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Abstract

Criteria to select autochthonous yeast strains for their use in fermented beverages include 
their ability to dominate the media and to enhance desired sensorial characteristics and their 
inability to produce undesired compounds such as biogenic amines or off-odors. One of the 
key features in yeast selection is its Implantation, surpassing different stresses, and its fer-
mentation performance, which requires setting up the process and monitoring it, involving 
important amount of resources. Methods to evaluate the tolerance of yeast strains are usually 
based in the qualitative measure of the growth of the microorganism in a medium containing 
the limiting compound after a specific time of incubation. However, studying strain growth 
through optical density measurements permits to estimate quantitative and comparable 
parameters providing an insight into the fitness of the cell to certain environment, lag phase 
duration, growth rate, and maximum population, among others. In the last decades, culture-
independent methods have been used to evaluate the dynamic of microbial populations 
during fermentative process. In this chapter, a review of recent advances in the selection of 
fermentative yeasts as well as the utilization of kinetic evaluation and molecular strategies 
in conditions associated with fermented beverage for selecting yeast strains is presented.

Keywords: yeast selection, fermentative process, growth evaluation, kinetic parameters, 
culture-independent methods

1. Introduction

The production of alcoholic beverages is one of the most ancient food traditions. Their elabo-
ration relays on a fundamental stage: the alcoholic fermentation (AF), which is a biochemical 
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conversion of sugars into ethanol through the action of yeasts. The AF can occur in three ways 
[1, 2]: (i) spontaneously, from the microbiota naturally present in the musts or on surfaces of 

equipment; (ii) by adding commercial yeasts; and (iii) by inoculating selected native strains. 
Nowadays, the demand for autochthonous strains has increased worldwide for it is accepted 

that this option allows preserving the unique and typical character that native microorgan-
isms provide.

Yeasts intervening in AF are considered “fermentative yeasts,” and they are divided broadly in 

two groups: Saccharomyces and non-Saccharomyces (nS). The Saccharomyces possess a high effi-
ciency in the conversion of sugars and tolerate high concentrations of ethanol and SO

2
, being the 

fermentative genus for excellence [3]. Most of the nS are low tolerant to ethanol and include dif-
ferent genera such as Candida, Kloeckera, Hanseniaspora, Zygosaccharomyces, Schizosaccharomyces, 

Torulaspora, Brettanomyces, Saccharomycodes, Pichia, and Williopsis [4]. In beverages like wine, 
the importance of these yeasts lies on their metabolic features, as the wide set of enzymes they 

offer can improve the typicity and enhance the sensory profile [4–7]. Conversely, in other bev-
erages as Mexican tequila and mescal, as well as Brazilian cachaςa, nS are considered the main 
responsible for the ethanol production [8–10]. Yeast cells are exposed to several stress condi-
tions from the beginning to the end of the fermentation process [11], resulting in the reduction 

of their growth and survival rate causing a decrease in fermentation efficiency. Yeasts capable 
of overcoming these conditions with low viability loss are best suited for these purposes [12].

2. Stress tolerance of fermentative yeast

The primary goal of fermentative yeast is to rapidly and efficiently convert simple sugars into 
ethanol without developing unpleasant flavors [13]. Several factors affect the yeast ability to 
grow in the fermentative media related with the type and style of beverage produced; there-
fore, the ability to adapt and to cope with this hostile environment is considered the main 

feature to select fermentative yeast [12]. Some of the most relevant inhibiting conditions are 
summarized in this section.

2.1. Limiting conditions associated with musts

2.1.1. Carbohydrates

Carbohydrates are the most important nutrient since they are metabolized to form bio-
mass, ethanol, and different by-products such as volatile compounds, glycerol, and others 
that will develop the sensorial characteristics [14]. However, they also produce the first 
stress due to osmotic pressure in the cells after their inoculation. Therefore, tolerance to 
high sugar concentration is one of the main criteria for yeast selection, especially for those 

designated for their use in the elaboration of liquorish beverages such as “Sauternes” wine. 
Yeast cells have developed mechanisms to adjust to high external osmolarity and maintain 

or reestablish an inside-directed driving force for water. Adaption to this stress usually 
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takes several hours in which yeast cells accumulate glycerol and trehalose [15] and change 

their cell wall composition [16] to counter loss of water by the osmotic pressure. The stress 
level will depend on the type and concentration of sugars found. Concentrations range 
from diluted juices to the high gravity worst containing 16–18% of dissolved solids, rice 

mash for sake production with 20% of solids, and grape juice with 200 g L−1 of sugar con-
tent or even more.

Sugar composition of the media strongly impacts on yeast metabolic physiology [17]. Glucose 
and fructose are widely found in nature as free sugars or as polysaccharides, also in different 
proportions. Grape juice contains approximately 1:1 of glucose-fructose [18] apple juice 5:8 

[19], and agave juice for the elaboration of tequila and mezcal, after thermal processing of 

inulins from the plant, contains 1:20 ratio [20]; in pulque production from raw agave juice, inu-
lin is also predominant [21]. For beer fermentation maltotriose and maltose comprise 50% of 
sugars; in rum, cachaςa, and tafia, produced by sugar cane juice or molasses, mainly sucrose 
is present [22].

2.1.2. Assimilable nitrogen

Deficiencies in the supply of assimilable nitrogen will lead to sluggish fermentation. The 
amounts of total nitrogen in musts for the production of fermentative beverages vary from 40 

mg L−1 in agave juices [23], 50–150 mg L−1 in apple juice, 80 mg L-1 in sugar cane for cachaςa 
[24], more than 150 mg L−1 in beer malt wort [25], and from 100 to 500 mg L−1 in grape must 

[26]. A minimum of 66 mg L−1 to sustain the growth of yeasts and to finish fermentation with 
a total consumption of sugars, and high ethanol yield is considered [26].

In the fermentative media, after yeasts are inoculated, a rapid uptake of nitrogen compounds 

used for the biosynthesis of macromolecules and storage in vacuoles is carried out if suffi-
cient amount is present in the must. As yeasts have high preference for ammonium ions, it 
is used as exogenous nitrogen source in fermentations. Glutamate, aspartate, and glutamine 
are the first amino acids uptaken if they are present in the must. When a favorite nitrogen 
source is depleted, yeast will use a less preferred, resulting in reduced growth and fermenta-
tion rates [12].

A target for the improvement of fermentation is then the selection of yeasts with low nitrogen 

requirements, which will reduce the necessity of adding supplements to the must that will 

make the process expensive.

2.1.3. Sulfur dioxide (SO
2
)

During the beginning of wine fermentation, native microbiota mainly nS yeasts and bacteria 

dominate the media with low ethanol production that could negatively affect the quality of 
the final product. To inhibit them and to favor native or inoculated Saccharomyces strains to 

develop, sulfur dioxide (SO
2
) is added at levels ranging from 20 to 50 ppm [27]. Saccharomyces 

also produces SO
2
 during metabolism of sulfate ions [28]. If the amount of SO

2
 added and 

produced by Saccharomyces strain are high and remain until the end the process, then safety 

Growth Kinetics for the Selection of Yeast Strains for Fermented Beverages
http://dx.doi.org/10.5772/intechopen.70224

69



problems arise as this compound causes certain level of toxicity in human population that con-
sume it. The selection of yeast strains resistant to SO

2
 and low SO

2
 producers is then desirable.

2.2. Fermentative-derived conditions

2.2.1. Interaction with other microorganisms

Different microorganisms interact during the elaboration of fermented beverages. The vari-
ety of these interactions and their impacts on efficiency and product quality should be indi-
vidually determined, as they will depend on the fermentative strains, the native associated 

microbiota, and the type of beverage. One of the main metabolites exerting a clear effect 
on yeast growth and performance is ethanol, mainly produced by Saccharomyces cerevisiae. 
Other metabolites as medium-chain fatty acids and high amounts of acetic acid can nega-
tively affect the growth of a co-fermenting yeast species [29]. Cell-to-cell contact as well as 
oxygen availability appears to be also involved in the interactions between S. cerevisiae and 

other nS species [30].

One special aspect is the “killer phenotype,” which refers to those yeasts able to secrete 
polypeptide toxins which kill sensitive cells and which is believed to be a potential mecha-
nism to prevent a competitor from gaining access to a resource [31]. Killer toxins differ 
between species and strains, thus varying the modes of action, from changing membrane 

permeability in sensitive cells to inhibiting DNA replication or stopping cell division at G
1
 

phase. All killer toxins are usually active and stable at pH 4–5 and 20–25°C; nevertheless 
each toxin has an optimum pH and temperature at which it manifests its killer character 
more effectively [32, 33].

2.2.2. Ethanol

Ethanol produced during fermentation is known to inhibit yeast growth, resulting in a pri-
mary factor on yeast efficiency; in turn, the viability of yeast cells in the presence of ethanol 
constitutes a key feature on strain selection for fermentative purposes [34].

Ethanol affects many aspects of yeast survival, as the fluidity of the plasmatic membrane [35], 

the vacuole morphology [36], the activity of crucial glycolytic enzymes [37], and the mito-
chondrial DNA [38]. Ethanol also causes the denaturation of hydrophilic and hydrophobic 
proteins, affecting various transport systems such as the general amino acid permease and 
glucose uptake processes [18]. Regarding molecular response of S. cerevisiae in the presence 

of ethanol, it increases the expression of genes associated with glycolysis and mitochondrial 

function and decreases gene expression in energy-demanding growth-related processes; it 
also induces the production of heat shock-like proteins, lowering the rate of RNA and protein 
accumulation, enhancing the frequency of small mutations, altering metabolism, denaturing 

intracellular proteins and glycolytic enzymes, and reducing their activity [39].

Moreover, yeasts have developed diverse strategies to counteract the damages produced by 
ethanol [40], as the generation of fatty acid unsaturation of membrane lipids in S. cerevisiae 

[35]. Genes involved in intracellular pH homeostasis are also crucial for the resistance to 
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ethanol and other alcohols [41]. This entails in better adapted strains that show a better capac-
ity to activate these mechanisms and endure in the hostile environment formed through alco-
holic fermentation.

2.2.3. Organic acids

As previously stated, microorganisms interacting with yeasts during fermentation produce 

organic acids, and some of them can affect the growth and fermentative efficiency. Lipophilic 
weak acids, such as acetic, may accumulate inside yeast cells in their undissociated form diffus-
ing into the yeast cells where it dissociates, inducing an acidification of the cytosol [42]. Fatty 
acids of medium-chain length, as hexanoic, octanoic, and decanoic acids, and also their respec-
tive ethyl esters have shown to negatively affect the survival and growth capacity of yeast, being 
partly responsible for the premature stoppage of fermentations carried by S. cerevisiae [43]. These 
metabolites can be absorbed by the cell membrane; its toxic effect increases in the pH range of 
3.0–5.4. This apparent disadvantage of permeability to fatty acids has been exploited, using the 
denominated “yeast ghosts,” which are a commercially available product that can be added 

when a sluggish or stuck fermentation occurs in order to absorb this kind of inhibitors [44].

2.2.4. pH

During alcoholic fermentation, pH in the media tends to reduce [45], which is known to be 

a limiting factor on growth of microorganisms, including yeasts. The optimal pH value for 
yeast growth is around 4.5, and fermented beverages range in pH from 2.5 to 5.5, which by 
itself does not imply a restrictive condition, but a low pH (<3.5) combined with ethanol, as it 
usually occurs on fermented beverages, can prematurely inhibit yeast growth and/or fermen-
tation rate [42].

3. Yeast selection workflow

The aspects previously described define the medium in which yeasts will be developed, and 
they must be kept in mind onward. On the other hand, the selection of fermentative yeasts 
involves several sequential steps in which the final objective is the identification of strains 
capable to efficiently ferment the must and obtain a product with optimum sensory qualities 
[3]. The framework for selection usually starts determining the diversity of yeasts present dur-
ing the spontaneous fermentation of the beverage. The isolation of yeasts usually takes place 
along with that stage; afterward, the aspects of interest ranging from tolerance conditions to 

sensory impact are evaluated in each strain in order to identify the best suited to be selected.

3.1. Determination of yeast diversity

As recently reviewed, in every fermented beverage produced around the world, a particu-
lar microbiota will develop as a cause of the raw material from which it starts (fruits, grains, 

dairy products, parts of plants, etc.), its characteristics (nutrients, pH, type of sugar, etc.), the  
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geographic region, and the modifiable options in each elaboration process, including pre-
fermentative manipulations, temperatures, and added substances, among others [45]. 
Furthermore, yeast diversity that develops will largely determine the sensory profile of the 
final product; therefore it is first necessary to become acquainted with the species present, their 
dynamics, and the possible role each one plays during the fermentation. For these studies, 
advances in molecular techniques have been exploited, being nowadays the area with most 

scientific contributions on fermented beverages worldwide. Culture-independent methods 
are the preferred, since they are neither affected by the viability of the microorganism nor 
by low populations of less abundant species [46]. Some of the preferred techniques are high-
throughput or next generation sequencing (HTS or NGS, respectively), denaturing gradient gel 
electrophoresis (DGGE), and quantitative PCR (qPCR), as it is summarized in Table 1 [47–49].

In spite of the multiple advantages of the culture-independent techniques, it is necessary 
to become aware of possible gaps inherent to these approaches, as undetectability of minor 

populations, preferential amplifications, limited databases, and different effectiveness of lysis 
protocols on certain species are some of the principal. By applying both, culture-dependent 
and culture-independent techniques, these drawbacks can be surpassed, along with other 
benefits, as recovering the isolates needed to characterize individually and select possible 
starter cultures.

Beverage Country Technique Year Main yeasts found Reference

Caxiri (cassava, 

corn, and sweet 

potatoes)

Brazil DGGE 2015 S. cerevisiae, P. kluivery, C. tropicalis, 

D. fabryi

[50]

Wine (cv. 
“Grenache”)

Spain NGS 2015 Hanseniaspora, Saccharomyces, Candida, 

Issatchenkia

[51]

Tarubá Brazil DGGE 2015 T. delbrueckii, P. exigua, P. manshurica, 

P. kudriavzevii, C. tropicalis, C. ethanolica

[52]

Grape must Spain DGGE, qPCR, NGS 2015 H. uvarum, S. bacillaris, S. cerevisiae [53]

Fuzhou Hong Qui 
(Rice wine)

China DGGE 2015 Saccharomycopsis fibuligera, 
P. guilliermondii, S. cerevisiae, 

Wickerhamomyces anomalus, C. glabrata

[54]

Cold soak (wine) Spain qPCR, DGGE 2016 H. uvarum, S. bacillaris, S. cerevisiae [55]

Xaj-pitha (rice wine) India Whole genome 
shotgun sequencing

2016 Meyerozyma guilliermondii, 

Wickerhamomyces ciferrii, S. cerevisiae, 

C. glabrata, D. hansenii, Ogataea 

Parapolymorpha, D. bruxellensis

[56]

Taberna (palm 

wine)

Mexico DGGE 2016 H. guillermondii, S. cerevisiae, 

P. kudriavzevii, C. tropicalis, K. exigua

[57]

Pitmud used in 
strong-flavor liquor

China DGGE and NGS 2017 Candida, Wickerhamomyces, 

Debaryomyces, Saccharomyces, Pichia

[58]

Table 1. Recent studies on the diversity of yeasts present during the elaboration of fermented beverages.
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3.2. Isolation of strains

Although the sources of yeasts can be quite diverse, isolates are preferably obtained from 

the initial must and along the fermentation process, intending that this system itself directs 

to select the best adapted strains. Two possibilities arise at this stage: (1) to isolate random 
species using a general solid media (PDA or YEPDA) or with an agent leading to add visual 
differentiation in colony morphologies (WL nutrient agar) or (2) to focus on a specific group 
using selective media (lysine media for nS or nutrient medium supplemented with sodium 

metabisulfite and ethanol for Saccharomyces) [3, 81]. If one of the purposes is to complement 
the community study, the first would be the best choice, but if the selection is directed to 
certain species, the second would be best. After isolating several strains, characterization and 
selection will take place.

3.3. Characterization (qualitative approach)

The desirable aspects of fermentative yeast are quite variable; preference is given to one or 

the other, depending on each case [75]. Some of the most important and various studies in 
which they were applied are summarized in Table 2. Among this characteristics, it can be 
considered essential to evaluate: resistance to high concentrations of sugar and ethanol, high 

fermentation performance (this may not apply when selecting nS yeasts), low production of 

sulfurous compounds, and volatile acidity and implantation aptitude [79–82]. This last trait 
is not always performed, even though it is almost imperative, as it requires the design and 

implementations of molecular methods, such as pulsed field gel electrophoresis (PFGE), mini- 
or microsatellite markers, qPCR, or others [65, 66]. Once the survival capacity of the strains is 
determined, the next interesting feature is the impact they exert on sensory aspects. Olfactory 
qualities of yeast are usually assessed by determining their enzymatic activity, including 

glucosidases, lyases, proteases, or reductases, which can release or produce active odorant 

compounds [75]. Also, visual aspect can be affected by yeasts through their enzymatic activ-
ity (hydroxycinnamate decarboxylase) or their ability to excrete pyruvate and acetaldehyde, 

which can lead to the formation of highly stable colorant compounds as pyranoantocyanins 

that help to improve the visual quality of red wines [77, 83]. Besides, it is quite useful to ana-
lyze the nitrogen requirements of yeasts, if they possess the killer phenotype and flocculation 
ability (particularly important in beer and sparkling wines). Furthermore, some features can 
only be qualitatively studied such as the presence or absence of certain enzymes, as well as 

which killer phenotype they possess. Some other are by definition quantitative, as fermenta-
tion performance, and several characteristics can be determined both ways, qualitatively and 

quantitatively, which is the case of tolerance feature.

The methods to evaluate resistant traits of yeast strains are usually based in the qualitative 

measure of the growth of the microorganism in a synthetic medium containing the limiting 

compound after a specific time of incubation [82, 84–86]. In the case of ethanol tolerance, 
there are a broad number of tests that could define this characteristic [87]: (a) the ability 

to grow in the presence of ethanol, (b) the degree of survival after exposure to a certain 

concentration, or (c) the maximal ethanol production capacity. Some of these methods are 
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qualitatively measured, and some other imply the set up and monitor of a fermentation, 

requiring large amounts of resources and hindering the possibility to evaluate a high number 

of strains. However, fermentation parameters such as ethanol yield, productivity, and maxi-
mum specific velocity of cell growth must be measured during the traditional process [22].

Additionally, the fermentative traits are often individually evaluated, while in fermentation 

several stress factors intervene together and increase in number and magnitude along the 

process. Testing more than one inhibitor in a qualitative evaluation complicates the selection 
based only in the presence or absence of growth; thus, a more objective method should be 

used to compare between strains.

4. Quantitative methods used for the selection of fermentative yeast

An alternative to assess the tolerance of yeast strains to limiting factors is to study the growth 

kinetics of the strains exposed to the inhibiting condition. This can be achieved by traditional 
methods (plate counts), implying more resources but being more reliable, or by means of 

optical density (OD) measurements of the yeast in the media to test. Microbial growth data 
obtained by absorbance measurements permits to obtain kinetic parameters, which can be 

transformed into quantitative and comparable variables such as (a) detection time, the time 

to reach the detection level of Bioscreen (Automated OD reader equipment) and its period 

includes the lag time; (b) maximum growth rate could be estimated with the slope of the tan-
gent of exponential phase; and (c) maximum population density, asymptotic level of OD at 
the end of exponential phase (Figure 1).

Characteristic of interest References

Tolerance to inhibitors (ethanol, SO
2
, sugar, pH) Nikolau et al. [59]; Fiore et al. [60]; Arrizon et al. [61]; 

Capece et al. [62]; Tristezza et al. [63]

Implantation aptitude Lopes et al. [64]; Capece et al. [62]; Perrone et al. [65]; 

Alonso del real [66]

Fermentation vigor (efficiency, ethanol yield, speed) Tristezza et al. [63]; Ribeiro et al. [67]

Low nitrogen requirements Arrizon et al. [61]; Julien et al. [68]; Gardner et al. [69]

Enzymatic activity Fiore et al. [60]; Capece et al. [62]; Capece et al. [70], Csoma 

et al. [71]; Romano et al. [72]

Color and aroma enhancement Belda et al. [75]; Steensels et al. [76]; Morata et al. [77]; 

Morata et al. [78].

Production of specific metabolites (sulfurous, glycerol, 
fatty acids, other alcohols)

Nikolau et al. [59]; Capece et al. [62, 70]; Tristezza et al. [63]

Killer phenotype Zagorc et al. [73].

Flocculation Silva et al. [74]

Table 2. Main aspects considered to select fermentative yeasts.
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Measurement of microbial growth by using turbidity and cells’ kinetic behavior descrip-
tion offer some benefits. A considerable amount of data could be generated faster and in real 
time. Nonetheless, this approach possesses some limitations such as the need to conduct the 
study in a high-transmittance liquid. Another factor to be considered is that cell concentration 
required to detect a shift in the measurement is at least 6 log CFU/mL.

4.1. Applications in food matrices

Analytical methods based on OD by assessing the final cell density have been used to evaluate 
the growth of foodborne pathogens in culture media, translucent liquid foods, and diluted 

food extracts [88–91]. Data from these studies have offered the possibility to obtain infor-
mation to determine which food matrices and conditions could be inhibitory of pathogens 

growth. Also, this approach allows the comparison of strain variability of foodborne patho-
gens under several growth conditions, e.g., pH and salt concentration [92].

This method has allowed to rapidly evaluate the efficacy of antifungal compounds on the ger-
mination of fungal spores. The non-inhibitory concentration (NIC) and the minimum inhibitory 
concentration (MIC) for different environmental conditions can be calculated mathematically 
using the OD data [93]. MIC is considered the lowest concentration at which no growth is 
observed, while NIC is the lowest concentration at which any inhibitory effect is observed.

4.2. Potential applications for the selection of fermentative yeast

Quantitative measurement of the growth of microorganisms based in OD could be used to 
assess strain tolerance in fermentation-associated conditions. Some strategies and parameters 
have been proposed in base to OD data.

Figure 1. Kinetic parameters for microbiological growth using OD measurements. Detection time (DT), maximum 
growth rate (μmax), and maximum population density (maximum OD).
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The MIC and NIC values are related to the susceptibility/tolerance of the microorganisms to 
stressful conditions. These parameters were proposed by Lambert and Pearson [94] to evaluate 

microorganisms not associated to fermentation processes, such as Escherichia coli, Pseudomonas 

aeruginosa, and Staphylococcus aureus. Arroyo-López et al. [18] used MIC and NIC to compare 
the growth of 29 strains of yeasts (S. cerevisiae, Saccharomyces paradoxus, Saccharomyces baya-

nus, Saccharomyces kudriavzevii, Saccharomyces mikatae, Saccharomyces arboriculus, Saccharomyces 

cariocanus, and some nS) in a medium containing ethanol. Álvarez-Pérez et al. [95] used the 

MIC among the criteria to select S. cerevisiae strains to produce Picudo Rosé wines with differ-
ent aromatic profiles in Spain.

The area under the OD-time curve could be estimated, and it represents the population gen-
erated along the incubation period at a specific condition. The inhibitory effect could be esti-
mated as a relative fraction of the area obtained under an optimal condition (control). Figure 2 

shows an example of this parameter, in which the growth of S. cerevisiae in synthetic medium 

is contrasted with the yeast behavior at the presence of ethanol and SO
2
 [96].

When OD measurements are obtained with an automatized spectrophotometer, the detection 
time (DT) is reported for each tested condition. Low DT values are associated with the ability 
of microorganisms to adapt to a specific condition, and consequently, they could start their 
growth in short time.

Ortiz-Barrera et al. [97] reported DT for 90 nS strains grown in artificial medium containing 
6% ethanol or 30 mg of total SO

2
 (Figure 3). This parameter was used to select strains with the 

best ability to grow under stressful conditions (ethanol and SO
2
) associated to wine (enclosed 

in the square in the figure).

In log growth phase, a close relationship between OD and cell concentration is apparent due 
to the fact that most of the cells are in an active multiplication process which in turn is used to 

estimate growth rate. In Figure 4, growth rate values of 12 Saccharomyces strains incubated in 

grape juice media with ethanol and SO
2
 are shown (unpublished data).

Figure 2. OD curves over time of S. cerevisiae growth in synthetic medium added with ethanol (12%), SO
2
 (200 mg/L) and 

without inhibitors (control).
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Figure 3. Detection times of 90 non-Saccharomyces strains in YPD (pH 3.5, 20°Bx) containing ethanol (6%) or SO
2
 (30 mg∙L−1). 

Selected strains are shown in the inset.

Figure 4. Growth rate of a commercial strain (stripped bar) and 12 Saccharomyces strains (solid bars) in grape juice media 

with 14% of ethanol, 50 mg/L of SO
2
, and pH 3.5. Different letters denote statistical difference. Bars without letters 

correspond to ABCD.
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Growth rate and DT are complementary parameters to describe the ability of yeast to adapt 
and grow in adverse conditions, similar to those found in fermentative beverages. Thus, both 
parameters (growth rate and DT) could be simultaneously used to select fermentative yeast 

strains (Figure 5).

Based on OD data, Salvadó et al. [98] estimated kinetic parameters of yeast strains (S. cerevisiae 

and nS) grown in a medium with ethanol (0–194.45 g/l) or incubated at different temperatures 
(4–46°C) by using Gompertz equation modified by Zwietering et al. [99]

   y = D × exp {   − exp  [ (( μ  
max

   ) / D ) × (λ − t ) )+1 ]  }     (1)

where y = ln(OD
t
/OD

0
), D = ln(OD

max
/OD

0
) is the asymptotic maximum value reached, OD

0
 is 

the initial OD, OD
t
 is the OD at time t, μmax is the maximum specific growth rate, and λ is 

the lag phase duration (h).

Based in μmax these authors generated a secondary model as a function of ethanol concentra-
tion and temperature of fermentation. Model prediction pointed to the temperature fermenta-
tion as the principal factor to promote the dominance of S. cerevisiae over other yeast genera 

during fermentation process. Only a few authors have applied this modeling strategy in yeast 
comparison [66, 100].

5. Conclusions

The vast variety of fermented beverages around the world and with them a great diversity 

of yeast present in each has encouraged the search for exceptional native yeast strains to be 

Figure 5. Detection times and growth rate of 29 strains of Saccharomyces grown in YPD medium with 12% of ethanol.
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selected in order to improve the quality of the products and the fermentation process itself. 
Molecular techniques have become a good strategy to elucidate yeast diversity and composi-
tion during any fermentation process. However, methods to evaluate the tolerance of yeast 
strains, developed during the last decades, are usually based in the qualitative measure of 

the growth of the microorganism in a medium containing the limiting compound after a spe-
cific time of incubation. Studying strains growth in limiting media through optical density 
measurements permits to estimate quantitative and comparable parameters fast and inex-
pensively, providing an insight on the fitness of each strain to certain environment, lag phase 
duration, growth rate, and maximum population and then performing a rapid initial selection 

of the strains.
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