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Abstract

In order to avoid the drawbacks of sample size determination procedures based on
classical power analysis, it is possible to define analogous criteria based on ‘hybrid
classical-Bayesian’ or ‘fully Bayesian’ approaches. We review these conditional and
predictive procedures and provide an application, when the focus is on a binomial
model and the analysis is performed through exact methods. The distinction between
analysis and design prior distributions is essential for the practical implementation of
the criteria: some guidelines for choosing these priors are discussed, and their impact on
the required sample size is examined.

Keywords: analysis and design prior distributions, binomial proportion, Bayesian
power functions, conditional and predictive approach, sample size determination,
saw-toothed behaviour of power

1. Introduction

The calculation of an adequate sample size is a crucial aspect in the design of experiments.

Researchers need to select the appropriate number of participants required to ensure ethically

and scientifically valid results. If samples are too large, time and resources are wasted, often

for minimal gain. On the other hand, too small samples may lead to inaccurate results.

Therefore, sample size determination (SSD) plays a very important role in the design aspect

of studies in many fields, especially in the context of clinical trials where, in addition to

economical problems, investigators have to deal with important ethical implications.

Sample size determination (SSD) methods, when the focus is on hypothesis testing, are typi-

cally related to the concept of power function. Let us denote the parameter of interest by θ and
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let us assume that we are interested in testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, where Θ0 and Θ1

form a partition of the parameter space Θ. The most widely used frequentist SSD criterion

consists in choosing the minimal sample size that guarantees a given power, for a fixed type I

error rate, under the assumption that θ is equal to a suitable design value, θD
∈ Θ1. In practice,

the idea is to ensure a sufficiently large probability of obtaining a statistically significant result

(i.e. of rejecting the null hypothesis), when the true value of θ belongs to the alternative

hypothesis and is equal to θ
D. In many textbooks (see [1–3], among others) sample size

formulas, derived using this procedure, are provided in many occurring situations, under

different hypothesis testing and based on both categorical and quatitative data.

In the frequentist criterion described above, a crucial role is played by the design value that the

trial is designed to detect with high probability, whose uncertainty is not accounted for. In fact,

the local optimality is one of the most criticized aspects of the method. Moreover, this

frequentist procedure does not allow to take into account pre-experimental information about

θ, for instance available from previous studies. By adopting a ‘hybrid classical-Bayesian

approach’ or a ‘fully Bayesian approach’, it is possible to define analogous criteria for sample

size selection that allow the researcher to avoid the problem of the local optimality or/and to

introduce possible prior information in the SSD process.

In this chapter, we illustrate how to construct frequentist and Bayesian power functions, based

on both conditional and predictive approaches, and how to use them to determine the optimal

sample size. An essential element of the method is the use of two different prior distributions

for the parameter of interest, which play two distinct roles in the criteria. The importance of this

distinction in sample size determination problems has been stressed by several authors (see, for

instance, [4–9] among others). The rest of the chapter is organized as follows: in Section 2, we

review both the frequentist conditional and predictive procedures based on power analysis to

determine the optimal sample size. Section 3 provides a description of analogous methods

based on Bayesian power functions. Then, in Section 4, we formalize different SSD criteria that

depend on the shape of the power curves as a function of the sample size and, as a conse-

quence, on the nature of the data distributions. Furthermore, in Section 5, we illustrate an

application of the frequentist and Bayesian SSD procedures, when the parameter of interest is

a single binomial proportion. Finally, Section 6 contains a brief final discussion.

2. Frequentist power functions and SSD methods

Let us consider a parameter of interest θ and assume that we are interested in testingH0 : θ∈Θ0

versus H1 : θ ∈ Θ1, where Θ0 and Θ1 form a partition of the parameter space Θ. Moreover, let

Yn be the random result of the experiment that is typically a suitable statistic used to summa-

rize the data relevant to the parameter θ. In the notation, we have highlighted that Yn depends

on the sample size n. Finally, we denote by fn(yn|θ) the sampling distribution of Yn.

The power function is defined as the probability of obtaining a statistically significant result

that leads to reject the null hypothesis H0, when the actual value of the parameter is θ. In a

frequentist approach, the investigator is firstly required to specify a fixed level α for the type
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I error probability that one is willing to tolerate. This significance level is typically set equal

to 0.05 and is used to obtain the rejection region of H0, denoted by RH0
, that represents an

appropriate subset of outcomes that—if observed—lead to the rejection of H0. Therefore, given

a frequentist test of size α, Yn is considered a statistically significant result if it belongs to RH0
.

Consequently, in general terms, the power function is defined as

η n;θð Þ ¼ Pθ Yn ∈RH0
ð Þ; (1)

where Pθ is the probability measure associated with a suitable distribution of Yn.

In order to exploit the frequentist power function in Eq. (1) for sample size determination

purposes, investigators can adopt two different approaches: the conditional and the predictive

one. The conditional approach is certainly the most widely known and used, when performing

sample size calculations based on pre-study power analysis. It requires the specification of a

suitable design value for θ, denoted by θD, that belongs to the alternative hypothesis and is

considered a relevant value important to detect. By assuming that the true value of the

parameter is equal to θD, we obtain the frequentist conditional power given by

ηCF n;θD
� �

¼ Pf nð�jθ
DÞðYn ∈RH0

Þ; (2)

where Pf n � θDj Þð is the probability measure associated with the sampling distribution of Yn when

θ = θD. Since θD has to be selected within the subspaceΘ1, the conditional frequentist power can

be interpreted as the probability of correctly rejecting H0, when the true value of the parameter

belongs to the alternative hypothesis and is exactly equal to θD. Then, the sample size determi-

nation criterion consists in choosing the minimal sample size that guarantees a desired level for

ηCF n;θD
� �

. In practice, the idea is to ensure a sufficiently large probability of rejecting H0, when

the true θ belongs to the alternative hypothesis and, more specifically, it is equal to θD
∈ Θ1.

The SSD procedure based on the power function in Eq. (2) is strongly affected by the choice of

θD. In order to account for uncertainty in the specification of the design value and to avoid

local optimality, it is natural to incorporate Bayesian concepts into the sample size determina-

tion process. By adopting a ‘hybrid classical-Bayesian approach’, it is possible to model uncer-

tainty on the appropriate design value for θ through the elicitation of a prior distribution,

denoted by πD(θ) and called design prior. This prior is used to compute the marginal or prior

predictive distribution of the data by averaging the sampling distribution as follows:

mD
n yn
� �

¼

ð

Θ

f n yn θj ÞπD θð Þdθ:

�

(3)

Therefore, the design prior cannot be a non-informative improper distribution in order to have

mD
n yn
� �

well defined. In any case, the elicitation of a non-informative πD(θ) would not be

reasonable choice. In fact, the design prior is used to introduce uncertainty on the suitable

design value for θ that we need to specify when using the SSD procedure previously described

and the possible guessed values have to belong to the subspace Θ1. Thus, π
D(θ) serves to

describe a design scenario of interest that supports values of θ under the alternative hypothesis:
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it has to be an informative distribution that assigns a negligible probability to values of θ

under the null hypothesis.

Once the design prior has been elicited, the idea is to average the conditional frequentist power

with respect to it by computing

ð

Θ

ηCF n;θð ÞπD θð Þdθ ¼

ð

Θ

ð

RH0

f n ynjθ
� �

dyn

" #

πD θð Þdθ

¼

ð

RH0

mD
n yn
� �

dyn:

(4)

This leads to the frequentist predictive power that is given by

ηPF n;πD
� �

¼ PmD
n �ð Þ Yn ∈RH0

ð Þ; (5)

where PmD
n �ð Þ is the probability measure associated with the marginal distribution of Yn

obtained using πD(θ). The power function in Eq. (5) expresses the probability of making a

correct decision by rejecting H0, when θ actually belongs to the subspace defined under the

alternative hypothesis, where we can assume that it is distributed according to the design

prior. Therefore, the corresponding SSD criterion requires to select the minimum n to achieve

a desired level for ηPF n;πD
� �

.

Note that if πD(θ) is chosen as a point mass distribution centred on θD, no uncertainty on the

relevant design values is taken into account and the marginal distribution coincides with the

sampling one. In this case, there is no difference between the frequentist power functions

obtained under the conditional and the predictive approach.

3. Bayesian power functions and SSD methods

In the previous section, we have described how to select the sample size through power

functions by assuming that a frequentist analysis will be performed at the end of the study. In

both the frequentist conditional and predictive powers, the decision about the two hypotheses

is based on the construction of the rejection region of H0 of a classical test of fixed size α. A

major limitation to the fully classical and the hybrid classical-Bayesian approaches previously

introduced is the inability to incorporate past experience and information about the unknown

parameter, as well as expert prior opinions. The use of a ‘fully Bayesian approach’ allows to

take into account important knowledge and belief about θ when planning the study.

It is well known that the information available before starting the study can be expressed by

introducing a prior distribution for θ, πA(θ), which in this context is typically called analysis

prior to distinguish it from the design prior. It is worth pointing out that πA(θ) is the usual prior

distribution employed in a Bayesian analysis: it formalizes pre-experimental knowledge, often

represented by historical data, and subjective opinions of experts and is used to compute the

posterior distribution of the parameter, πA
n θ yn

�

�

�

∝ f n yn θj ÞπA θð Þ
��

. Moreover, it is often chosen
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as a non-informative distribution to avoid the inclusion of external evidence in the posterior

inference.

Let us recall that, in general terms, a power function is defined as the probability of obtaining a

significant result, i.e. a result that leads to the rejection of the null hypothesis. Then, to exploit

this function as a useful tool to determine the optimal sample size, we need to compute it

under the assumption that the alternative hypothesis is true. In practice, we have to consider a

design scenario where the true θ belongs to Θ1, so that the power function represents the

probability of making a correct decision. Therefore, to define power functions from a Bayesian

point of view, first of all we need to decide when we reject the null hypothesis in a Bayesian

setting, that is we have to establish the condition for the ‘Bayesian significance’. Following

Spiegelhalter et al. [10], we define the result Yn as ‘significant from a Bayesian perspective’ if

the corresponding posterior probability that θ belongs to the alternative hypothesis is suffi-

ciently large, that is if

PπA
n ð�jYnÞ

ðθ∈Θ1Þ > λ; (6)

where PπA
n � Ynj Þð denotes the probability measure associated with the posterior distribution of θ

computed using the analysis prior and λ ∈ (0, 1) represents a suitably specified threshold. Let us

stress that, since we are dealing with a pre-experimental problem, the posterior probability in

Eq. (6) is a random variable, depending on a random result that has not yet been observed. In

order to construct Bayesian power functions, we need to compute the probability of obtaining a

Bayesian significant result. Similar to what we have seen in the frequentist case, we can use two

alternative distributions of the data, according to the approach we decide to adopt.

The conditional approach realizes the pre-experimental assumption that the alternative hypothesis

is true, by fixing a design value θD
∈ Θ1, which is considered relevant and important to detect.

Then the sampling distribution of Yn conditional on θD, fn(�|θ
D), is used to compute the proba-

bility of getting Bayesian significance. In this way, we obtain the Bayesian conditional power

ηCB n;θD
� �

¼ Pf nð�jθ
DÞ

�

PπA
n ð�jYnÞ

ðθ∈Θ1Þ > λ
�

: (7)

The predictive approach, instead, aims at avoiding the problem of local optimality in the SSD

procedure by introducing a design prior for θ, πD(θ), that accounts for additional uncertainty

involved in the choice of the design values θD. Then, the prior predictive distribution of Yn,

mD
n �ð Þ, is computed and used in place of the sampling distribution conditional on θD. This leads

to the Bayesian predictive power

ηPB n;πD
� �

¼ PmD
n ð�Þ

�

PπA
n ð�jYnÞ

ðθ∈Θ1Þ > λ
�

: (8)

Both the power functions in Eqs. (7) and (8) express the probability of rejecting H0 under a

Bayesian framework, assuming that the true θ actually belongs toH1. In fact, we assume that θ

is equal to a specific value under the alternative hypothesis (conditional approach) or that θ

is in the specific subspace defined under the alternative hypothesis, where we can assume

that it is distributed according to the design prior (predictive approach). The sample size

Bayesian vs Frequentist Power Functions to Determine the Optimal Sample Size: Testing One Sample Binomial…
http://dx.doi.org/10.5772/intechopen.70168

81



determination criteria, therefore, require to select the minimal sample size to ensure a suffi-

ciently large level for ηC
B
n;θD
� �

or ηP
B
n;πD
� �

. Moreover, note that, when the specified design

prior distribution assigns the whole mass probability to θD, the two Bayesian power functions

coincide, leading to the same optimal sample size.

4. SSD criteria according to the nature of the distribution of Yn

In this section, we explicitly formalize the SSD criteria based on frequentist and Bayesian

power functions, according to the nature of the random result Yn. When Yn has a continuous

distribution, each of the power functions previously introduced shows a monotonically

increasing behaviour as a function of n. In this case, the SSD criteria sensibly select the

minimum sample size to guarantee the desired level of power, that is

nCF ¼ min n∈N: ηC
F
n;θD
� �

> γ
� �

; (9)

nPF ¼ min n∈N: ηP
F
n;πD
� �

> γ
� �

; (10)

nCB ¼ min n∈N: ηC
B
n;θD
� �

> γ
� �

; (11)

nPB ¼ min n∈N: ηP
B
n;πD
� �

> γ
� �

; (12)

for a conveniently chosen threshold γ ∈ (0, 1]. Let us remark that in the notation for the optimal

sample sizes, as well as in the notations for the power functions, the subscripts are used to

specify the approach (frequentist or Bayesian) adopted at the analysis stage. The superscripts,

instead, indicate the appoach (conditional or predictive) used to represent the design expecta-

tions. An application of the criteria formalized above is provided by Gubbiotti and De

Santis [11], where it is assumed that the statistic Yn follows a normal distribution with mean

equal to θ and known variance.

However, it may happen that ηC
F
n;θD
� �

, ηP
F
n;πD
� �

, ηC
B
n;θD
� �

and ηP
B
n;πD
� �

are not monoton-

ically increasing functions of the sample size: this occurs when dealing with discrete distribu-

tions of Yn. In these cases, the power functions show a basically increasing behaviour as a

function of n, but with some small fluctuations. A suitable SSD criterion has to take into

account this kind of behaviour. For instance, instead of selecting the smallest sample size that

attains the condition of interest, it can be considered more appropriate to select the smallest

sample size in such a way that the condition is fulfilled also for all the sample size values

greater than it. Given a threshold γ ∈ (0, 1), the corresponding SSD criteria are

nCF ¼ min n� ∈N: ηC
F
n;θD
� �

> γ, ∀n ≥ n�
� �

; (13)

nPF ¼ min n� ∈N: ηP
F
n;πD
� �

> γ, ∀n ≥n�
� �

; (14)

nCB ¼ min n� ∈N: ηC
B
n;θD
� �

> γ, ∀n ≥ n�
� �

; (15)

nPB ¼ min n� ∈N: ηP
B
n;πD
� �

> γ, ∀n ≥n�
� �

: (16)
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In this way, it is possible to avoid the paradox of having the condition of interest fulfilled for

the selected sample size, but not satisfied for some larger values of n any longer.

5. Single binomial proportion using exact methods

In this section, we focus on exact procedures for one-sample testing problem with binary

response. For instance, in a clinical context, we could be interested in evaluating the efficacy of a

new experimental treatment or drug that is received at the same dose by all the n patients enrolled

in the trial. No comparisons with other therapies are involved. A binary response variable, which

assumes value 1 if clinicians classify the patient as a responder to the therapy and 0 otherwise, is

considered and, therefore, the parameter of interest θ is the true response rate (i.e. an unknown

proportion). In these one-arm studies, θ is compared with a fixed target value, say θ0, that should

ideally represent the response rate for the current ‘gold standard’ therapy and that is typically

obtained through historical data. Values of θ greater than θ0 suggest that the experimental drug

can be considered sufficiently effective and, therefore, the following hypotheses are considered

H0 : θ ¼ θ0 and H1 : θ > θ0: (17)

This kind of single-arm studies is typically conducted in phase II of clinical trials, whose

primary goal is not to definitively assess the efficacy of new drugs, but to screen out those that

are ineffective. In practice, in the clinical development process of a new drug, phase II aims at

avoiding that not sufficiently promising treatments reach phase III, where randomized con-

trolled trials, based on large patients groups, are generally conducted.

It is important to point out that the power functions based on exact procedures usually do not

have explicit forms. Hence, exact formulas for sample size calculations cannot be obtained.

However, it is possible to proceed numerically by evaluating the conditions of interest for

different increasing or decreasing values of the sample size, until reaching the optimal one. In

the following sections, we provide the expressions of the frequentist and Bayesian power

functions for non-comparative studies with binary responses. The saw-toothed shape of the

power curves as a function of n is shown and, hence, the conservative criteria illustrated in the

previous section are adopted. All the graphical and numerical results have been obtained by

using the R programming language [12].

5.1. Frequentist conditional power

In the statistical context described above, the number of responders out of the n patients

treated with the new drug (i.e. the number of successes in n trials) is the natural statistic Yn

we have to consider and its sampling distribution is

f n yn θj Þ ¼ bin yn; n;θ
� �

, for yn ¼ 0, ::.; n;
�

(18)

where bin(�; n, θ) denotes the probability mass function of a binomial distribution of parame-

ters n and θ.
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Let us consider the two hypotheses in Eq. (17). For a fixed significance level α and assuming

that H0 is true, there exists a non-negative integer r between 0 and n such that

X

n

i¼r

bin i; n;θ0ð Þ ≤α and
X

n

i¼r�1

bin i; n;θ0ð Þ > α: (19)

Then, the rejection region at α level is RH0
¼ yn ∈ 0, 1, ::.; nf g : yn ≥ r

� �

, where the critical value

r can be expressed in symbols by

r ¼ min k∈ 0, 1, ::.; nf g :

X

n

i¼k

bin i; n;θ0ð Þ ≤α

( )

: (20)

For a given design value θD, that has to be specified under the alternative hypothesis, the

frequentist conditional power is provided by

ηCF n;θD
� �

¼ Pf nð�jθ
DÞðYn ∈RH0

Þ

¼
X

n

yn¼r

binðyn; n,θ
DÞ:

(21)

In practice, ηCF n;θD
� �

is obtained by the sum of the probabilities of the all the outcomes that

belong to RH0
, when we assume that the true θ is equal to the design value.

Figure 1 shows the behaviour of the frequentist conditional power as a function of n, when

θ0 = 0.2, θD = 0.4 and α = 0.05. It is evident that ηCF n;θD
� �

is not a monotonically increasing

function of the sample size, because of the discrete nature of the sampling distribution of Yn.

Figure 1. Behaviour of ηCF n;θD
� �

as a function of n, when θ0 = 0.20, θD = 0.4 and α = 0.05.
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The reasons for this saw-toothed behaviour can be clarified by the numerical results presented

in Table 1. Here, for all the possible values of the sample size between 3 and 50, we provide not

only the level of the frequentist conditional power used to obtain Figure 1, but also the

corresponding critical value r and the actual value for the type I error probability. Obviously,

this latter value is always below the fixed threshold 0.05. Note that whenever the sample size is

increased by one unit, the corresponding critical value r may also increase or it may remain

constant. In the second case, both the actual type I error rate and the conditional frequentist

power grow up; otherwise, if also the critical value changes by one unit, they both get smaller.

To help in reading the table, the colours white and grey are used alternately to highlight blocks

n r ηC
F

n;θD
� �

Actual type I

error rate

n r ηC
F

n;θD
� �

Actual type I

error rate

3 3 0.0640 0.0080 27 10 0.6913 0.0304

4 3 0.1792 0.0272 28 10 0.7412 0.0391

5 4 0.0870 0.0067 29 10 0.7853 0.0493

6 4 0.1792 0.0170 30 11 0.7085 0.0256

7 4 0.2898 0.0333 31 11 0.7546 0.0327

8 5 0.1737 0.0104 32 11 0.7954 0.0411

9 5 0.2666 0.0196 33 12 0.7242 0.0216

10 5 0.3669 0.0328 34 12 0.7669 0.0274

11 6 0.2465 0.0117 35 12 0.8048 0.0344

12 6 0.3348 0.0194 36 12 0.8380 0.0424

13 6 0.4256 0.0300 37 13 0.7783 0.0231

14 6 0.5141 0.0439 38 13 0.8136 0.0288

15 7 0.3902 0.0181 39 13 0.8446 0.0355

16 7 0.4728 0.0267 40 13 0.8715 0.0432

17 7 0.5522 0.0377 41 14 0.8219 0.0242

18 8 0.4366 0.0163 42 14 0.8509 0.0298

19 8 0.5122 0.0233 43 14 0.8762 0.0362

20 8 0.5841 0.0321 44 14 0.8979 0.0436

21 8 0.6505 0.0431 45 15 0.8570 0.0250

22 9 0.5460 0.0201 46 15 0.8807 0.0304

23 9 0.6116 0.0273 47 15 0.9012 0.0366

24 9 0.6721 0.0362 48 15 0.9187 0.0437

25 9 0.7265 0.0468 49 16 0.8851 0.0256

26 10 0.6358 0.0232 50 16 0.9045 0.0308

Table 1. Numerical calculations related to Figure 1: sample sizes, corresponding critical values, frequentist conditional

power and actual values for the type I error rate, when θ0 = 0.20, θD = 0.4 and α = 0.05.
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of sample sizes with the same critical value: within each block both the power and the actual

type I rate monotonically raise as n increases. But, in correspondence with the first sample size

of the subsequent block, they both decrease. This determines the basically increasing behav-

iour of the power as a function of n, with some small fluctuations, which is represented in

Figure 1. For additional discussion about the saw-toothed shape of the frequentist power

function, the reader is referred to Chernick and Liu [13].

Now, the problem of which sample size we should select arises because of the non-monotonic

behaviour of ηCF n;θD
� �

. If we set the desired threshold γ for the power equal to 0.8, we have

that the smallest sample size that meets the power requirement is n = 35. At that sample size,

the critical value is 12 and the power level is 0.8048. Then for n = 36, the critical value is still 12

and the power increases to 0.8380. However, the power drops below 0.8 to 0.7783, when n = 37,

at which r = 13, and rises again over 0.8 when n = 38. Then ηCF n;θD
� �

never decreases below 0.8

for sample sizes greater than 38. Therefore, instead of selecting the smallest n that attains the

power condition, it can be more appropriate to consider the more conservative sample size

criterion formalized in Section 4, according to which the optimal sample size is selected as

nCF ¼ min n� ∈N: ηCF n;θD
� �

> γ, ∀n ≥ n�
� �

: (22)

The criterion ensures that the power will not decrease below the desired threshold for any

larger sample size: in our specific case, it consists in selecting n = 38, instead of n = 35.

5.2. Frequentist predictive power

In order to model uncertainty in the specification of the design value, we need to adopt the

hybrid classical-Bayesian approach described previously. We introduce a beta design prior

density for θ, πD(θ) = beta(θ; αD, βD), that is used to obtain the prior predictive distribution of

the data. It is well known that by averaging the binomial sampling fn(yn|θ) with respect to the

beta design prior, we obtain the following marginal distribution

mD
n yn
� �

¼ beta-bin yn;αD
; βD; n

� �

, for yn ¼ 0, ::.; n; (23)

where beta-bin(�; αD, βD, n) denotes the probability mass function of a beta-binomial distribu-

tion with parameters (αD, βD, n).

The design prior πD(θ) can be elicited in many different ways. One useful possibility consists in

(i) setting the prior mode equal to the fixed design value θD, which investigators would choose

within the subset under H1 when using the conditional approach, and (ii) regulating the concen-

tration of the distribution around its mode according to the degree of uncertainty one wishes to

express. This can be done by using for the hyperparameters of πD(θ) the following expressions:

αD
¼ nDθD

þ 1 and βD ¼ nD 1� θD
� �

þ 1; (24)

where θD is the prior mode and nD is a design parameter that can be interpreted as prior sample

size. The larger the nD, the smaller the variance of the beta design prior. Therefore, we need to
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increase nD if we want to reduce uncertainty on the guessed values of θ. More specifically, if we

set n
D = ∞, the design prior of θ assigns all the probability mass to θ

D: in this case, no

uncertainty is involved and the marginal distribution of the data coincides with the sampling

distribution conditional on θ
D. We thus must set nD < ∞ to distinguish between conditional and

predictive approaches. In particular, once a prior mode θ
D has been selected, the researcher

can choose n
D by assuring a large level (say very close to 1) for PπD �ð Þ θ > θ0ð Þ, that is the

probability assigned by π
D(θ) to the event θ > θ0. Let us assume, for instance, that θ0 = 0.2

and consider three possible choices for θD (i.e. 0.3, 0.4 and 0.5). For each of them, we compute

the smallest n
D such that PπD �ð Þ θ > θ0ð Þ is about equal to 0.999, and the behaviour of the

corresponding design priors is shown in Figure 2(a). Clearly, if the prior mode approaches θ0,

we need to increase n
D to guarantee that PπD �ð Þ θ > θ0ð Þ≃ 0:999. Moreover, for a fixed prior

mode θ
D, if we decided to decrease the value of nD with respect to the one used in the graph,

PπD �ð Þ θ > θ0ð Þ would decrease. In fact, nD has been specified in order to express the minimum

degree of prior enthusiasm about the efficacy of the treatment necessary to have the prior

probability that θ exceeds the target θ0 at least equal to the chosen level 0.999. An alternative

way of proceeding consists in choosing n
D by ensuring a fixed level for the prior probability

assigned to a symmetrical interval around the prior mode. For instance, if we set θD = 0.4, we

can find that 255, 111 and 60 are the values of nD such that it is about equal to 0.999 the

probability that πD(θ) assigns to the intervals (0.3, 0.5), (0.25, 0.55) and (0.2, 0.6), respectively.

The corresponding design prior distributions are shown in Figure 2(b). It is important to point

out that all the design densities, represented in both the graphs of Figure 2, express uncertainty

in the suitable design value that it is worthwhile to consider when applying the SSD criteria

based on power analysis. Thus, all the distributions assign a negligible probability to values of

θ smaller than θ0, which are those values specified under H0.

Figure 2. Possible choices of the design prior distribution, when θ0 = 0.2.
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Once πD(θ) has been specified, the frequentist predictive power can be obtained by computing

the probability of rejecting the null hypothesis at α level with respect to mD
n yn
� �

. Hence, we

have

ηPF n;πD
� �

¼ PmD
n �ð Þ Yn ∈RH0

ð Þ

¼
X

n

yn¼r

beta-bin yn;αD
; βD; n

� �

;
(25)

where r is the critical value provided in Eq. (20). In practice ηPF n;πD
� �

is given by the sum of the

probabilities of the all the outcomes inside RH0
, computed under a design scenario according to

which the true θ belongs to the interval (θ0, 1), where it is distributed according to the design

prior density. Let us remark again that if the design prior is a point mass distribution on θD (i.e.

nD = ∞), we have that the frequentist power functions, conditional and predictive coincide.

Similarly to the frequentist conditional power, also the predictive one presents a saw-toothed

shape as a function of n, since mD
n yn
� �

is a discrete distribution. Therefore, we suggest to adopt

the conservative approach previously described and to select

nPF ¼ min n� ∈N : ηPF n;πD
� �

> γ, ∀n ≥n�
� �

; (26)

for a fixed desired threshold γ. Figure 3 shows the behaviour of the frequentist predictive

power as a function of n for different choices of the design prior, when θ0 = 0.2 and α = 0.05.

More specifically, we consider the three πD(θ) plotted in Figure 2(b) that are all centred on

θD = 0.4, but with different degrees of concentrations regulated by the nD value. In each graph,

we highlight which is the optimal sample size obtained according to the criterion in Eq. (26)

when γ = 0.8. Note that the larger the nD, the smaller the degree of uncertainty we introduce

through the design prior and, as a consequence, the smaller the optimal sample size. In fact, we

obtain the optimal values 46, 42 and 39, for nD equal to 60, 111 and 255, respectively. If we set

nD = ∞, we would retrieve the conditional criterion in Eq. (22), where no uncertainty is

considered in specifying the design value, and the optimal n would be equal to 38 (see

Figure 3. Behaviour of ηPF n;πD
� �

as a function of n for different choices of the design prior distribution, when θ0 = 0.2 and

α = 0.05.
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Figure 1). Moreover, let us fix again θ0 = 0.2, α = 0.05 and γ = 0.8 and consider the three design

prior distributions in Figure 2(a), which are characterized by different prior modes. The

evident difference between the prior scenarios represented by these design priors clearly

affects the optimal sample size: we obtain the optimal values 157, 46 and 23, for (θD, nD) =

(0.3, 163), (θD, nD) = (0.4, 43) and (θD, nD) = (0.5, 20), respectively.

5.3. Bayesian conditional power

When we decide to adopt a Bayesian approach to establish the statistical significance of the

result, we need to introduce an analysis prior distribution for θ. In our specific case, it is

computationally convenient to specify a beta analysis prior, πA(θ) = beta(θ; αA, βA): in this

way, from conjugate analysis we obtain that the corresponding posterior distribution is still a

beta density with updated parameters,

πA
n θ yn

�

�

�

¼ beta θ;αA þ yn, β
A þ n� yn

� �

:

�

(27)

Through πA(θ), the researcher can incorporate in the SSD procedure pre-experimental knowl-

edge, as well as sceptical or enthusiastic expert prior opinions about the efficacy of the

experimental treatment. However, one of the most common ways of proceeding is to choose a

non-informative—or based on very weak information–density, to let the posterior distribution

be based almost entirely on the evidence in the data. We could, therefore, specify πA(θ) = beta

(θ; 1, 1) or consider the non-informative Jeffreys prior. Alternatively, if we want to use infor-

mative analysis prior distributions, we can express the hyperparameters in terms of the prior

mode θA and the prior sample size nA, that is

αA ¼ nAθA þ 1 and βA ¼ nA 1� θA
� �

þ 1: (28)

In this way, for instance, it is possible to express scepticism or optimism about large treatment

effects by setting θA less or higher than the target θ0, respectively. Obviously, when θA < θ0, the

larger the nA, the larger the degree of scepticism we wish to express; while, when θA > θ0 larger

values of nA are used to increase the degree of enthusiasm we desire to take into account.

However, the value nA = 1 is often used to have a weakly informative prior distribution. The

upper panel of Figure 4 shows three possible choices for the analysis prior when θ0 = 0.2. These

distributions are obtained by fixing the prior mode θA and, then, selecting nA so that

PπA �ð Þ θ > θ0ð Þ (i.e. the probability assigned by πA(θ) to the event θ > θ0) is about equal to a

desired level. More specifically, we have considered (i) a sceptical prior mode θA = 0.1 and

PπA �ð Þ θ > θ0ð Þ≃ 0:4, (ii) a neutral prior mode θA = 0.2 and PπA �ð Þ θ > θ0ð Þ≃ 0:6 and finally (iii) an

enthusiastic prior mode θA = 0.3 and PπA �ð Þ θ > θ0ð Þ≃ 0:8. The corresponding values of nA are 7,

14 and 4, respectively. These densities will be used to illustrate how the optimal sample sizes

based on Bayesian powers are affected by the information formalized through the analysis

priors.

The random result Yn is defined as ‘significant’ from a Bayesian perspective, if the corres-

ponding posterior probability that θ > θ0 is sufficiently large. In symbols, we decide to reject

the null hypothesis, on the basis of the result Yn, if the following condition is satisfied.
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PπA
n ð�jYnÞ

ðθ > θ0Þ > λ; (29)

where PπA � Ynj Þð is the probability measure associated with the posterior distribution in Eq. (27)

and λ ∈ (0, 1) is a pre-specified threshold. It is worth noting that, for a given value of n, the

posterior quantity PπA
n �jYnð Þ θ > θ0ð Þ is an increasing function of Yn. As a consequence, we can

find a non-negative integer ~r between 0 and n, such that

PπA
n ð�j~rÞ

θ > θ0ð Þ > λ and PπA
n ð�j~r�1Þ θ > θ0ð Þ ≤λ; (30)

and we can claim that H0 is rejected if the observed number of responders yn is equal to or

greater than ~r. In practice, ~r represents the smallest number of successes such that the condi-

tion for the Bayesian significance is satisfied, and in symbols it can be expressed by

er ¼ min k∈ f0, 1, ::.; ng : PπA
n ð�jkÞ

ðθ > θ0Þ > λ
n o

: (31)

By considering a fixed design value θD greater than θ0, the Bayesian conditional power is

therefore obtained as

Figure 4. Upper panel: possible choices of the analysis prior distribution, when θ0 = 0.2. Lower panel: behaviour of

ηBC n;θD
� �

as a function of n for each of the analysis prior distributions represented in the upper panel, when θ0 = 0.2,

θD = 0.4 and λ = 0.9.
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ηCB n;θD
� �

¼ Pf nð�jθ
DÞ

�

PπA
n ð�jYnÞ

ðθ > θ0Þ > λ
�

¼
X

n

yn¼~r

binðyn; n,θ
DÞ:

(32)

Essentially, it is given by the sum of the probabilities of all the Bayesian significant results,

computed assuming that the true θ is equal to θD.

Since we are dealing with discrete data, also this power function is not monotonically increasing

as a function of n. Let us assume that θ0 = 0.20, θD = 0.4 and λ = 0.9. The detailed calculations

shown in Table 2 can help to understand why ηCB n;θD
� �

has the typical saw-toothed behaviour.

For each sample size between 3 and 50, the table provides the corresponding value of ~r, the level

of the Bayesian conditional power and the posterior probability that θ exceeds θ0 conditional on

the result ~r. Clearly, these latter values are always larger than the threshold λ that is 0.9. The

white and grey colours are used alternately to highlight blocks of sample sizes with the same

value of ~r associated. When the sample size grows, but ~r remains constant, P
πA
n �j~rð Þ θ > θ0ð Þ

decreases, while ηCB n;θD
� �

increases. However, when both n and ~r are simultaneously increased

by one unit, P
πA
n �j~rð Þ θ > θ0ð Þ jumps up, while the Bayesian power drops.

Because of the saw-toothed nature of the power curve, for a fixed threshold γ, the optimal

sample size is selected using the conservative criterion, that is

nCB ¼ min n� ∈N: ηCB n;θD
� �

> γ, ∀n ≥ n�
� �

: (33)

The lower panel of Figure 4 shows the behaviour of the Bayesian conditional power as a function

of n for each of the three analysis prior density plotted in the upper panel, when θ0 = 0.2, θ
D = 0.4

and λ = 0.9. In each graph, it is indicated the optimal sample size according to the criterion in

Eq. (33) for γ = 0.8. As expected, as we move from sceptical prior opinions towards more enthusi-

astic beliefs about the efficacy of the experimental treatment, the required sample size decreases.

5.4. Bayesian predictive power

Besides introducing pre-experimental information, if we also wish to model uncertainty on the

design value, we have to consider the Bayesian predictive power. Therefore, as described in

Section 5.3, we elicit an analysis prior distribution to obtain the beta posterior density

πA
n θ yn

�

�

��

. Moreover, following the indications provided in Section 5.2, we introduce a design

prior distribution to construct the marginal distribution mD
n yn
� �

.

The Bayesian predictive power is computed by adding the probabilities of all the Bayesian

significant results, computed under the design scenario expressed through the design prior.

Thus, we have

ηPB n;πD
� �

¼ PmD
n �ð Þ

�

PπA
n ð�jYnÞ

ðθ > θ0Þ > λ
�

¼
X

n

yn¼~r

beta-bin yn;α
D
; βD; n

� �

;
(34)
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where ~r is given in Eq. (31). Obviously, also ηPB n;πD
� �

shows the typical saw-toothed behav-

iour as a function of n, because of the discrete nature of the beta-binomial marginal distribu-

tion of yn. Therefore, given a desired threshold γ and according to the suitable conservative

approach previously used, we select the optimal sample size as

nPB ¼ min n� ∈N: ηPB n;πD
� �

> γ, ∀n ≥n�
� �

: (35)

n er ηC
B

n;θD
� �

P
πA
n �j~rð Þ θ > θ0ð Þ n er ηC

B
n;θD
� �

P
πA
n �j~rð Þ θ > θ0ð Þ

3 3 0.0640 0.9263 27 9 0.8161 0.9077

4 4 0.0256 0.9703 28 10 0.7412 0.9464

5 4 0.0870 0.9558 29 10 0.7853 0.9354

6 4 0.1792 0.9377 30 10 0.8237 0.9230

7 4 0.2898 0.9159 31 10 0.8566 0.9092

8 5 0.1737 0.9618 32 11 0.7954 0.9460

9 5 0.2666 0.9476 33 11 0.8310 0.9356

10 5 0.3669 0.9304 34 11 0.8617 0.9239

11 5 0.4672 0.9102 35 11 0.8877 0.9110

12 6 0.3348 0.9559 36 12 0.8380 0.9460

13 6 0.4256 0.9422 37 12 0.8667 0.9362

14 6 0.5141 0.9260 38 12 0.8911 0.9252

15 6 0.5968 0.9075 39 12 0.9118 0.9131

16 7 0.4728 0.9518 40 13 0.8715 0.9464

17 7 0.5522 0.9388 41 13 0.8945 0.9371

18 7 0.6257 0.9237 42 13 0.9140 0.9267

19 7 0.6919 0.9065 43 13 0.9305 0.9153

20 8 0.5841 0.9491 44 13 0.9441 0.9028

21 8 0.6505 0.9367 45 14 0.9164 0.9381

22 8 0.7102 0.9226 46 14 0.9320 0.9284

23 8 0.7627 0.9067 47 14 0.9450 0.9176

24 9 0.6721 0.9474 48 14 0.9558 0.9059

25 9 0.7265 0.9357 49 15 0.9336 0.9394

26 9 0.7745 0.9225 50 15 0.9460 0.9301

Table 2. Numerical calculations to explain the saw-toothed behaviour of ηCB n;θD
� �

as a function of n: sample sizes, the

corresponding value of ~r , the Bayesian conditional power and the posterior probability that θ > θ0 when the observed

result is equal to ~r successes, for θ0 = 0.20, θD = 0.4 and λ = 0.9.
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In Table 3we provide the values of nP
B
, for different choices of the analysis and the design prior

densities. More specifically, we consider the three analysis priors plotted in the upper panel of

Figure 4 and the design prior distributions represented in both the panels of Figure 2, when

θ0 = 0.2 and λ = 0.9. Similarly to what we have seen for the Bayesian conditional power, the

sample sizes obtained under the sceptical analysis prior are uniformly larger than those

obtained under the more enthusiastic distributions. As regard the impact of the design priors,

it is straightforward to see that the stronger the degree of uncertainty on the appropriate

design value expressed by π
D(θ), the larger the required sample size. For instance, for a fixed

prior mode of the design prior, nP
B
increases as nD get smaller (see Table 3(b), where θD = 0.4).

However, let us note that more evident changes in the sample size can be appreciated when we

compare the effects of design priors based on different prior modes (see the results in Table 3(a),

where the design priors represent very distant design scenarios).

These Bayesian predictive SSD procedures, which include the conditional ones as a special

case, have been exploited in Ref. [8] to construct single-arm two-stage design for phase II of

clinical trials based on binary data. In Ref. [14], instead, an extension to the randomized case

has been presented, while in Ref. [15] the same procedures have been implemented by adding

the possibility of taking into account uncertainty in the historical response rate.

6. Conclusions

Especially in clinical research, the pre-experimental power analysis is one of the most commonly

used methods for sample size calculations. It is tacitly implied that the power function is

constructed under a frequentist framework. However, it is possible to introduce Bayesian con-

cepts in the power analysis to provide more flexibility to the sample size determination process.

When the power function is used as a tool to obtain the appropriate sample size, the general

idea is to ensure a large probability of correctly rejecting the null hypothesis H0, when it is

actually false because the true θ belongs to H1. Therefore, the conjecture that the alternative

θ
A = 0.1 θ

A = 0.2 θ
A = 0.3

θ
D

n
D

n
A = 7 n

A = 14 n
A = 4

(a) Design prior distributions in Figure 2(a)

0.3 163 120 109 94

0.4 43 37 31 22

0.5 20 21 18 11

(b) Design prior distributions in Figure 2(b)

0.4 60 37 31 22

0.4 111 33 31 22

0.4 255 33 27 22

Table 3. n
P

B
for different choices of the analysis and the design priors, when θ0 = 0.2 and λ = 0.9.
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hypothesis is true represents an essential element of the method. It can be realized by assum-

ing that the true θ is equal to a fixed design value θ
D, suitably selected inside H1 (conditional

approach); alternatively, we can introduce uncertainty on the guessed design value by intro-

ducing a design prior distribution that assigns negligible probability to values of θ under H0

(predictive approach). Moreover, the decision about the rejection of H0 can be made under a

frequentist framework or by performing a Bayesian analysis. In the latter case, it is possible to

incorporate in the methodology pre-experimental information possibly available through the

specification of an analysis prior distribution. By combining frequentist and Bayesian pro-

cedures of analysis, with both the conditional and predictive approaches, we obtain the four

power functions described in this chapter. Let us remark that the Bayesian predictive power is

the one that allows to add more flexibility to the sample size calculations. At the same time, it

let the researcher take into account prior knowledge, as well uncertainty on the design value.

However, no design uncertainty can be involved by considering a point-mass design distribu-

tion. On the other hand, if no information is available, it is possible to elicit a non-informative

analysis prior and let the analysis be based entirely on the data.
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