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Abstract

Next-generation sequencing (NGS) technologies are now well established and have 
become a routine analysis tool for its depth, coverage, and cost. RNA sequencing (RNA-
Seq) has readily replaced the conventional array-based approaches and has become 
method of choice for qualitative and quantitative analysis of transcriptome, quantifica-
tion of alternative spliced isoforms, identification of sequence variants, novel transcripts, 
and gene fusions, among many others. The current chapter discusses the multi-step tran-
scriptome data analysis processes in detail, in the context of re-sequencing (where a ref-
erence genome is available). We have discussed the processes including quality control, 
read alignment, quantification of gene from read level, visualization of data at different 
levels, and the identification of differentially expressed genes and alternatively spliced 
transcripts. Considering the data that are freely available to the public, we also discuss 
The Cancer Genome Atlas (TCGA), as a resource of RNA-Seq data on cancer for selection 
and analysis in specific contexts of experimentation. This chapter provides insights into 
the applicability, data availability, tools, and statistics for a beginner to get familiar with 
RNA-Seq data analysis and TCGA.

Keywords: RNA-Seq, transcriptome data analysis, NGS data analysis, TCGA

1. Introduction

Genetic and epigenetic features encompassed in the genome are the basic determinants of fate 

and functions of cells. At the human interface, qualitative and/or quantitative differences in tran-

scripts are the first level readout of these features in any specific context of their identification 
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[1]. These contexts may refer to a diseased state or the influence of stimulation such as intrinsic 
ligands or response to immunogens. With the total transcripts often referred to as transcriptome, 

the stage-specific or cell type-specific transcriptome of cells are valuable to evaluate the genetic 
and epigenetic features characteristic to them. From high- to low-input RNA, the RNA sequenc-

ing methods have considerably improved to appreciate the inter- and intra-level population 

heterogeneity of cells. Not restricted to messenger RNA (mRNA), these technologies are also 

being increasingly exploited to analyze other transcription-based products such as microRNAs 
and lncRNAs, reaching out to the identification of over 10–30 pg of a human cell or tissue [2]. 

RNA or transcripts are of two categories, protein coding mRNAs which synthesize protein and 
non-coding RNAs involved in regulating gene expression and in cell structure maintenance. 

mRNA makes up only 6% of the total RNA content of a cell or tissue; a number of methods and 

kits are available for RNA extraction from the cell [2, 3].

The human genome has more than 99.5% sequence identity to each other at the genomic level 

when analyzed in toto. However, they are also paradoxically personalized and are amenable 
to somatic variations. Hence, the cells could also be heterogeneous at genome level within 
an individual, and the genomic sequence variations are necessary to be accounted whenever 

they are analyzed at the transcriptome level. Toward this, the sequence obtained by RNA 
sequencing also reflects their coding sequence in the genome, kept aside, the RNA editing. 
Further, there are a plethora of other sequence determinants that could also be analyzed by 
sequence-based identification of transcripts. These determinants include the isoforms, gene 
fusions and identification of transcripts from putative pseudogenes. Unarguably, human can-

cer cells or tissues of diverse origins and stages in different populations are the most explored 
differential genome and transcriptome to date accounting the amount of data derived by RNA 
sequencing [4]. The Cancer Genome Atlas (TCGA) is probably the most extensive resource of 

providing access to cancer data especially from next-generation sequencing (NGS) platform. 

TCGA provides a number of options to perform analysis on cancer-related experimental data 

and stands as a major data repository for cancer data.

2. Transcriptomics

2.1. Gene expression

Gene expression at transcript level is a temporal dynamics event that involves turn “on” or 

“off” mechanism constituted by the coordinated action of epigenetic factors and transcrip-

tional regulators. Since gene products are part of metabolic pathways in the organism, the 

inefficiency of protein synthesis control mechanism can lead to an abnormal behavior of met-
abolic pathways and then lead to diseases [5]. Determining or quantifying the amount of tran-

scripts in a biological condition provides a clear picture about the involvement of that gene in 

a particular condition. It is necessary to use the quantitative methods to understand normal 

cell development, disease mechanisms and to determine when, where, and how much a gene 

is showing divergence with different biological condition [1]. Identification of key genetic 
factors/marker/a set of genes responsible for a certain biological process can make a sizable 
change to existing treatment mechanism approach [6].
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2.2. Applicability of transcriptome data

Functions of each gene are not completely defined, information about the involvement of 
genes in functional pathways is identified and available from biological databases which pro-

vide clues on how each gene behaves in different metabolic pathways. Estimating the genes 
expressed in a particular biological condition allows comparing with the existing annotations. 

Only a small percentage of the genome is expressed in each cell, and a portion of the RNA 

synthesized in the cell is specific for that cell type [4], identifying the genes which are differen-

tially expressed in similar tissue, but different context has therapeutic significance. Moreover, 
transcriptome sequencing allows identifying transcript level variations such as cassette exon, 
mutually exclusive exons, intron retentions, indels, alternative splice junctions, alternative 

promoters (Figure 1), and isoform-specific expression profiles [7].

2.3. Requirements

The number of biological/technical replicates, adequate sequencing depth, and essentially, the 

sequencing qualities are the major factors that should be accounted in a sequencing-based 

Figure 1. Alternative splicing. Here exons are boxes and lines are introns. Promoters represented by arrows and 
polyadenylation sites with AAA.
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study. The parameters such as the availability of reference genome for the organism from 

which the sample is analyzed, information about the sequencer quality encoding, and whether 
multiplexing has been performed are also critical for the analysis. One should have a clear 

understanding of the biological sample, experimental conditions, and the biological questions 

that are in pursuit before starting a bioinformatics analysis of any transcriptome data [9].

Computational specifications have to be taken care to perform a genome assembly in a rea-

sonable time without interruption. At least 8 core processor with 16 GB of RAM and enough 
fast storage system is required to perform a genome alignment within a reasonable time [7]. 

Genome assembly or alignment is the most computational resource consuming process, and 

the further downstream analysis such as variant calling or differential expression analysis can 
be performed using a desktop with an appreciable configuration.

Computational biologists prefer to use UNIX-based systems/servers for NextGen sequence 
analysis as large data can be handled more comfortably through command line by UNIX than 
a Windows OS [10].

2.4. Software requirements

A number of established and easily accessible one-shop sequence analysis tools [7, 11] are 

available online. However, it is important that one should understand the different steps 
involved in the analysis pipeline that are rather similar across them. There are various pieces 

of software in the pipeline, and each of them produces a number of output files. These include 
the main output file that can be used for further analysis and other supporting information 
such as the statistics of mapping, indicating the fraction of input data that had been success-

fully utilized by the algorithm (always get a higher fraction for good quality experiment) [7]. 

One should be aware of the files generated during each of the analysis steps that is fed into 
the next algorithm in the pipeline.

2.5. Precautions

A number of algorithms have been developed in recent years, and most of them are avail-

able as open-source algorithms. It is important to understand that the transcriptome 

analysis can be completed using open-source software and tools. Before starting the bio-

informatics analysis on transcriptome data, one should decide the algorithms that can be 

used (Figure 2) including its release/version information in each successive step in the 

pipeline. Following the review articles that compare multiple algorithms and the research 

publications that have used specific algorithms, appropriate algorithms can be selected 
in each step [12]. Now, the next step is to select the annotation files to be used for the 
analysis.

Even though the information is same, data representation varies between annotation files 
from different biological data resources. An example given below represents human chromo-

some 22 from various biological data resources. Hence, one should confirm the annotation 
files such as genome file (.fasta) and gene transfer format (.gtf) files are compactible to each 
other.
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2.6. File formats

In each step of the analysis pipeline, multiple file formats are generated or used. It is necessary 
to know the information contained in each type of files. Here, we discuss file types classified 
into three categories. The first category is the raw files that contain the information adopted 
from the sequencer to represent the raw sequences with a quality score for each base-pair 

identification [13]. The file formats can be .sff, .csfasta + .qual, .fastq, etc. The most common 
file format is the .fastq extension. Second file category is the alignment files that represent the 
information on how each read or the fragment had been aligned to the reference genome [14], 

these files can be in .sam, .bam, and .bed formats. The third category is the annotated data 
files that represent data readily available from standard biological databases such as reference 

Resource Representation

NCBI reference genome GRCh38.p7 >gi|568801992|ref|NT_167212.2| chromosome 22 genomic scaffold, 
GRCh38.p7 primary assembly HSCHR22_CTG1_1

UCSC latest version GRCh38/hg38 >chr22

Ensembl >22

Figure 2. Transcriptomics workflow.
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genome sequences (in .fasta format) and the annotated gene information (.gtf, .gff formats). 
Apart from all the standard file formats listed above, there are algorithm specific files which 
contain additional information about the specific run of the each algorithm in the pipeline.

3. Transcriptome data analysis

The high-throughput methods previously described (RNA-Seq) are done by direct sequencing 

of complementary DNA (cDNA) and as a result gives insights into the gene expression profiling 
[12, 15–17], quantification of alternative splicing [8, 9, 18, 19], variant calling [20–23], novel tran-

scripts [14, 24, 25], and several others. These quantitative measurements are done by the final 
data produced by each sequencing platforms. However, the process of sequencing involves dif-
ferent steps (reverse transcription, amplification, fragmentation, purification, adaptor ligation, 
and sequencing that the chance of error in any step is highly likely and could result in faulty out-

puts. It makes the data in the worst case not suitable for further analysis, so that the experiment 

may have to be repeated. Nonetheless, these errors can be monitored and necessary actions can 

be undertaken to rectify the errors prior to analysis. Such preliminary steps are often referred to 

as quality control analysis of sequencing data.

3.1. Quality control

This section of the chapter will discuss various reasons and statistical assessment of errors 

such as sequence read quality, read duplication, GC bias, nucleotide composition bias, 

adapter contamination, flow cell contamination, enrichment, and false positive errors [26, 27], 

and how those can be tackled using available tools. The data used for the analysis in this 

chapter are mainly in the “.fastq” format, the most common format output of runs on many 

platforms. However, there are many quality control analysis tools available that either come 
aligned with the machine itself or as standalone software (commercial and open source). The 

quality control analysis can be done using many software tools, and one of the popular open-

source software is FastQC [28].

Data output from sequencing machine includes the information about the sequence fragment 

as well as a score corresponding to each base identification, we are considering “.fastq” for-

mat, widely used in many platforms, to explain the features. A single read is represented by 

four consecutive lines in .fastq format. The first and third line represent sequence identifiers 
and other optional information, such as machine version, flow cell information, etc., related 
to the specific run of the sample in the machine. The second line is the sequence bases, and 
fourth is the quality value for each base which is represented as ASCII characters.

This ASCII quality value or phred quality score gives the accurate measure of the base calling 

quality during sequencing. Phred quality score is mathematically defined as

  Q = − 10 ×  log  10   (P)  or P =  10   –Q /  10   (1)

Where Q is the phred quality score, and P is the probability of getting a faulty base.
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In essence, a phred score of 30 is the probability of a base to be wrong is 1 in 1000. However, 
there are no standard methods to measure this exact quality; the phred score above 20–25 
(Figure 3a and b) is considered as the average score to be acceptable for further analysis 

because phred quality assessments are probabilistically stable [13, 29].

Figure 3. Quality control measures. (a) Per base sequence quality whisker plot: distribution of quality of bases all over the 
whole file, (b) distribution of percentage of sequences with different quality, and (c) distribution of bases in a .fastq file.
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For each sequencer, they use different set of ASCII values to score each base calling and a 
maximum score of 41 which is almost 1 in 10,000 (99.99% accuracy) is the probability that a 
base is called incorrectly (Table 1). However, if the quality of any read falls to much lower 
scale, it is better to trim those regions off. There are many standard trimming tools available 
as open source. Few popular tools are FASTX-Toolkit [30], cutadapt [31], and trimgalore [32]. 

They cannot only be used for quality trimming but also has several other purposes, such as 

adapter trimming, demultiplexing, etc.

3.2. Evaluation of read quality

There are several statistical analysis pipelines available as open source to check the quality of 

the NGS data. This session explains the basic backgrounds of quality checks such as (1) base 

quality, (2) sequence content and distribution, and (3) duplicated sequences.

3.2.1. Base quality

As explained previously, base calling bias is strictly avoided because any error in base calling 

means the base is not correctly called. This analysis is done basically by the quality encod-

ing values given to the reads in the file. This analysis is completely depending on the phred 
quality score throughout the base length. As an exception, the quality of reads will fall down 

toward the end of the reads, which is quite normal for long runs as the supplied base get 

reduced, and random calling of base leads to these false-positive errors.

Base quality analyzes are done for rectifying read errors could have happened during the 
run or library preparation. The data from the “.fastq” file can be plotted different ways based 
on the phred quality score of each bases, the proportion of reads being called wrong, N con-

tent distribution in the read, and finally, sequence length distribution. It is obvious that the 
sequence length would have uneven distribution in trimmed reads.

3.2.2. Sequence content and distribution

Evaluating GC content over the sequenced reads is as important as other modules because 
it leads to many biological reasoning. GC over AT is basically because of the stability of the 

Phred quality score Probability of incorrect base call Base call accuracy

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10,000 99.99%

50 1 in 100,000 99.999%

60 1 in 1,000,000 99.9999%

Table 1. Phred quality score.
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bonds between them, and the annealing process of PCR is based on the melting temperature 
of GC bonding. DNA methylation happens at cytosine, and comparatively, exons are high in 

GC content than introns.

In an NGS run, the bases are provided with an equal ratio, and the average of each base as 

output is expected to be 25% of each base (Figure 3c). Any fluctuation from this composition 
is considered as bias which is due to overrepresented sequences like adapter dimers or rRNA 

in the sample. However, it is expected that a little bias at the first few bases from 5′ which is 
essentially produced by the random hexamer priming from PCR amplification.

Before starting any analysis, adapters are trimmed off from the reads because the presence 
of adapters in the sample will lead to the expression of overrepresented sequences. This is 

more like a final check to be done to make sure the overrepresented sequences or enrichment 
identified is not spurious.

3.2.3. Duplicated sequences

As discussed in the GC content, there are few other ways to check the overrepresented 

sequences. These methods are used to confirm the sample is not contaminated, unless there 

is some kind of enrichment in the reads. The enrichment analysis is done basically on differ-

ent scales. The length of the read is considered as the scale here. Creating K-mers of different 
length can make sure that how often an enrichment or overrepresented sequence can occur in 

the read, and this can be calculated to double check the presence of contamination or enrich-

ment study.

3.3. Genome alignment

This is the second major step in transcriptomic data analysis. If the reference genome is 

available for the organism, it can be referred to as resequencing analysis else should be 

referred to as de novo sequencing analysis. In resequencing data, the analysis pipeline is 

comparatively easier compared to de novo sequencing. If reference genome is available, all 

we need is to map the fragments to the genome and find out the genes showing expression 
in the experiment. Although the amount of data generated from the sequencer is huge, 

it is short in length compared to the actual size of the genome. However, an advanced 
computationally efficient algorithm is required to perform this time consuming and banal 
process [5].

Genome alignment is the most important step in transcriptome analysis as all the down-

stream analysis, and the result accuracy is based on the efficiency of the alignment algorithm. 
As the data are obtained from transcriptome, the algorithm cannot directly map the reads to 

reference genome. An efficient splice aligner algorithm is required to complete the task [12], 

and most of these algorithms use a technique called hashing or indexing either in raw data or 

the genome data or both.

Read alignment algorithm has a number of parameters such as input and index as man-

datory, and many other optional parameters also based on the computational resources 
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available that can be set for the efficient mapping of reads. For example, we can set the 
number of multiple alignments for a single read and the maximum insertion or deletion 

length that can be allowed. A precise understanding of experimental conditions helps to 

set appropriate parameters according to a specific experiment. Moreover, default values 
provided to help and avoid confusions [7].

3.4. Gene quantification

Gene quantification is performed after alignment to a genome. The first step is to identify 
the amount of fragments or reads that could be mapped to each genomic location. Gene 

level or transcript level quantification can be performed according to user’s choice. A number 
of software tools (coverageBED [33], htseq-count [34], and featureCounts [35]) are available 

for gene quantification. Quantification is performed against a reference annotation (GTF/
GFF) file with coordinates for the gene, transcript, or exon. For example, htseq-count uses 
“--idattr=<id attribute>” that indicates GFF attribute to be used as feature ID from the ninth 
column where unique ids or accession numbers are available. Gene qualification has to be 
performed after normalization to avoid misleading measurements. Hence, gene level or sam-

ple level normalization of the data in terms of total number of reads mapped, read length, 
and coverage should be performed.

The reads per kilobase of exon model per million mapped reads (RPKM) measure normal-
izes with the sequencing depth that varies significantly between samples as well as the gene 
length. Fragments per kilobase of exon model per million mapped reads (FPKM) measure 
normalizes similar to RPKM but for the paired-end data and the transcripts per million 
(TPM) first normalizes by gene length, then by sequencing depth, preferably a better way of 
 normalization [36].

3.5. Splice variation analysis

Transcriptome analysis can identify transcript sequence level features such as cassette 
exon, mutually exclusive exons, intron retentions, indels, alternative splice junctions, 

and hence, different possible isoforms all based on genome mapping (Figure 1). There 

are ~41,000 unique transcripts that are identified from a total of ~20,000 genes in human 
(NCBI RefSeq) [37].

Identification of transcripts from short and specific number of reads aligned across the gene, 
and the identification of splice junctions is a challenge in variation analysis. A number of algo-

rithms such as Cufflinks [38], SLIDE [39], and StringTie [40] are available to analyze the align-

ment with user-provided existing annotations. Cufflinks [38] efficiently utilizes the advantage 
of paired-end sequencing data to annotate the splice variations (Figure 4).

3.6. Differential expression analysis

Once the genome assembly is completed, the downstream analysis can follow two routes—the 

variation analysis and the differential expression analysis. Differential expression analysis refers 
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the gene level expression difference between two or more samples. This can be performed using R 
packages like edgeR [9], DESeq [10] that can load gene quantification information from multiple 
samples and report the expression level difference for each transcript/gene. The above-mentioned 
R packages also can generate multiple figures such as heatmaps, histograms, dispersion plots, 
etc., which can be used for representing results as well as publications purposes. The comparison 

is performed after normalization of the data across samples that account the length of the frag-

ments, sequencing depth, and the total number of reads mapped. RPKM, FPKM, and TPM are 
commonly used normalization values. Genes with at least 2-fold change are usually considered 
as differentially expressed, although a fold change of 1.5 is also considered in certain instances.

Types of graphical methods are available to visually represent the identified variations among 
experiments or samples used. Overview of gene expression studies can be represented by vol-

cano plot, MA plot, heatmap, etc. Heatmap with hierarchical clustering clearly represents the 
trend of gene expression between samples.

Visualization is integral to NGS data from the evaluation of sequencing quality to the repre-

sentation of the biologically significant results. Initially, the raw data have to undergo qual-
ity checking to assess the overall sequencing quality and decide quality measures (FastQC 

(Figure 3a) [28], NGSQC [41]). The next level of visualization is applicable to the alignment to 
the genome as perceived for the number of reads aligned to particular gene, exons, introns, 

and splice junctions with genome browsers such as UCSC browser [42], Integrative Genomics 

Viewer (IGV) [43], and Genome Maps [44]. Genome browsers load genome (.fasta), annota-

tions (.gff, .gtf), variations (as bed files) to their interface to obtain clear visualization of col-
lective data for a specified region along with the available annotation, identified evidence or 
mapped reads, and variations observed. They also host inbuilt tools to represent the data as 

plots and figures that can be used for publication [43].

Figure 4. Transcript enrichment. Cufflinks identify three transcripts from reads mapped to the same genomic region.
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4. TCGA: a genomic hub of cancer

The Cancer Genome Atlas well known as TCGA in short is a combined effort of National 
Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) investing 
$50 million each to increase the better understanding of molecular basis of cancer using 
advanced genome analysis technology. The overall aim of launching such a big project was 

to improve the ability to diagnose, treat, and prevent cancer. The first phase of the study 
started in the year 2005 focused on the brain, lung, and ovarian cancers was aimed to test 
and develop the infrastructure for further research. The second phase of the study com-

prises of around 30 different type of cancers started in the year 2009 and analyzed by the 
year 2014.

The first phase of the study proved that an atlas specific for cancer can be created with 
a worldwide network of research and teams working on different cancer and develop a 
single platform for making the data publically accessible pooling all the data. The publicly 

available data from TCGA would also enable researchers around the world to make vali-

date important discoveries. TCGA is supported by Genomic Data Commons (GDC) as one 

among the several programs at the NCI’s Center for Cancer Genomics along with another 
program Therapeutically Applicable Research to Generate Effective Treatments (TARGET). 
Now, GDCs host genomic alterations of exactly 39 projects combining the TCGA and 
TARGET.

Data availability has categorized based on primary site of study, and they are kidney, adrenal 
gland, brain, colorectal, lung, uterus, bile duct, bladder, bone marrow, breast, cervix, esopha-

gus, eye, head and neck, liver, lymph nodes, ovary, pancreas, pleura, prostate, skin, soft tis-

sue, stomach, testis, thymus, and thyroid. Some of the primary sites are again divided into 

different subdivions. For example, kidney again divided into three different projects: kidney 
renal clear cell carcinoma, kidney renal papillary cell carcinoma, and kidney chromophobe. 

So as the case with adrenal gland, brain, colorectal, lung, and uterus which all are divided 

again into two different sub categories as follows: pheochromocytoma & paraganglioma, 
adrenocortical carcinoma, glioblastoma multiforme, brain lower grade glioma, colon adeno-

carcinoma, rectum adenocarcinoma, lung adenocarcinoma, lung squamous cell carcinoma, 

uterine corpus endometrial carcinoma, uterine carcinosarcoma.

4.1. TCGA data and file formats

The main category of data available in TCGA are:

• Clinical

• Raw sequencing data

• Transcriptome profiling

• Simple nucleotide variation

• Biospecimen
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• Copy number variation

• DNA methylation

Main categories of data type are:

• Aligned reads

• Gene expression quantification

• Annotated somatic mutation

• Raw simple somatic mutation

• Copy number segment

• Masked copy number segment

• Methylation beta value

• Isoform expression quantification

• miRNA expression quantification

• Biospecimen supplement

• Clinical supplement

• Aggregated somatic mutation

• Masked somatic mutation

These data that are generated from different experimental strategies such as WXS, RNA-
Seq, and miRNA-Seq were studied under illumina platform, whereas Illumina Human 
Methylation 450 and Illumina Human Methylation 27 platforms were used for methylation 
array and genotyping array was carried out using Affymetrix SNP 6.0.

4.2. miRNA analysis

TCGA provides tissue-specific miRNA expression profiles, their isoforms, connection with 
diseases, and the discovery of unreported miRNAs. Alignment of the reads with BWA-aln is 

the very first step in the miRNA pipeline. Either the input can be FASTQ or BAM file format 
for alignment. The output after the alignment will be of BAM format. The alignment follows 
the expression workflow. The output from the expression workflow is raw read counts and 
normalized to reads per million mapped reads. There are two types of files, controlled and 
open. The aligned file which is having a controlled access, and the quantification files are open 
accessible (Table 2). The RPM comes in two separate files as “mirnas.quantification.txt” and 
“isoforms.quantification.txt.” The mirna.quantification.txt data file describes the summed 
expression for each miRNA. The file contains the information:

• miRNA name

• raw read count
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• reads per million miRNA reads

• cross-mapped to other miRNA forms (Y or N)

whereas the isoform.quantification.txt file contains every individual sequence isoform 
observed as follows:

• miRNA name

• alignment coordinates as <version>:<Chromosome>:<Start position>-<End position>:<Strand>

• raw read count

• reads per million miRNA reads

• cross-mapped to other miRNA forms (Y or N)

• region within miRNA

4.3. RNA-Seq analysis

TCGA uses an Illumina system as the basic platform. Information for nucleotide sequence 

and gene expression is found at TCGA. RNA sequence coverage, sequence variants (e.g., 

fusion genes), expression of genes, exon, or junction are different category of information 
available after the sequence alignment. The NCBI dbGaP database is the official repository for 
the actual sequence data [45]. After aligning the reads to reference genome, gene expression 

level is quantified in various forms such as HT-Seq raw mapping count, fragments per kilo-

base of transcript per million mapped reads (FPKM) and FPKM-UQ (upper quartile normal-
ization) in TCGA mRNA quantification pipeline (Table 3). In case of mRNA analysis also the 

rules for data access are the same. Access for aligned reads file is controlled, whereas access 
for rest of the files is open.

4.4. DNA-Seq analysis

Genomic diversity across different cancer types has been characterized by utilizing DNA 
sequencing systems based on Sanger Sequencing at different Genome Sequencing Centers. 

Type Description Format

Aligned reads miRNA-Seq reads that have been aligned to the GRCh38 
build. Reads that were not aligned are included to facilitate 

the availability of raw read sets

BAM

miRNA expression quantification A table that associates miRNA IDs with read count and a 

normalized count in reads per million miRNA mapped
TXT

Isoform expression quantification A table with the same information as the miRNA 

Expression Quantification files with the addition of isoform 
information such as the coordinates of the isoform and 

the type of region it constitutes within the full miRNA 

transcript

TXT

Table 2. Data types and file formats.
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Somatic variants from whole-genome sequencing are identified using this pipeline. Somatic 
variants are identified by comparing the tumor samples with the normal samples allele fre-

quency. After annotating each mutation, one project is created combining files from mul-
tiple cases. Identification of somatic mutation has achieved through four pipelines. Identified 
somatic variants are then annotated. Information from multiple files is combined into one 
single MAF for each pipeline. Mutations are listed in a tab delimited format as Mutation 
Annotation Format (MAF). Two types of MAF files are produced for each variant calling in 
a project, i.e., the protected and the somatic or public MAF files. These MAF files are pro-

duced on the basis of annotated Variant Call Format (VCF) file. This VCF file contains variants 
reported in multiple transcripts. Only the critical ones are reported in the protected MAF file, 
whereas Public MAF are processed to remove the low quality and potential germline variants 
restricting the confidential information.VCF files are of two type, raw unannotated simple 
somatic mutations and annotated somatic mutation VCF files.

4.5. Single-nucleotide polymorphism

TCGA utilized SNP-based technology to analyze genome-wide variations. It also includes 
platforms to define CNV and loss of LOH across multiple samples.

4.6. DNA methylation sequencing

TCGA utilizes the Illumina platform for the DNA methylation study ensures single-base-pair 
resolution, high accuracy, easy workflows, and low input of DNA requirements. DNA methyl-
ation data files (Table 4) contain information of signal intensities (raw and normalized), detec-

tion confidence, and calculated beta values for methylated (M) and unmethylated (U) probes.

4.7. Reverse-phase protein array (RPPA)

Is a high throughput, functional, and quantitative proteomic method for large-scale protein 

expression profiling which helps in biomarker discovery and cancer diagnostics eventually. 

Type Description Format

RNA-Seq alignment RNA-Seq reads that have been aligned to the 

GRCh38 build. Reads that were not aligned are 
included to facilitate the availability of raw read sets

BAM

Raw read counts The number of reads aligned to each protein-coding 

gene, calculated by HT-Seq
TXT

FPKM A normalized expression value that takes into 
account each protein-coding gene length and the 

number of reads mappable to all protein-coding 

genes

TXT

FPKM-UQ A normalized raw read count in which gene 
expression values, in FPKM, are divided by the 75th 
percentile value

TXT

Table 3. Gene quantification data formats.
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Protein arrays consist of data representing protein expression and concentration. These data 
archives are deposited to the TCGA DCC and include original images of protein arrays, calcu-

lated raw signals, relative concentrations of proteins and normalized protein signals (Table 5).

4.8. Data processing workflow

TCGA have a well-organized structure from sample collection to bioinformatics analysis with 
involvement of several centers (Table 6).

Platform code File type Description

IlluminaDNAMethylation_
OMA002_CPI

Tab-delimited, ASCII 

text (.txt)

Cy3 and Cy5 signals and detection confidence of methylated 
probes

IlluminaDNAMethylation_
OMA002_CPI

Tab-delimited, ASCII 

text (.txt)

Calculated beta values

IlluminaDNAMethylation_
OMA003_CPI

Tab-delimited, ASCII 

text (.txt)

Cy3 and Cy5 signals and detection confidence of methylated 
probes

IlluminaDNAMethylation_
OMA003_CPI

Tab-delimited, ASCII 

text (.txt)

Calculated beta values

HumanMethylation27 Binary (.idat) Intensity data file with statistics for each bead type in terms 
of bead count, mean and standard deviation per dye

HumanMethylation27 Tab-delimited, ASCII 

text (.txt)

Calculated beta values and mean signal intensities for 

replicate methylated and unmethylated probes

HumanMethylation27 Tab-delimited, ASCII 

text (.txt)

Calculated beta values, gene symbols, chromosomes and 

genomic coordinates (build 36). Some data have been masked 
(including known SNPs)

HumanMethylation450 Binary (.idat) Intensity data file with statistics for each bead type in terms 
of bead count, mean and standard deviation per dye

HumanMethylation450 Tab-delimited, ASCII 

text (.txt)

Background-corrected methylated (M) and unmethylated (U) 
summary intensities as extracted by the methylumi package

HumanMethylation450 Tab-delimited, ASCII 

text (.txt)

Calculated beta values, gene symbols, chromosomes and 

genomic coordinates (hg18). Some data have been masked 

(including known SNPs)

Table 4. DNA methylation data files format.

File type Description

Array Slide Image (tiff) Black and white, high-resolution image of protein array

RPPA Slide Image Measurements (txt) Raw signals from a black and white, high-resolution 

image of protein array

Super Curve Results (tab-delimited, txt) Supercurve results, use dilution to calculate relative 

concentration

Normalized Protein Expression (MAGE-TAB data matrix, 
txt)

Signals for genes

Table 5. Protein data file format.
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Project Details Source

Tissue Source 

Sites (TSSs)

Collection of the samples (blood and tissue 

from tumour and normal controls) and clinical 

metadata from patients (donors)

Shipment of the annotated biospecimens to 

Biospecimen Core Resources (BCR)

https://wiki.nci.nih.gov/display/TCGA/
Tissue+Source+Site

https://tcga-data.nci.nih.gov/datareports/
codeTablesReport.htm?codeTable=tissue%20
source%20site

Biospecimen 

Core Resource 

(BCR)

Coordination of sample delivery and data 

collection, cataloguing, processing, and 

verifying the quality and quantity

Isolation and distribution of RNA and DNA 

from biospecimens to other institutions for 

genomic characterization and high-throughput 
sequencing

http://cancergenome.nih.gov/abouttcga/
overview/howitworks/bcr

http://www.nationwidechildrens.org/
biospecimen-core-resource-about-us

Research Institute at Nationwide Children’s 
Hospital in Columbus, Ohio

Genome 

Sequencing 

Centers (GSCS)

High-throughput sequencing (data are 
available in TCGA Data Portal or at NIH’s 
database of Genotype and Phenotype)
Identification of the DNA alterations
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/sequencingcenters

Broad Institute Sequencing Platform in 
Cambridge

Human Genome Sequencing Center, Baylor 
College of Medicine in Houston
The Genome Institute at Washington University

Cancer Genome 

Characterization 
Centers (GCCs)

Utilization of novel technologies and multiple 
platforms

Comprehensive description of the genomic 

changes: alterations in miRNA and gene 
expression, SNP, CNV, and others
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/characterizationcenters

Copy Number Alteration (Brigham and 

Women’s Hospital and Harvard Medical School 
in Boston, The Broad Institute in Cambridge)

Epigenomics (University of Southern California 
in Los Angeles, Johns Hopkins University in 
Baltimore)

Gene (mRNA) Expression (University of North 
California at Chapel Hill)
miRNA Analysis (British Columbia Cancer 

Agency in Vancouver)

Targeted Sequencing Center (Baylor College of 

Medicine in Houston)
Functional Proteomics (MD Anderson Cancer 
Center)

Proteome 
Characterization 
Centers (PCCs)

Identification of cancer-specific proteins
http://cancergenome.nih.gov/
abouttcga/overview/howitworks/
proteomecharacterization

Cancer Proteomic Center
Center for Application of Advanced Clinical 

Proteomic Technologies for Cancer
Proteo-Genomic Discovery
Prioritization and Verification of Cancer 
Biomarkers

Proteome Characterization Centre and 
Vanderbilt Proteome Characterization Center

Data 

Coordinating 

Center (DCC)

Management of all generated data and transfer 
them to public databases (TCGA Data Portal 
and Cancer Genomics Hub)
http://cancergenome.nih.gov/abouttcga/
overview/howitworks/datasharingmanagement

University of California Santa Cruz

Table 6. TCGA centers and data processing.
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Eligible patient samples (blood and tissue) are collected by different Tissue Source Sites 
(TSSs) and delivered to the Biospecimen Core Resource (BCR). BCR catalogue, process, and 

verify the quality and quantity of these samples and then submit clinical data and meta-

data to the Data Coordinating Center (DCC). Genome Characterization Centers (GCCs) 
and Genome Sequencing Centers (GSCs) then do the genomic characterization and high-
throughput sequencing once the DCC provide molecular analytes. After sequencing, DCC 

again receives the sequence-related data from GSS. Trace files, sequences, and alignment 
mappings from Genome Characterization Centers are also submitted to the NCI’s secure 
repository Cancer Genomic Hub (CGHub). Access to research community for these data 
is made available along with Genome Data Analysis Centers (GDACs). Information man-

aged by DCC that has stored into public free-access databases (TCGA portal, NCBI’s Trace 
Archive, CGHub), allows researchers to access the data and hence helps to advance in cancer 
studies.

4.9. TCGA data identifiers

Barcodes were initially used as the primary identifier for biospecimen data in TCGA during 
the beginning of the data. Tissue source site delivers the patient sample and the metadata to 

Biospecimen Core Resource (BCR). Once the sample is received by BCR, a human readable 

TCGA barcode was assigned. TCGA barcode was assigned to keep the navigation of the vari-

ous results produced by the different data-generating centers for one particular sample con-

nected. Sections of barcode also provide metadata information about the sample. Nowadays, 

BCR is also assigning universally unique identifiers (UUIDs) along with TCGA barcode to 
samples keeping UUIDs as the primary identifier instead of barcodes.

4.9.1. Barcodes

BCR generates the barcode for each sample received from TSS. Barcode initial numbers after 

the program code are assigned according to the TSS and the participant from which the tissue 

sample was received. The barcodes TCGA-02 and TCGA-02-0001 are assigned, respectively. 
Types of tissue are also differentiated with codes (Table 7). Next number in the barcode stands 

for the sample followed by the vial number; the sample was split into TCGA-02-0001-01 and 
TCGA-02-0001-01B. This vial number is again divided into different portions—TCGA-02-
0001-01B-02. Analytes represented with barcode, e.g., TCGA-02-0001-01B-02D was extracted 
and distributed across one or more than one plates TCGA-02-0001-01B-02D-0182. Each well 
represented as, e.g., TCGA-02-0001-01B-02D-0182-06 is identified as an aliquot. These plates 
are later given to various characterize and sequencing centers.

4.9.2. Universally unique identifier (UUID)

UUIDs are randomly generated 32-digit hexadecimal value. TCGA became more complex, 
and the barcode was not enough to handle the generated data because there was not enough 

barcode combinations to represent the data. Also, flexibility in altering the barcode was also 
less when the associated metadata changes with a barcode. Considering all these factors, 

TCGA changed from using barcode for biospecimen and clinical data.
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The generated data are not only categorized based on the type but also the level at which 
these data can be accessed. In addition to the analyzed tumor data, TCGA also collects non-

tumor samples aimed to analyze every patients germ line DNA to identify which alteration 
found in tumor sample responsible for the oncogenic process. For most of the tumors, TCGA 

collects and analyzes normal blood samples. In the absence of a matching normal blood sam-

ple, a normal tissue sample from the same patient is used as the germ line control for DNA 

assays. But in the case of RNA assays, using a normal blood sample as a control is not logi-

cally correct. Because RNA profile of blood sample is expected to be different from the RNA 
profile of tissues from other organs such as brain, breast, and lungs or ovary. Because of this 
reason, TCGA attempts to collect normal tissue matched to the anatomic site of the tumor not 
matched to the patient.

4.10. Accessibility of data

Access to the data is strictly controlled. There are two levels of data access:

• Open access data tier [raw, non-normalized data (Level I), processed data (Level II)].

• Controlled access data tier [segmented/interpreted data (Level III) apply to individual sam-

ples, while summarized data (Level IV)].

Tissue code Letter code Definition

1 TP Primary Solid Tumor

2 TR Recurrent Solid Tumor

3 TB Primary Blood Derived Cancer—Peripheral Blood

4 TRBM Recurrent Blood Derived Cancer—Bone Marrow

5 TAP Additional—New Primary

6 TM Metastatic

7 TAM Additional Metastatic

8 THOC Human Tumor Original Cells

9 TBM Primary Blood Derived Cancer—Bone Marrow

10 NB Blood Derived Normal

11 NT Solid Tissue Normal

12 NBC Buccal Cell Normal

13 NEBV EBV Immortalized Normal

14 NBM Bone Marrow Normal

20 CELLC Control Analyte

40 TRB Recurrent Blood Derived Cancer—Peripheral Blood

50 CELL Cell Lines

60 XP Primary Xenograft Tissue

61 XCL Cell Line Derived Xenograft Tissue

Table 7. Tissue code.
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4.10.1. Open access data tier

The open access data level is composed of public data not unique to a patient. The open access 

data tier does not require any user certification [45].

Type of data accessible at open tier:

• Biospecimen

• Transcriptomic profiling

• Copy number variations

• DNA methylation

• Clinical

• Single-nucleotide variation

4.10.2. Controlled access data tier

Patient’s unique information falls into the controlled access tier. Each data type has unique 
identifiers. In order to get the access to the data, user needs the certification.

Type of data accessible at controlled level:

• BAM and FASTQ files

• Level 1 and level 2 SNP6 array data

• Level 1 and level 2 exon array data

• Variant Call Format files

• Peculiar data of MAFs

In order to attain the access to these data, the researchers must:

• Complete the Data Access Request (DAR) form which is available electronically through 

the Database of Genotypes and Phenotypes (dbGaP).

Once the submitted request is evaluated and approved, researchers must

• Agree to restrict their use of the information to biomedical research purposes only

• Agree with the statements within TCGA Data Use Certification (DUC)

• Have their institutions certifiably agree to the statements within TCGA DUC

All patient samples are sworn to use for TCGA and there is no provision of sharing the mate-

rial with a third party. Even this is not the case because 95% of material used up in different 
characterization. Even there is chance left to get the samples from the TSS centers. One can 
directly contact the TSS center for samples, and the decision lays on them.

4.11. TCGA data: visualization and data analysis

A huge amount of data accumulation demanding for advanced visualization technology and 
number of tools are available (Table 8). Visualization is essential to understand the data at ease.
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Tool Application

The Cancer Imaging Archive, CIA (http://www.
cancerimagingarchive.net)

TCIA hosts a large archive of medical images of cancer 

accessible for public download. Information regarding 

patients treatment details, outcomes, pathology and 

genomics are also provided as supporting information 

based on availability

Berkeley Morphometric Data (http://tcga.lbl.gov:9999/
biosig/tcgadownload.do)

Characterize tumour histopathology, through the 
delineation of the nuclear regions, from hematoxylin 

and eosin (H&E) stained tissue sections. The advantages 
of such a database is that other samples can be cross-

referenced for personalized therapy and precision 
medicine as it contains information regarding responses 

to therapies, molecular correlates and morphometric 

subtypes

The Cancer Digital Slide Archive, CDSA (http://cancer.
digitalslidearchive.net/)

Is an integrated Web-based platform supporting whole-

slide pathology image visualization and data integration 
of the TCGA data

The Broad GDAC Firehose (http://firebrowse.org/) Is a powerful tool for exploring cancer data. FireBrowse 

helps researchers to easily find any of thousands of data 
archives generated by the same. A powerful RESTful 
API is provided, with bindings to the UNIX command 
line, Python and R for programmers. For easy access, 
graphical interface like viewGene to explore expression 

levels and iCoMut are provided to explore the mutation 
information of each TCGA disease study with an 

interactive figure

The MD Anderson GDAC’s MBatch (http://
bioinformatics.mdanderson.org/tcgabatcheffects)

Is designed to help researchers to assess, diagnose and 

correct for any batch effects in TCGA data. It first allows 
the user to assess and quantify the presence of any batch 

effects through Principal Component Analysis and 
Hierarchical Clustering algorithms. The results from 
these algorithms are presented graphically as diagrams

Cancer Genome Workbench, CGWB (https://cgwb.nci.
nih.gov/)

NCI developed application which integrate and display 

genomic and transcription alterations across various 

cancers. Integrated tracks view, Heatmap view, Bambino 
are the major viewers

UCSC Cancer Genomics Browser (https://genome-cancer.
soe.ucsc.edu/)

Is an open access suite integrate, visualize and cancer 
genomic data along with clinical data

Integrative Genomics Viewer, IGV (http://www.
broadinstitute.org/igv)

Is a freely available visualization tool of the genome 
developed by Broad Institute

The cBioPortal for Cancer Genomics (http://cbioportal.org) Is interactive open-access resource for the exploration 

of multidimensional cancer genomics data sets. The 

barriers between the genomic data and the researchers 

are reduced rapidly after the resources was established. 

This database stores DNA copy-number data (deep 

deletions or amplification), non-synonymous mutations, 
mRNA and microRNA expression data, protein level, 

phosphoprotein level (RPPA) data, limited de-identified 
clinical data and DNA methylation data

Regulome Explorer (http://explorer.cancerregulome.org/) It explores the association between and molecular features 

of TCGA data. According to user-specified parameters the 
data can be filtered for the search and visualize

Table 8. Visualization and data analysis tools.
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