, muscle mass and 

type I and IIA oxidative fibers, lung tissue elastance, 
lung PTP1B activity, EPAS1 lung expression

[90, 91] BALB/c NHO Increase in oxidative stress in lung and heart, 
mitochondrial respiratory dysfunction, chronic 

inflammation, mucus hypersecretion, airway 
remodeling and emphysema. Reduced lung function

[114, 115] BALB/c Whole-body Induced lung neutrophilia, IL1α, IL1β and CXCL1

[92, 93] A/J NHO Enhanced susceptibility to tumorigenesis, 

hyperplasia, metaplasia, and inflammation of the 
nose and larynx and proliferative lesions of the 
lungs. Delayed cutaneous wound healing

COPD - An Update in Pathogenesis and Clinical Management10



Animal Reference Strain Exposure Outcomes

[29, 116–118] A/J Whole-body Enhanced airspace enlargement, right ventricle 

heart hypertrophy, lung cell apoptosis, infiltration 
of macrophages, neutrophils, lymphocytes, kinase 

activity, cytokine and protease expression. Reduced 

FEF50%/FVC, EPAS1 lung expression

[115] Swiss Whole-body Enhanced mast cell recruitment to cutaneous wound

[119] FVB/NJ Whole-body Enhanced airspace enlargements, immune cell 

recruitment to the lungs, RSV lung infection, 
lung cell apoptosis, BALF protein concentration, 
expression of S100A9 and MCP-1. Reduced PTP1B 
activity

[120] FVB CSE IP injection Enhanced airspace enlargements, prothymosin α 
expression, NFκB activity, MMP2 and MMP9

[76, 121] AKR/J Whole-body Increased inflammation, Th1 responses, 
macrophages, neutrophils, and T cells, oxidative 
stress levels in diaphragm and gastrocnemius. 
Reduced weight gain

Rat [80–83] Wistar Whole-body Increased gastric ghrelin, plasma TNF-α. Reduced 

food intake, weight gain, abdominal fat, plasma 

levels of leptin, insulin-like growth factor-1

[122, 123] Sprague-

Dawley

Whole-body Areas of blebbing and microvillus-like projections 

from the luminal surface, and micro-thrombi 

proximal to intercostal branches. Enhanced lung 

parenchymal destruction, pulmonary hypertension 

and pulmonary inflammation

Hamster [5, 99] – Whole-body Induced elevation of right ventricular systolic 

pressures, medial hypertrophy of pulmonary 

arterioles, lung chymase activity, Ang II levels 
and enhanced TGF-β1/Smad signaling. Reduces 
production of lysyl oxidase and the resynthesis of 
cross-linked elastin

Guinea 
pig

[97–99] Hartley Whole-body Increased pulmonary artery pressure, right ventricle 

hypertrophy, raised respiratory resistance, airspace 

enlargement, intrapulmonary vessel remodeling, 

immune cell infiltration, CatK and CHOP expression, 
ERK and JNK phosphorylation. Decreased elastin 

and the loss of type III collagen in the alveolar walls

Ferret [79] Mustela 

putorius furo

NHO Increased early-morning spontaneous coughs, 

sporadic infectious exacerbations, airway 
obstruction, goblet cell metaplasia/hyperplasia and 
mucus expression in small airways

Rabbit [101–105] New Zealand 
White

Whole-body Decreased alveolar count, IRAK degradation. 
Increased ductal/destructive fraction, lung 
destruction, apoptosis, airspace enlargements, 

immune cell infiltration, intraparenchymal vascular 
congestion and thrombosis, intraparenchymal 

hemorrhage, respiratory epithelial proliferation, 

alveolar destruction, emphysematous changes 

and bronchoalveolar hemorrhage, lung and aorta 

expression of MMP1 and lung expression of TLR4
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The experimental details of CS smoke and tobacco usage in humans are so varied that, cur-

rently, no single experimental CS exposure system can replicate the diversity of human 
smoking patterns. Therefore, CS models probably reflects only facets of COPD but they still 
represent the closest model of early human disease. In the following sections, we will outline 
the COPD models that utilize CS exposure. There are advantages and disadvantages with 
both types of CS exposure approaches, such as animal number, exact quantifiable exposure, 
exposure duration and end points of study. Additionally, a detailed breakdown of every pub-

lished CS exposure publication up to 2013 is summarized by Leberl and colleagues [85].

2.2.1. Nose or head only exposure

The nose or head only (NHO) exposure model (sometimes referred to as mainstream CS expo-

sure) was developed for the induction of COPD in animals that allows quantifiable concentra-

tions administered to animals. Several species, including mice, are obligate nose breathers, 
which allows direct delivery of CS or aerosolized solutions to be delivered to the lungs. The 
NHO system requires restraining the animal so that their nose is inserted into a cone where 
they inhale the cigarette smoke [86]. During this exposure time animals are deprived of food 
and water. This method generates a uniform exposure that produces the desired emphysema-

tous changes. However, the prolonged periods of restraint are stressful for the mice and the 
machine can usually accommodate only a limited number of mice (e.g. the Jaeger system has 
eighteen ports which is depicted in Figure 1B). NHO exposures are usually for short exposure 
times (30–60 min) and CS exposures are repeated several times daily [87]. The level of expo-

sure can range from 75 to 600 mg TPM/m3 [77, 87]. In animal research, TPM concentrations 
is typically a defining factor for characterizing whether a study is a passive or secondhand 
exposure model, in addition to a NHO or whole-body method. A recent study examining 
gene expression profiles in CS exposure models in mice compared to human cohorts dem-

onstrated that low TPM induces genes mainly related to xenobiotic/detoxification responses, 

Animal Reference Strain Exposure Outcomes

Pig [124] – Lungs only Enhanced vasodilator response in the bronchial 

circulation, bronchodilatation and bronchial 

vasodilatation

Dog [125] Greyhounds Whole-body Increased parenchymal damage and inflammation

[126, 127] Beagle Through a 
tracheostoma

Histological evidence of emphysema

Sheep [128] – Unilateral 

inhalation

Increased gas exchange impairment and metabolic 
activity

Abbreviations: ERK, extracellular signal-regulated kinase, JNK, c-Jun N-terminal kinase; TLR, toll-like receptor; EPAS1, 
endothelial PAS domain protein 1; CXCL, chemokine (C-X-C motif) ligand; NFκB, nuclear factor kappa-light-chain-
enhancer of activated B cells; FEF, forced expiratory flow; FVC, forced vital capacity; MCP1, monocyte chemoattractant 
protein-1; Th1, type 1 T helper; Smad, mothers against decapentaplegic homolog; Cat, cathepsin; CHOP, C/-EBP 
homologous protein.

Table 2. Animal models of COPD induced by cigarette smoke.
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while higher TPM activated immune/inflammatory and xenobiotic/detoxification responses 
[88]. In the same study, one human cohort clustered closer to low TPM but another cohort 
clustered closer to a high TPM [88]. Therefore, certain biological features of the CS exposure 
model are dose dependent and may represent a critical factor in establishing a model.

There are multiple companies that manufacture NHO exposure systems, e.g. Scireq, CH 
Technologies, Buxco Research Systems, In-Tox Products and Promech Lab AB. NHO expo-

sure machines are typically automated for unattended operation (delivery, lighting, position-

ing, and ejection of cigarettes). They control the CS puff volumes and rates, are adjustable for 
direct smoke or indirect CS exposures, and contain a sealed chamber that prevents smoke 
leakage. The machines are relatively compact in size. Typically, an animal is placed in an 
individual exposure tube, with a rubber seal around the animal's neck to minimize exposure 
to the head. The tube is mounted onto the exposure tower (see Figure 1B) and CS is applied 

to the system. Some exposure models are equipped with a pneumotachograph, to measure 
respiratory flow from movement of the animal's chest wall. Alternatively, these models can be 
modified to test potential new aerosolized therapies.

Similar to PPE-induced emphysema models, mice are the primary species utilized in CS expo-

sure models. C57BL/6 mice are frequently utilized in NHO exposures [87, 89], but others have 

utilized BALB/c [90, 91] and A/J mice [92, 93]. NHO exposure to CS has been documented 
to result in increased lung hyperinflation, total lung capacity, compliance, alveolar enlarge-

ments, systolic blood pressure, circulating platelets and erythrocyte numbers. This exposure 
model attenuates alveolar macrophage responses to inflammation, production of reactive 
oxygen species in heart and kidney and lipid peroxidation in heart, liver and kidneys and 
reduced total nitric oxide plasma concentrations in C57BL/6 mice [87, 89, 94].

Gaschler and colleagues [89] report that NHO and whole body CS exposure systems attenu-

ate innate immune responses in a comparable manner. However, some outcomes appear to 
be different between both exposures, with NHO smoke exposures failing to produce soleus 
muscle weight reduction [87]. TPM concentrations [88] and exposure duration may also be 
confounding factors leading to differences in these models. Several larger animal species are 
more susceptible to CS exposure and NHO exposure resulting in phenotype changes simi-
lar to the human disease. Ferrets have several similarities to human airway physiology and 
submucosal gland distribution. In a recent NHO chronic CS exposure model, ferrets demon-

strated clinical features close to human COPD, such as early-morning spontaneous coughs, 

sporadic infectious exacerbations, airway obstruction, goblet cell metaplasia/hyperplasia and 
increased mucus expression in small airways [79]. Despite larger animals displaying a lung 
morphology closer to human, the mouse model is the favored model of NHO CS exposure 
induced COPD. However, new models like the ferret may be a better model to evaluate and 
characterize further in future studies.

2.2.2. Whole-body exposure

Whole-body systems (sometimes referred to as side-stream CS exposure) can expose animals 
to a mixture of both passive and mainstream smoke, released from the burning cigarette and 
puffed through the cigarette [95]. The passive and mainstream smoke streams are mixed and 
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then propelled by a fan to a chamber containing the mice that are housed within their cages. 
The advantage of this system is that the mice freely move about and have access to food and 
water (Figure 1B). Thus, mice in this system can be exposed for longer periods of time daily. 
In addition, the whole-body exposure system allows for the exposure of large groups of mice. 
Some systems allow the exposure of greater than 120 mice simultaneously, enabling research-

ers to use large numbers of mice and to perform multiple experiments without stressing the 
animals beyond the CS exposure. There are several companies that manufacture whole-body 
exposure systems, e.g. Scireq and Teague Enterprises. These systems are also automated to 
help with ease of use.

Similar to the other COPD models already discussed, rodents are the most common species 

used in whole-body CS exposure models due to the wide variety of applicable gene expres-

sion manipulations. Several recent advances in pulmonary function testing in mice [96] will 

further enhance the usage of mice in CS exposure models. Other animal models include the 
guinea pig model, which has been shown to be susceptible to whole-body CS-exposures. CS 
exposure in guinea pigs induces several pulmonary and cardiovascular changes, such as pul-
monary artery pressure, right ventricle hypertrophy, raised respiratory resistance, airspace 

enlargement, intrapulmonary vessel remodeling, loss of elastin and type III collagen in the 
alveolar walls, immune cell infiltration, protease and kinase activity [97–99]. Measurable 
emphysematous changes are also detected in rats following 2-months of whole body CS expo-

sure [100]. Very few larger animals have been utilized in the whole-body exposure system, 
perhaps due to insufficient access to chambers large enough to contain these animals. Several 
studies have successfully exposed rabbits to whole body CS [101–105]. Mice do not produce 
MMP1, the major collagenase associated with COPD [106], but rabbits express MMP1 and its 
induction is CS triggered [103]. For the study of proteins not expressed in smaller animals or 
expressed at a different frequency to human, several larger animals may represent a better 
model option. Rabbits are relatively easy to handle and several transgenic animals are avail-
able [107], making them a good model for investigating lung-related diseases. Rabbits are also 
large enough to allow non-lethal monitoring of physiological changes during the course of 

the CS exposure but rabbits still have multiple differences in lung physiology to human [108]. 
Importantly, when deciding on a CS exposure model of emphysema, it must be noted that 
both NHO and whole-body exposure methods result in emphysema and other COPD symp-

toms in animals, and both represent good but not perfect models of COPD.

2.3. Genetic models of COPD

Prior to genome-wide association studies (GWAS) on COPD samples, several genes have been 
investigated in animals for susceptibility to COPD development and pathogenesis (Table 3 is a 

summary from multiple mouse studies). GWAS and other genomic based studies have identified 
many further genes that are associated with COPD [26, 29] but functional studies are required 
to prove their importance in lung function and disease development. Currently, mice represent 
the most favored laboratory animal species to manipulate gene expression. The discovery of 
new gene manipulation approaches may alter this view, such as CRISPR-Cas9. CRISPR-Cas9 
approaches in larger animals is an exciting new method for future COPD research. Several 
existing models will be briefly outlined here that alter susceptibility to environmental exposure 
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Reference Mouse Exposure COPD susceptibility Outcomes

[129] Itgb6−/− – Increased Spontaneous development of age-

related lung emphysema due to lack of 

ITGB6-TGF-β1 regulation of the MMP12 
expression

[130] Klotho−/− – Increased Increased aging, enlargement of the air 

spaces, destruction of the alveolar walls

[131] Human MMP1 
expression

– Increased Increased disruption of the alveolar 

walls and coalescence of the alveolar 

spaces

[136] Mmp12−/− CS Resistant Reduced smoke induced alveolar 

macrophage infiltration and emphysema

[139] Tnfr−/− CS Resistant Reduced airspace enlargements and 

neutrophil infiltration

[138] iNOS−/− CS Resistant Mice protected against emphysema and 

pulmonary hypertension

[143] Cd8−/− CS Resistant Blunted inflammatory response and did 
not develop emphysema

[111] Tlr9−/− CS Resistant Protected from smoke-induced airspace 

enlargements, loss of lung function, 

inflammation, protease activity, 
apoptosis, and inflammation

[144] SOD1 

overexpression
CS or elastase Resistant SOD1 prevented smoke or elastase 

induced airspace enlargements, 

neutrophil infiltration and lipid 
peroxidation product accumulation

[137] Cav1−/− CS Resistant Reduced senescence of lung fibroblasts 
and pulmonary emphysema

[140] Mrp1−/−Mdr1a−/−

Mdr1b−/−
CS Resistant Reduced inflammatory and emphysema

[145] Il-18Ra−/− CS Partially protected Decreased inflammation and 
emphysema

[144] Il-1R−/− CS Partially protected No induction of inflammatory cell 
infiltration, small airway remodeling or 
matrix breakdown

[146] Adiponectin−/− CS Partially protected No induction of inflammatory cell 
infiltration, airspace enlargements, tissue 
elastance or TNFα

[147] SOD3 

overexpression
CS or elastase Partially protected SOD3 prevented smoke or elastase 

induced airspace enlargement, 

impairment of lung function and exercise 
capacity

[148, 149] Il-17a−/− CS Partially protected Exacerbated macrophage and γδ T cells 
frequency, which trigger emphysema

[119] Ptp1b−/− CS Increased Enhanced airspace enlargements, 

immune cell recruitment, apoptosis, and 

inflammation
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induced COPD or genetic alterations that result in spontaneous COPD development. There are 
two major approaches, i.e. gain-of function or loss-of-function. These gene manipulations can 
be targeted within the whole body or within specific tissue or cell types. Gain-of-function is 
achieved by gene overexpression in transgenic mice or expressing a human gene or variant of 
that gene. Alternatively, loss of function is achieved by specifically targeting loss of expression 
of a gene, by direct or chemical mutagenesis. The majority of studies performed in COPD utilize 
whole body knockout animals, where the gene was genetically manipulated in the embryo prior 

to development. Several genes have been linked with COPD since several knockout animals 
develop spontaneous COPD as they age, such as Itgb6−/− or klotho−/− mice [129, 130]. Equally, 
introducing a human gene into a mouse can result in COPD development without environmental 

exposures, such as lung expression of human MMP1 in mice [131]. Most genetic manipulations 
require a “second-hit” to observe lung changes causing disease. Inducing a COPD phenotype by 
CS inhalation or PPE instillation in animals deficient for Nrf2 [132], Ptp1b [119], Gpx1 [133, 134] 

or p53 [135] exaggerates COPD-like changes. However, most genetic manipulations have been 
associated with protecting against CS or PPE induced COPD, e.g. Mmp12−/− [136], Cav1−/− [137], 

iNOS−/− [138], Tnfr−/− [139] and Mrp1−/−Mdr1a−/−Mdr1b−/− [140] mice. Since COPD is an extremely 
complex heterogenous disease, many of these genes and others may all contribute to disease 
initiation and progression. The GWAS studies in humans have identified several other possible 
targets for future investigation, e.g. HHIP, CHRNA5, HTR4, FAM13A, RIN3, TGFB2, GSTCD-
NPNT, CYP2A6, IL27-CCDC101, ADGRG6-GPR126, THSD4, ADAM19, TET2, CFDP1, AGER, 
ARMC2, RARB, EEFSEC, DSP, MTCL1, SFTPD, IREB2, HHIP, and FAM13A [141, 142]. The 
mouse model still remains the best species to manipulate gene expression in the lungs but new 
techniques will aid in larger animals being utilized in the coming years.

2.4. Models of bronchitis

As mentioned previously, the second phenotype in COPD is an airway model for chronic 

bronchitis. Several studies have focused on induction of bronchitis phenotypes in animals 
(see Table 4 for a summary of several studies). Bronchitis models utilize noxious inhalants 

Reference Mouse Exposure COPD susceptibility Outcomes

[132] Nrf2−/− CS Increased More inflammation, oxidative stress, 
apoptosis and reduced antioxidants

[133, 134] Gpx1−/− CS Increased Enhanced airspace enlargements, BALF 
neutrophils, macrophages, proteases, 

IL-17A, MIP1α, NFκB and AP1 
activation. Reduced PP2A and PTP1B 
activity

[135] p53−/− Elastase Increased Increased emphysema severity, 

macrophages, neutrophils, BALF CCL2, 
BALF TNF-α and lung oxidative stress

Abbreviations: ITGB6, Integrin Subunit Beta 6; SOD, superoxide dismutase; Cav1, caveolin 1; Mrp1, multi-drug resistance 
associated protein 1; Mdr1, multi-drug resistance gene 1; AP1, activator protein 1, CCL, chemokine (C-C motif) ligand.

Table 3. Gene modulated models of COPD in mice.
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Animal Reference Strain Exposure Outcomes

Mouse [158] BALB/c SO
2

Enhanced 

neutrophilic 

inflammation, 
epithelial sloughing, 

ET-1 and TGFβ 
expression

[154] C57BL/6 NO
2

Increased airway 

(neutrophils and 

macrophages), 

goblet cell 

hyperplasia, collagen 

deposition in the 

lung parenchyma 

and airspace 

enlargements

Rat [150, 151] Sprague Dawley SO
2

Increased pulmonary 

resistance, airway 

responsiveness 

to methacholine, 

immune cell 

infiltration (notably 
neutrophils), immune 

dysregulation, 

oxidative stress, 
mucin, accumulation 

of surfactant in 

lamellar bodies of 

alveolar type II cells, 
BALF levels of lactate 
dehydrogenase 

and N-acetyl 
glucosaminidase 

activity. Reduced 

dynamic compliance

[159, 160] Sprague Dawley NO
2

Increased dopamine 

D(2) receptor 

expression

Ferret [152] Mustela putorius furo SO
2

Observation of 

lesions with changes 

in ciliated cells, 

edema and cell 

infiltration. Increased 

coughing, nasal 

discharge and dried 

mucus

[161] Mustela putorius furo NO
2

Reduced thoracic 

clearance function

Hamster [160] DSN NO
2

Moderate/severe 
bronchiolitis and 

alveolitis development. 
Increased mitosis in 

Club cells and BALF 
surfactant
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such as sulfur dioxide (SO
2
), nitrogen dioxide (NO

2
), or ozone. SO

2
 is a gaseous irritant which 

can be used to induce COPD-like lesions in animal models. Exposure to high concentrations 
of SO

2
 daily results in chronic injury and repair of epithelial cells in rats [150, 151]. The expo-

sure to high-levels of this gas ranging from 200 to 700 ppm for 4 to 8 weeks has been demon-

strated to lead to neutrophilic inflammation, morphological signs of mucus production and 
mucus cell metaplasia and damage of ciliated epithelial in rats [150, 151] and ferrets [152]. 
Exposure of SO

2
 to capsaicin-treated rats results in increased airway smooth muscle mass 

and increased airway responsiveness observed in these animals [153]. NO
2
 is another gas 

that induces COPD-like lesions in a concentration, duration of exposure, and species suscep-

tibility dependent manner [154]. Exposure to NO
2
 (50–150 ppm) can reduce animal survival 

Animal Reference Strain Exposure Outcomes

Guinea pig [162] – SO
2

Increased 

hyperresponsiveness 

to intravenously 

administered 

serotonin, 

degeneration, 

desquamation of 
epithelium, and 

edema of the lamina 

propria of the trachea 

and bronchi

[163] Hartley NO
2

Increased BALF 
eosinophils and 

neutrophils, 

microvascular 

leakage in the trachea 

and main bronchi.

Rabbit [164] – SO
2

Increase in sputum 

viscosity. Decreased 

respiratory rate and 

pO2 blood level

[165] – NO
2

Enhanced 

destructive of walls 

and abnormal 

enlargement of the 

distal air spaces

Dog [166] – SO
2

Significant ciliated 

cell damage

[167] – NO
2

Changes in 

edema, congestion, 

interstitial irritation, 

bronchiolitis, and 

interstitial fibrosis

Abbreviation: ET-1, endothelin-1.

Table 4. Animal models of bronchitis.
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due to extensive pulmonary injury, including pulmonary edema, hemorrhage and pleural 
effusion. Sub lethal levels of NO

2
 causes damage to cilia, hypertrophy of the bronchiolar epi-

thelium and a type II pneumocyte hyperplasia in rats and hamsters [155, 156]. Mice exhibit 
similar lung responses to NO

2
 exposure [154]. The administration of ozone [157] also causes 

significant lung injury with several features associated with human COPD. All three of these 
exposure models were utilized in several species of animals but are rarely utilized in current 
studies of COPD. A recent NHO chronic CS exposure model in ferrets demonstrated clinical 
features close to human bronchitis [79] and suggests that the animal species may be a decid-

ing factor in bronchitis research. Overall, new approaches are needed to access bronchitis in 
animal models of COPD.

2.5. New models of COPD

Several novel models of COPD have been utilized recently, including investigation of biomass 
fuel and individual components of CS, i.e. nicotine. Several of these models will briefly be 
discussed in this section. One research group has developed a rapid COPD model in mice 
by daily injecting CS extract (CSE) into the abdominal peritoneal cavity [120, 168]. Airway 
enlargements and injury of cardiac and skeletal muscles are reported within 6 weeks of initia-

tion [120, 168] but comparative studies to whole-body or NHO systems are required. Recent 
genetic analyses have identified α3 and α5 nicotine acetylcholine receptors (nAchR) as sus-

ceptibility loci for COPD [169]. The airway epithelium expresses α3, α4, α5, α7, α9, β2 and β4 
subunits for nAchRs [170], and their expression are highest on the apical cell surface, where 
exposure to inhaled nicotine occurs [171]. Several animal studies have already utilized nico-

tine in models of COPD, airway lung injury and tumorigenesis. CS from high-dose nicotine 
cigarettes induces more emphysematous changes than low-dose nicotine cigarettes in PPE 
pre-treated rats [172]. Nicotine enhances airway hyperreactivity in lipopolysaccharides (LPS)-
challenged mice and inflammation in lung epithelial cells [173]. Nicotine also suppresses 
apoptosis in lung tumors [174].

These observations are important considering several new approaches for nicotine replace-

ment therapy now being marketed, such as e-cigarettes. E-cigarettes are a relatively new prod-

uct that has grown in popularity over recent years. E-cigarettes are devices that effectively 
deliver vaporized liquid nicotine to the lungs. The user can choose the nicotine concentration 
and devices can deliver a range of volumes. However, several additional studies have sug-

gested that these products require further testing in animal models and human studies to eval-
uate short and long term effects. Recently, the US Surgeon General concluded that e-cigarette 
use among the younger population is now a significant public health concern [175]. The use 
of e-cigarettes enhances oxidative stress and inflammation in mice [176] and impairs immune 

defense against bacterial and viral infection [177]. Nicotine in e-cigarettes has also been impli-
cated as the driving force of these changes in mice, with long-term inhalation of nicotine-

containing e-cigarettes shown to increase airway hyperreactivity, distal airspace enlargement, 
mucin production, cytokine and protease expression [178]. There are some direct human dis-

ease correlations, with normal human bronchial epithelial (NHBE) cells grown at the air liq-

uid interface exposed to nicotine-containing e-cigarette vapor showing impaired ciliary beat 
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frequency, airway surface liquid volume, conductance of ion channels, decreased expression 
of genes associated with ciliogenesis and increased cytokine production [178]. The animal 
models used for these studies use either the e-cigarette device connected to a whole-body CS 
exposure model, outlined in section b.ii, or a whole-body nebulizer. Many companies have 
modified their NHO or whole-body exposure systems for e-cigarette research, which will 
expand on new animal models for lung research. Therefore, these models and others should 
be utilized in future studies of COPD and nicotine replacement therapy.

Models of air pollution have been used to examine several phenotypes of COPD, with expo-

sures to diesel exhaust particulates (DEP) and other biomass fuels under scrutiny. Animals 
exposed to DEP daily via intratracheal instillation for 3-months have decreased IFN-γ levels 
in bronchoalveolar lavage (BAL) but elevated CD3+ T and CD8+ T cells increased in the lung 
parenchyma and airway enlargement [179]. Equally, exposure of mice to smoke or particles 
generated from dung [180] and wood biomass [181] have been associated with several param-

eters of COPD. These models used modified CS whole-body exposure systems. Studies like 
these are important as it is estimated that air pollutants and biomass smoke could contribute 

to over 4 million deaths annually in the developing world [182] and contribute to the 10–15% 
of COPD cases not related to CS exposure. Therefore, new models or modification of the 
current group of COPD models are required to identify new biological targets of COPD and 
potential new therapies for treatment.

3. Exacerbation models

Exacerbations are one of the most important outcomes for COPD patients, as they contrib-

ute to decreasing quality of life, loss of lung function, and increasing mortality and health-

care cost [183]. Modeling acute exacerbations of COPD (AECOPD) in animals is challenging 
due to the complex clinical manifestations. Most AECOPD are triggered by infection, usually 
viral [184] or bacterial [185]. This association of the presence of a microbial pathogen at the 
onset of AECOPD is the primary basis for the majority of AECOPD animal models. These 
models typically entail exposure of an animal, usually a mouse, to CS followed by infec-

tion with a virus or bacteria. Live pathogens can be difficult to work with and often require 
special containment facilities. Therefore, some groups have used purified components of the 
pathogen, such as lipopolysaccharides (LPS) [186, 187] or Staphylococcus aureus enterotoxin 
B (SEB) [188], or a stimulus that will mimic the immune response upon infection, such as 

polyinosinic:polycytidylic acid (poly(i:c)) [189, 190]. Several of these approaches and outcomes 
are summarized in Table 5. The most frequently used live pathogens utilized in AECOPD 
models are influenza [188, 191], rhinovirus [192], respiratory syncytial virus (RSV) [112, 119], 

Streptococcus pneumoniae [193] and non-typeable Haemophilus influenzae (NTHi) [193]. Most 
models utilize the CS exposure system, but several have favored the PPE method [192, 193]. 
The general consensus appears to be that the COPD status enhances the lungs susceptibility 
to infection, inflammation and worsens lung function in a similar manner to the human dis-

ease. A study by Foronjy and colleagues [112] infected mice multiple times with RSV during a 
chronic CS exposure to mimic repeat viral AECOPD observed in the human disease. Repeated 
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Animal Reference Pathogen Exposure Outcomes

Mouse [188, 191] Influenza CS Enhanced 

airway damage, 

inflammation and 
alters IL33 responses

[192] Rhinovirus PPE Increased airway 

inflammation, 
obstruction, goblet 

cell metaplasia, 

total lung volume 

and alveolar chord 

length. Reduced lung 

elastance

[112, 119] RSV CS Increased airspace 

enlargements, 

inflammation, 
cytokines, 

chemokines, protease 

activity, apoptosis 

and fibrotic areas. 
Reduced phosphatase 

activity

[118] Modified HIV CS Reduced FEF50%/FVC 
and enhanced distal 

airspace enlargement, 

inflammation, 
apoptosis and 

protease activity

[189, 190] Poly(i:c) CS Enhanced pulmonary 

inflammation, airway 
hyper responsiveness, 

corticosteroid 

resistance, 

remodeling, 

apoptosis, fibrosis, 
TLR3 signaling, type 
I IFNs, IL-18, IL-12/
IL-23 p40, IFN-γ, PKR 
activation and eIF2α

[193] Streptococcus 

pneumoniae

PPE Increased mortality, 
inflammatory 
cells in BALF, and 
MMP-12, as well as 
enhanced emphysema 

progression

[199, 200] NTHi CS Increased pulmonary 

inflammation (MCP-1, 
-3, and -5, IP-10, and 
MIP-1γ)

[186] LPS CS Enhanced 

susceptibility to 

airway lung injury
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infection heightened airspace enlargements, inflammation, cytokines, chemokines, protease 
activity, apoptosis and fibrotic areas, while reducing lung phosphatase activity [112]. The 
same group recently infected mice systemically with chimeric HIV-1 virus that is capable of 
establishing chronic infection in immunocompetent mice [194] and exposed these mice to CS 
[118]. This altered HIV-1 infection enhanced CS-induced COPD features in the lungs of these 
mice and this new murine model can be utilized to study HIV-related COPD, which results in 
a heightened form of the disease in the HIV+ population [195–198]. Therefore, several animal 
models exist that can aid in our understanding of AECOPD.

4. Modeling COPD comorbidities in animals

COPD is frequently observed with comorbidities that directly affect patient’s quality of life, 
increase the risk for exacerbations and increase rate of mortality [202]. There are many mani-
festations of COPD comorbidities, such as lung cancer, skeletal muscle wasting (cachexia), 
diaphragm muscle dysfunction, cardiovascular disease, osteoporosis and diabetes [202]. 
Several studies have suggested that a large proportion of COPD-associated deaths are attrib-

uted to comorbidities [203, 204]. Given that comorbidities have a significant impact on COPD 
patient survival and quality of life, researchers have utilized animal models to investigate 
systemic comorbidities associated with COPD. CS exposure models show extrapulmonary 

Animal Reference Pathogen Exposure Outcomes

[188] SEB CS Increased BALF 
lymphocytes and 

neutrophils, CD8+ 
T lymphocytes and 
granulocytes in lung 

tissue, IL-13, CXCL13, 
CCL19 and goblet cell 
hyperplasia

Rat [201] NTHi CS Increased airway 

bacterial load, 

aggravated mucus 

hypersecretion and 

delayed mucociliary 

clearance

Guinea pig [187] LPS CS Enhanced airway 

resistance, lung 

volume, neutrophils, 

epithelial hyperplasia 

and emphysema

Abbreviations: eIF2α, eukaryotic initiation factor-2alpha; PKR, protein kinase; SEB, Staphylococcus aureus enterotoxin B; 
NTHi, non-typeable Haemophilus influenzae.

Table 5. Animal models of COPD exacerbations.
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manifestations, similar to those frequently observed in COPD. Mice and rats exposed to CS 
have reduced body weight, fat mass, hind-limb skeletal muscles mass, grip strength and 

aerobic endurance [82, 205]. CS exposure also enhances pulmonary artery wall thickening, 
increased contractility and endothelial dysfunction in guinea pigs [99]. Chronic CS exposure 
was recently shown to alter several cardiovascular parameters, such as enlarging ventricu-

lar end systolic and diastolic diameters, reducing myocardial and cardiomyocyte contractile 

function, and disrupting intracellular Ca2+ homoeostasis, regulating fibrosis, apoptosis and 
mitochondrial damage [206]. Mice and guinea pig exposed to CS, displaying lung inflam-

mation and emphysema, have pulmonary hypertension and significant impairments to right 
ventricular diastolic and systolic function and contractility [99, 207]. CS in mice also causes 
hypertension, endothelial dysfunction and cardiac remodeling [208]. Chronic CS exposure 
have also been documented to increase systolic blood pressure, circulating platelets and 

erythrocyte numbers, attenuate alveolar macrophage responses to inflammation, produc-

tion of reactive oxygen species in heart and kidney and lipid peroxidation in heart, liver 
and kidneys in mice [94]. Multiple elastase instillations in mice leads to the development 
of pulmonary arterial hypertension [209]. Diaphragm muscle dysfunction can contribute to 
COPD comorbidity. Diaphragm fatigue and ROS production are observed in guinea pig PPE-
induced emphysema [65] and mouse smoke-induced emphysema [121], which could con-

tribute to this comorbidity. Enhanced susceptibility to tumorigenesis is also demonstrated in 
mice exposed to smoke [93]. The hamster inhalation model is the only model in which tumor 
induction by CS has been reproducibly achieved [210]. These combined changes would be 
predicted to contribute to multiple comorbidities in COPD patients. Research focusing on 
models of COPD comorbidities will greatly improve our understanding of key factors in loss 

of quality of life and mortality in the COPD patient population, and additional novel animal 
models investigating the link between COPD and comorbidities are needed.

5. Animal model limitations and what is missing in these models

Models of disease try to mimic the disease as closely as possible. Despite no disease model 
being perfect, many models are helpful tools in deciphering the pathogenesis of the disease. 
Regarding COPD and the models outlined here, all models yield several phenotypes of the 
disease. Each researcher must evaluate the outcomes they desire to observe and choose the 
appropriate model that best suits their needs. For example, most COPD models cannot repro-

duce the features of severe emphysema as observed in humans, i.e. GOLD stages 3 or 4. Most 
models, especially the mouse smoke model, only represent early COPD (i.e. similar to human 
GOLD stages 1 of COPD) regardless of exposure time. It is estimated that obstruction of 
75% of the small airways is required before changes can be detected by routine pulmonary 
function tests (e.g. forced expiratory volume in 1 s (FEV1)) in humans [211]. The majority of 
morbidity and mortality occurs in COPD patients with severe disease [3]. This is a major chal-
lenge to undertake when developing a reliable model of COPD as this requires a considerable 
amount of time and enhances the frequency of animal death prior to testing the conditions 
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of the model. If a severe stage of COPD is required for investigation, the PPE model may be 
the best model currently available to examine COPD. However, if researchers are examining 
disease initiation or progression the PPE model would not be ideal. Another challenge in 
animal research is in the measurement of lung function in very small mammals, such as mice. 
The use of the enhanced pause (Penh) in conscious mice as an indicator of airflow obstruction 
is not ideal and invasive methods remain more reliable. Several new technical advances have 
aided in enhancing the pulmonary function readouts in animals but further work is needed 

to correlate animal data to the human disease.

The many differences in lung morphology and physiology between humans and the animals 
utilized in research will definitely impact on data interpretation, such as mice being obli-
gate nose breathers, having lower numbers of cilia, fewer Club cells, differences in airway 
mucus production and reduced submucosal glands in the trachea. However, the experimental 
approach must also undergo scrutiny. Studies do not define whether a new therapeutic treat-
ment is started following disease initiation or in parallel with the disease triggering exposure 
(i.e. CS or PPE exposure). Many treatments may be useful in preventing disease initiation but 
will have little impact on the lungs following disease establishment. Several recent studies 
are now addressing this experimental problem but scientific reviewers need to assert this dif-
ference in studies. In mice, lung lesions and inflammation induced by CS inhalation do not 
progress after cessation of CS exposure but airway enlargements persist [212]. This may have 
a large impact on the methodological design of experiments in mice. Whether other species 
recover following CS exposure is unknown. Equally, new genetic targeted approaches should 
be employed after disease establishment. Genes associated with disease progression can be 
selectively knocked down or enhanced after disease initiation, rather than utilizing whole 
body knockout animals that may have lung disease phenotypes due to embryo develop-

ment problems. Modifying current methodology in these ways will further aid in advancing 
current animal model data and interpretations. Future animal model COPD studies should 
assess the histopathological patterns of COPD and examine functional parameters of human 
COPD using imaging, airflow limitation, mucus hypersecretion, corticosteroid resistance, 
β-adrenergic bronchodilator responses, chronic cough and exacerbations.

Overall, several major factors limit the interpretation of data from animal models to the 

human disease. Many investigators expect the animal model to exactly mirror the human 
condition but COPD is a complex and heterogenous disease and the human disease requires 
further sub-characterization prior to designing animal models or interpreting current data 
from animal models. We must also remember that without disease models, the burden on 
patients would be vast to participate in clinical trials and donate samples. Equally, not utiliz-

ing animal models would only allow clinicians to undertake COPD research. Deciphering the 
key players of a disease requires multiple approaches from many research fields and animal 
models may have a significant impact on COPD treatment in a similar manner to oncology 
and cardiovascular research. There are many benefits in development and use of animal mod-

els of COPD, especially the understanding of the fundamentals of immune and inflamma-

tory mechanisms. Clinicians will benefit from the input of animal researchers, immunologists, 
microbiologists, bioinformaticians and statisticians.
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6. Conclusion

Current animal model technology allows researchers to investigate the mechanisms of airways 

dysfunction, the influence of genetics and the immunological factors that define physiologi-
cal and signaling changes that drive COPD. There are numerous well-established exposure 
models of COPD that exhibit several characteristics of the human disease, but no model cap-

tures every phenotype of the human condition. Mice are the most common species utilized 
for COPD research as they are small in size, they have a fast gestation period, and cost of 
feeding and housing are far less than larger animals. Also, the mouse genome is extensively 
characterized and many genetically modifiable mice are available, as well as equipment and 
biological reagents designed specifically for mouse anatomy. It is far more cost effective to 
generate genetically manipulated mice than it is to do so in other species. Another advantage 
to the use of mouse models is that exposure to CS for 1 year represents approximately 50% of 
the animal’s lifetime, thereby allowing a better representation of lifetime CS exposure. While 
there are many physiological differences between the mouse and human pulmonary systems, 
the mouse models of COPD represent good tools to further our understanding of the human 

disease.
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