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Abstract

Microstructure of magnetic materials greatly influences the performance of magnetic 
properties, and sintering has been used as an agent to tailor the microstructure of these 
magnetic materials especially ferrites. Nanostructured ferrites prepared by high-energy 
milling method are often inherently unstable owing to their small constituent sizes, non-
equilibrium cation distribution, disordered spin configuration, and high chemical activ-
ity. Therefore, sintering of the milled ferrites recrystallizes the nanostructure and causes 
its transition from an excited metastable (activated) state into the low-energy crystal-
line state. A better understanding of the response of nanoscale ferrites with changes in 
temperature is crucial not only for basic science (the development of an atomistic and 
microscopic theory of the mechanochemical processes) but also because of the technolog-
ical high-temperature applications in catalysis, ferrofluids and information storage. This 
chapter discusses on two different sintering schemes, which are a commonly applied 
multi-sample sintering and a rarely adopted single-sample sintering. Experimental 
results of single-sample and multi-sample sintering of NiZn ferrites and yttrium iron 
garnet (YIG) were highlighted, and their microstructural consequences on the magnetic 
properties were also discussed.

Keywords: microstructural evolution, BH-hysteresis, ferrites, NiZn ferrites,  
yttrium iron garnet (YIG)

1. Sintering as a microstructure tailoring agent

Microstructure of polycrystalline ceramics is usually complex, consisting of grains, grain 
boundaries, porosity and secondary phases. This kind of structure is not seen in single crys-
tals. Variations in the microstructure with different kinds of shape, size, distribution and 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



orientation of the grains play a key role in many of the macroscopic properties including 
magnetic, thermophysical, mechanical, electrical and many other properties. Essentially, 
these phenomena are familiar with the polycrystalline ceramics samples having micronic 
grain size, and the information on their relationships is well understood. Materials in the 
micrometer scale mostly exhibit physical properties the same as that of bulk form; how-
ever, materials in the nanometer scale may exhibit physical properties distinctively differ-
ent from that of micrometer scale. Nanomaterials may have significantly lower melting 
point or phase transition temperature and appreciably reduced lattice constants, due to a 
huge fraction of surface atoms in the total amount of atoms [1]. Materials with an altered 
‘nano’-microstructure provide potential for new or improved applications [2]. Sintering 
has been known as an agent to alter the microstructure condition of a polycrystalline mate-
rial. Through optimization of sintering conditions such as sintering temperature, sintering 
atmosphere, heating and cooling rates, sintering time and partial pressure of sintering 
atmosphere, the best materials properties could be achieved. Tailoring the microstructure 
to attain certain desirable materials properties is the main challenge and of interest in 
material science.

2. Single-sample and multi-sample sintering

There are two different sintering schemes in producing polycrystalline materials, which 
are commonly applied multi-sample sintering scheme and rarely adopted single-sample 
sintering scheme. Generally, reported studies involving sintering and materials properties 
employed multi-sample sintering scheme [3–9]. The multi-sample sintering has as many 
starting compacts as the number of the intended sintering temperatures where each sample 
sintered only once at different temperatures. All compacts are assumed to have identical 
morphologies, for example, particle size distribution. However, a rarely adopted single-
sample sintering scheme has only one single compact with definite starting point and one 
particular particle size distribution where only one sample sintered at different tempera-
tures. Therefore, multi-sample sintering is subjected to possible statistical errors since the 
particle size distributions for all the samples may not be as identical as assumed as com-
pared to that of single-sample sintering. Thus, more convincing data could be obtained 
for the scientific interpretation of the evolution study. Besides, it is more economical with 
respect to raw materials and sample preparation time. The schematic of the different sinter-
ing schemes is been shown in Figure 1. Ceramic is defined as the art and science of making 
and using solid articles [10]. The statement made a clear view that it is not an easy task to 
produce the same ceramic with almost the same properties because ceramic is composed of 
a complex system. The question is whether a material scientist is able to make such ceramic 
by employing single-sample and multi-sample sintering, with almost the same or enhanced 
properties is of great interest.
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3. Magnetic properties evolution and the research gap

Evolution in magnetic properties is laterally correlated with the evolution of the microstruc-
ture, particularly from nanometric to micronic regime of grains as shown in Figure 2. However, 
the reported cause and effect sequences, in the magnetic properties research literature, are an 
experimental sequence focused mainly on yielding the final outcome, for example, the final 
microstructure-magnetic properties relationship at final sintering temperature. Therefore, 
microstructural dependence of magnetic properties for polycrystalline ferrite having microm-
eter grain size has been widely studied and greatly understood. However, research on ferrite 
from the nanometer scale has been a field of intense study, due to the novel properties shown 
by particles located in the transition region between the isolated atoms and bulk solids. Their 
novel properties make them attractive, both from the scientific knowledge of understanding 

Figure 1. Schematic of different sintering schemes: multi-sample and Single-sample sintering.
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their properties, and the technological importance of enhancing the performance of the pres-
ent materials. A fundamental line of scientific enquiry thus has been neglected, particularly 
by ferrite researchers for more than 70 years: What would be the magnetic-microstructure 
relationships at various intermediate sintering conditions during the parallel evolutions of the 
morphology and magnetic properties? Therefore, much possible essential development infor-
mation has been neglected, thus reducing the capabilities of producing good fundamental 
scientific knowledge, which lies behind the parallel evolution of the microstructure-material 

Figure 2. Grand evolution-data acquisition scheme for polycrystalline materials.
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properties, particularly in magnetic properties. This absence information has leaving behind 
many research gaps and research questions that have to be solved in this study:

i. How microstructural properties evolve with the magnetic properties from several nanometers 
to micrometer grains size?

ii. How the evolution of an amorphous-crystalline mixture state to complete polycrystalline 
state affects the microstructure-magnetic properties?

iii. Does sample with nanometer grain size demonstrates the similar magnetic properties with 
samples having micron grain size?

iv. What is the relationship of evolving microstructure properties with magnetic properties 
of material?

v. When is the remarkable transition of magnetic properties between the nanometer and 
micrometer grain size?

Hence, revealing the systematic development of grains having size from several nanometers 
up to micrometer is an important parameter of designing best materials properties. The evo-
lution has yet to be established in wide variation of properties since the knowledge of parallel 
evolution of microstructure and properties is absence in these materials:

i. Other electroceramics, for example, high-temperature heating elements and electrodes, 
voltage dependent resistors, thermally sensitive resistors, solid fast-ion conductors, hu-
midity and gas sensors, superconductors

ii. Thermo-mechanical ceramics, for example, SiC, Al
2
O

3

iii. Rare-earths-based magnetic materials, for example, Nd
9
Fe

14
B, SmCo17

iv. Transition metal-alloys based magnetic materials, for example, NiFe, NiCo

v. Mechanical metals and metallic alloys (elemental), for example, pure iron, copper, chro-
mium, nickel/carbon steels

vi. Polycrystalline semiconductors, for example, zinc oxide

4. Introduction to ferrites

Generally, a class of magnetic oxide, which contains iron oxide as a primary component, is 
commonly described as ferrites. Similar to most ceramic material, the physical properties of 
ferrite are also hard but brittle. The drastic progress in the development and growth of fer-
rites for technological application has once force the industry to leave behind the research 
and study in ferrite. The industrial importance of ferrites becomes apparent when one exam-
ines the diversity of their applications. Ferrite has been extensively used in various electronic 
devices. These applications include choke filters [11], transformers [12], antenna rods [13], 
microwave devices [14, 15], isolators [16], circulators [17], phase shifters [18] and many others. 
The frequencies of the applications range from direct current (DC) to the highest one at which 
any electronic device can function [19].

Evolution of Magnetic Properties in Ferrites: Trends of Single-Sample and Multi-Sample Sintering
http://dx.doi.org/10.5772/intechopen.68500

81



Ferrite exhibits ferrimagnetic behavior which possesses unequal, anti-parallel ionic magnetic 
moments resulting in a net moment due to incomplete compensation. There are three classes 
of commercial ferrite in the industry, and each of the types has their own specific crystal struc-
ture. The three classes of the commercial ferrites are as follows:

i. Soft ferrite with spinel cubic structure, for example, nickel zinc ferrite and manganese zinc 
ferrite.

ii. Soft ferrite with garnet structure, for example, yttrium-based garnets that are used in 
microwave devices.

iii. Hard ferrite with magnetoplumbite structure, for example, barium hexaferrite and stron-
tium hexaferrite. The hexagonal ferrites develop high coercivity and are an important 
member of the permanent magnet family.

5. Sintering of ferrite materials

Ferrites are commonly fabricated via two major techniques: the conventional technique 
and the non-conventional technique. Through the conventional ceramic technique, the raw 
material powders are mixed and sintered at over 1000°C sintering temperature. This process 
allows interdiffusion of atoms in a pre-selected composition to form a mixed crystal. The 
other technique for preparing ferrites is the non-conventional technique. A non-conventional 
technique in a liquid medium may produce intermediate, finely divided mixed hydroxides or 
mixed organic salts, which would assist the subsequent diffusion process [20].

Various synthesis methods including the conventional and non-conventional techniques of 
ferrites preparation have been shown in Table 1. The table shows that the formation of fer-
rite through non-conventional technique could be produced by using the obtained fine pow-
ders at much lower sintering temperature. Yet most of the techniques still require sintering, 
although at relatively lower temperatures to produce a single phase material. The sintering 
temperature could be as low as 200°C [21], though displaying least performance of magnetic 
properties compare to much higher sintering temperatures. Highest sintering temperature is 
normally employed for synthesizing bulk ferrites via solid state reaction and has been shown 
to produce optimum magnetic properties (see Table 1). However, low sintering temperature 
is required for nano-sized materials as basic requirement since magnetic properties of the 
bulk materials differ drastically from the nano-sized materials.

Sintering in certain condition of atmosphere would form pure phase as has been observed 
in reference [22]. Furthermore, sintering atmosphere is also responsible in altering the mag-
netic properties and the effects can be observed in cation redistribution and oxygen deficiency 
[21]. The sintering time displays in Table 1, which shows that the non-conventional tech-
nique requires much shorter sintering time as compare to conventional technique. The right 
 selection of sintering times would result in high densification and homogeneous materials 
which are largely important in magnetic materials since less densified materials result in hin-
drance to the domain wall movement, thus reducing the total magnetization. In addition, the 
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Material Synthesis method Starting materials Sintering conditions Microstructure features Optimum magnetic 

properties

Reference

Ni0.3Cu0.2Zn0.5Fe
2
O

4
Citrate precursor method Fe(NO

3
)

3
.9H

2
O

Zn(NO
3
)

2
. 4H

2
O

Cu (NO
3
)

2
.3H

2
O

Ni(NO
3
)

2
.6H

2
O

Citric acid

Sintering atmosphere: 
air-, argon-, carbon 
monoxide-ambient 
atmospheres
Sintering temperature: 
200,400 and 600°C
Sintering time: 2 h

Crystallite sizes increased 
with increased sintering 
temperatures for all 
sintering atmosphere 
ranging from 22.7 to 28.1 
nm for air atmosphere, 
8.8–24. 7 nm for argon 
atmosphere and 10.1–31.6 
nm for carbon monoxide-
ambient atmosphere

Saturation 
magnetization, 
M

s
: 69.1 emu/g for 

sample sintered at 
600°C under carbon 
monoxide-ambient 
atmosphere

[21]

NiFe
2
O

4
Sol-gel auto-combustion 
method

Fe(NO
3
)

3
⋅9H

2
O

Ni(NO
3
)

2
⋅6H

2
O

Citric acid

Sintering temperature: 
900, 1100, 1200 and 
1300°C
Sintering time: 2 h

Average grain sizes 
increased from 0.1 to 
2.2 µm with increasing 
sintering temperatures
Density increased from 
2.93 to 4.30 g/cm3 with 
increasing sintering 

temperatures

M
s
: ~50.0 emu/g for 

sample sintered at 
1100°C

[25]

Ni0.5Zn0.5Fe
2
O

4
Co-precipitation method NiCl

2

ZnCl
2

FeCl
3

NaOH

Sintering temperature: 
800 and 900°C
Sintering time: 3 h

Average crystallite sizes 
increased from 38.4 to 
42.2 nm with increasing 
sintering temperatures

M
s
: 89.5 emu/g for 

sample sintered at 
900°C

[26]

Ni0.266Zn0.66Cu0.09Fe1.968O4-δ Solid-state reaction 
method

NiO
ZnO
CuO
Fe

2
O

3

Sintering atmosphere: 
Air
Sintering temperature: 
1050°C
Sintering time: 1, 3, 5 
and 7 h

Average crystallite sizes 
increased from 3.9 to 
12.9 µm with increasing 
sintering times

Density increased from 
5.06 to 5.21 g/cm3 with 
increasing sintering times

M
s
: 245.1 emu/cm3 

for sample sintered 
for 7 h
Initial permeability, 
µ

i
, at 1 kHz: 2305 

for sample sintered 
for 7 h

[23]
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Material Synthesis method Starting materials Sintering conditions Microstructure features Optimum magnetic 

properties

Reference

Y
3
Fe

5
O

12
Solid-state reaction 
method

Fe
2
O

3

Y
2
O

3

Two different sintering 
curves
Curve 1
Sintering 
temperatures,
T

1
:1200–1450°C

Sintering time: none
Heating rate:10°C/min
Cooling rate: 2°C/min
Curve 2
Sintering 
temperatures,
T

1
:1350°C, T

2
:1200 °C

T
1
:1350°C, T

2
:1300 °C

T
1
:1450 °C, T

2
:1300 °C

Sintering time at T
2
: 6, 

12, 18 and 24 h
Heating rate:10°C/min
Cooling rate: 25°C/min

Sample sintered at 
T

1
:1350°C, T

2
:1300°C for 

18 h attained the highest 
relative density (99.1%)

M
s
: 27.4 emu/g for 

sample sintered 
at T

1
 = 1350°C, 

T
2
:1300°C for 18 h

[27]

NiCuZn ferrite Commercial purchased 
NiCuZn ferrite powder 
and sintering

Commercial 
purchased NiCuZn 
ferrite

Sintering temperature: 
850, 900, 950, 1000 and 
1050°C
Sintering time: 2 h

Density increased from 4.0 
to 4.3 g/cm3

Average grain sizes 
increased from 3.0 to 
7.5 µm with increasing 
sintering temperatures

Initial permeability, 
µ

i
, at 5 MHz 

increased with 
increased sintering 
temperature with 
maximum value 
of ~112 for sample 
sintered at 1050°C

[3]

CoFe
2
O

4
Citrate precursor method Co(NO

3
)

2
.6H

2
O 

Fe(NO
3
)

2
.9H

2
O 

C
6
H

8
O7

Sintering temperature: 
900, 1000 and 1100°C

Average grain sizes 
increased from 90.0 to 
100.0 nm with increasing 
sintering temperatures

M
s
 increased from 

53.7 emu/g to 74.5 
emu/g

[4]
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Material Synthesis method Starting materials Sintering conditions Microstructure features Optimum magnetic 

properties

Reference

Zn0.35Ni0.57Co0.03Fe2.05O4
Chemical combustion 
route

Metal nitrates

Citric acid
Sintering temperature: 
1050 and 1150°C
Sintering time: 1 h

Average grain sizes 
increased from 0.61 to 
0.94 µm with increasing 
sintering temperatures

Real part of the 
initial permeability 
increases with 
increasing sintering 

temperature from 
85.2 to 209.7 at 10 
kHz and from 90.4 
to 238.1 at 1 MHz

[28]

BaFe
12

O
19

High-energy ball milling BaCO
3

Fe
2
O

3

Sintering atmosphere: 
Air atmosphere
Sintering temperature: 
800, 900 and 1150°C
Sintering time: 1 h

The highest measured 
density is 4.88 g/cm3 for 

the sample mechanically 
alloyed for 3 h and 
sintered at 1150°C

The highest Ms 
value of 63.57 emu/g 
was measured 
for the sample 
mechanically 
alloyed for 3 h and 
sintered at 1150°C
The highest 
coercivity, HC, value 
is 5.31 kOe obtained 
for the sample 
milled for 9 h and 
sintered at 900°C

[29]

Ni0.3Zn0.7Fe
2
O

4
Sol–gel auto-combustion 
method

Fe(NO
3
)

3
.9H

2
O

Zn(NO
3
)

2
. 4H

2
O

Ni(NO
3
)

2
.6H

2
O

Sintering atmosphere: 
Air atmosphere
Sintering temperature: 
350, 400, 500, 600, 800, 
1000 and 1200°C
Sintering time: 1 h

Average crystallite sizes 
increased from 13.0 to 
58 nm with increasing 
sintering temperatures

Highest M
s
 of 49.4 

emu/g for sample 
sintered at 1200°C 
with the largest 
crystallite size
Maximum H

c
 

of13.82 Oe was 
observed in 
sample sintered at 
800°C (crystallite 
size:36 nm) due to 
transition of the 
magnetic single-
domain to magnetic 
multi-domain 
structure

[24]
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Material Synthesis method Starting materials Sintering conditions Microstructure features Optimum magnetic 

properties

Reference

Y
3
Fe

5
O

12
Low
temperature solid state 
reaction

Y(NO
3
)

3
⋅6H

2
O

Fe(NO
3
)

3
⋅9H

2
O

Citric acid

Sintering atmosphere: 
Air atmosphere
Sintering 
temperatures: 1220, 
1240, 1280 and 1320°C
Sintering times: 3 h
Heating rate:10°C/min

Optimum sintering 
temperature of 1280°C 
with highest value of ~5.08 
g/cm3 that was about
98% of the XRD density 
(5.17 g/cm3)

M
s
: 13.8 mT for 

sample sintered at 
1280°C

[30]

Mn0.49Zn0.48Fe2.06O4
Co-precipitation method Sintering atmosphere: 

air, mixture of nitrogen 
and air, and nitrogen 
atmospheres
Sintering temperature: 
850, 880, 900 and 950°C
Heating rate: 5, 6, 7 
and 8°C/min

Sintering in nitrogen 
produced pure 
Mn0.49Zn0.48Fe2.06O4

 ferrite 

while sintered in air or 
mixture of air and nitrogen 
contained oxides such as 
Fe

2
O

3
, Mn

2
O

3
 and ZnO

Highest sintering 
density of 4.82 g/cm3 and 
homogeneous grain size 
were found in sample 
sintered at 880°C in 
nitrogen atmosphere with 
5°C/min heating rate

Largest M
s
 value 

of 90.02 emu/g 
was observed in 
sample sintered at 
880°C in nitrogen 
atmosphere with 
5°C/min heating 
rate

The M
s
 decreased 

with increasing 
heating rate from 
90.02 to 80.60 
emu/g

[22]

Ni0.35Cu0.05Zn0.60Fe
2
O

4
  

Mg0.35Cu0.05Zn0.60Fe
2
O

4

Conventional mixed oxide 
method and microwave 
sintering

NiO
MgO

CuO
ZnO
Fe

2
O

3

Sintering temperature: 
850, 875, 900, 925, 950, 
975 and 1000°C
Sintering time: 30 min

Largest grains and highest 
density of 5.28 and 4.95 g/
cm3 were observed in Ni0.

35
Cu0.05Zn0.60Fe

2
O

4
 sintered 

at 950°C and Mg0.35Cu0.05 

Zn0.60Fe
2
O

4
 sintered at 

900°C, respectively

µ
i
 at 10 kHz 

showed maximum 
values of ~2825 for 
both Ni0.35Cu0.05Z
n0.60Fe

2
O

4
 sintered 

at 950°C and Mg
0

.35Cu0.05Zn0.60Fe
2
O

4
 

sintered at 900°C, 
respectively
Highest M

s
 of ~129 

and 88 emu/g for Ni
0.35Cu0.05Zn0.60Fe

2
O

4
 

sintered at 950°C 
and Mg0.35Cu0.05Zn
0.60Fe

2
O

4
 sintered at 

900°C, respectively

[31]
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Material Synthesis method Starting materials Sintering conditions Microstructure features Optimum magnetic 

properties

Reference

Y
3
Fe

5
O

12
Solid-state
reaction method
and microwave sintering

Fe
2
O

3

Y
2
O

3

Conventional 

sintering (CS)

Sintering temperature: 
1300°C
Sintering time: 6 h
Heating rate:2°C/min
Cooling rate: 2°C/min
Microwave sintering 

(MS)

Sintering temperature: 
900°C and 1000°C
Sintering time: 20 min 
(for 900°C) and 30 min 
(for 1000°C)
Heating rate: 8°C/min
Cooling rate: 30°C/min

Conventional sintering 

(CS)

Grain size: 3–5 µm
Density: 98% T.D
Microwave sintering 

(MS)

Grain size: 1.5 µm (900°C), 
5–10 µm (1000°C)
Density: 96% T.D (900°C), 
98% T.D (1000°C)

Conventional 

sintering (CS)

M
s
: 25.42 emu/g

Coercive force, H
c
: 

25.36 Oe
Microwave 

sintering (MS)

M
s
: 14.60 emu/g

H
c
: 34.82 Oe

[32]

Mn
1–x

Zn
x
Fe

2
O

4
 (x = 0, 0.1, 

0.2, 0.4)
Sol-gel combustion 
method

Fe
2
O

3

SrO
Sintering atmosphere: 
Air atmosphere
Sintering temperature: 
700, 800 and 950°C
Sintering time: 5 h

Average grain size: ~1–2 
µm
Density increased with 
increasing sintering 

temperatures from 4.64 to 
4.80 g/cm3

µ
i
 increased from 

2100 to 2450 with 
increasing sintering 

temperatures.
M

s
: no sign of M

s
 

even at 10000 Oe 
magnetic field

[33]

Table 1. Summary of synthesis methods, sintering conditions, microstructure features and optimum magnetic properties of ferrites.
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 crystallite size is observed to be significantly increased with prolong sintering time up to 7 h 
[23], thus enhancing the saturation magnetization of the material. This may be as a result of the 
improved crystallinity, which implying a better exchange interaction.

However, the effects of sintering conditions, particularly sintering temperatures and times, 
on magnetic properties evolution are not necessarily increased with increase in sintering tem-
perature or sintering time. This is attributed to the resulting microstructure features such 
as abnormal grains and pores which are related to the decrease of density, thus decreasing 
the magnetic properties, mainly the volume magnetization and the magnetic induction. The 
non-linear relationship is also due to the characteristic of the transition from single-domain 
to multi-domain grains. This phenomenon is largely observed in coercivity value against par-
ticle or grain size of the magnetic material [24].

6. Results from experimental works on single-sample sintering (SSS) and 

multi-sample sintering (MSS) of NiZn Ferrites and YIG

6.1. Comparative study of single-sample and multi-sample sintering of NiZn ferrites

Sintering temperatures increments from 600 to 1400°C increase the average grain size in both 
MSS and SSS as has been shown in Table 2, resulting from several processes. Those processes 
involve particles rearrangement and formation of dumbbell-liked structure between the par-
ticles contact points or known as the necking process. The grains are formed when the parti-
cles move closer during intermediate sintering stage as the sintering temperature goes higher. 
Finally, pores near or on the grain boundaries are gradually removed through the diffusion 
of vacancies associated by the pores along the grain boundaries, having only slight densifica-
tion of the sample. The average grain size between the two different schemes shows small but 
significant difference. The striking difference in the microstructure is seen in Ni0.3Zn0.7Fe

2
O

4 

sintered at 1100°C as shown in Figure 3(a) and (b). The striking difference arises from the 

Sintering temperature (°C) 600 700 800 900 1000 1100 1200 1300 1400

Average grain 
size (µm)

MSS 0.19 0.21 0.23 0.24 0.43 1.07 1.23 2.65 4.98

SSS 0.13 0.15 0.19 0.23 0.30 0.39 1.05 2.08 5.35

Experimental 
density (g/cm3)

MSS 3.48 3.62 3.7 3.98 4.02 4.2 4.64 4.73 4.56

SSS 4.23 4.49 4.62 4.73 4.78 4.81 4.91 4.93 4.88

Saturation 
induction, B

s
 

(Gauss)

MSS 23.9 29.7 97.8 503.0 522.8 865.3 908.3 949.7 1076.0

SSS 23.4 29.5 68.3 424.2 523.0 572.0 605.3 774.7 930.7

Coercivity, H
c 

(Oe)
MSS 3.4 7.7 12.5 5.0 4.1 1.3 1.2 0.5 0.4

SSS 3.0 9.7 11.5 6.7 3.8 3.5 1.6 0.9 0.3

Table 2. Average grain size, experimental density, saturation induction and coercivity of Ni0.3Zn0.7Fe
2
O

4
 for different 

sintering temperatures.
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different surface reactivities prior to the 1100°C sintering: for the MSS, the surface reactivity 
is high because the green bodies Ni0.3Zn0.7Fe

2
O

4 
are compacted from originally high-reactivity 

as-milled powders. However, the SSS is subjected to several times of repeated sintering, thus 
reducing the surface reactivity of the material prior to the 1100°C sintering. The pores which 
exist in MSS Ni0.3Zn0.7Fe

2
O

4
 sintered at 1400°C as shown in Figure 3(c) causing the decrease 

in density. Intragranular pores are trapped pores in the grains due to rapid grain growth and 
also probably due to zinc loss. The pores are known to be bad inclusions because they would 
pin down the domain wall, thus reducing the magnetization. However, no significant pores 
are observed in SSS Ni0.3Zn0.7Fe

2
O

4
 sintered at 1400°C. This is due to repeated sintering which 

could provide more time for the trapped pores to be removed; consequently, no significant 
amount of intragranular porosity was observed.

The focal question of what factors that subjected to different hysteresis shapes characteristic 
in both sintering treatments is of great interest. The shapes of the hysteresis loop are largely 
correlated with the microstructural features of the material, particularly the grains in the 
sample [34–40]. Besides, the disparities of the shapes also arise from the various grain shapes, 

Figure 3. FESEM micrographs for Ni0.3Zn0.7Fe
2
O

4
 sintered at: (a) 1100°C (MSS), (b) 1100°C (SSS), (c) 1400°C (MSS) and 

(d) 1400°C (SSS).
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grain sizes, compositions, strains, and imperfections present in the sample. Maximum mag-
netic induction, B

s
, of nickel zinc ferrite could range from 1000 to 3000 G [20, 41]. The experi-

mental values of B
s
 are shown in Table 2 range from 23.9 to 1076.0 G for MSS and from 

23.4 to 930.7 G for SSS. The various ranges of B
s
 are subjected to the influence of several 

reasons in which categorizing the B-H hysteresis loops into several groups. The noticeably 
different B-H hysteresis loops are seen as three different shapes in both MSS and SSS. The 
loops are divided into three groups based on their magnetic behavior: strongly, moderately 
and weakly ferromagnetic, which are known to be strongly influenced by microstructural 
properties, domain states, and crystallinity of the samples. Ni0.3Zn0.7Fe

2
O

4 
sintered from 600 

to 800°C for both MSS and SSS as shown in Figure 4(a) and (b), respectively, is classified 
as the first group with weakly ferromagnetic behavior. The shape of the hysteresis loops is 
affected by mixture phases of ferromagnetic and paramagnetic phase and also most likely by 
some superparamagnetic phase [42]. The significant amount of amorphous grain boundary 

Figure 4. B-H hysteresis loops of Ni0.3Zn0.7Fe
2
O

4
 for first group of (a) MSS (b) SSS, second group of (c) MSS, (d) SSS, and 

third group of (e) MSS (f) SSS.
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 volumes has contributed to the paramagnetic phase, which arises from the fine grain size of 
the samples [36, 39, 42]. In addition, a superparamagnetic phase is contributed by the nano-
sized grains. The shapes show a little hysteresis with narrowly bulging but linear-looking 
loops and have a very low Bs, indicating a very small amount of ferromagnetic phase. Due 
to the lower sintering temperature than the other two groups, the crystalline-phase percent-
age is small, while the amorphous-phase percentage is still significant. The grouping for the 
moderately ferromagnetic second group is slightly different between MSS and SSS where 
Ni0.3Zn0.7Fe

2
O

4
 sintered from 900 to 1000°C is for the MSS and from 900 to 1100°C is for SSS 

(see Figures 4(c) and (d)). The difference between the two sintering schemes is due to the 
influence of microstructural properties (see Figure 3). Ni0.3Zn0.7Fe

2
O

4
, which belongs to this 

group, shows a slanted sigmoid shape which is recognized to demonstrate moderate fer-
romagnetic behavior with negligible paramagnetic behavior since there is still remained a 
significant amount of the amorphous phase. The B-H loops of the MSS for this group have 
significantly higher B

s
 (M

s
) values but falling Hc values (see Figure 5) indicating, respectively, 

higher ferromagnetic phase crystallinity and starting dominance of multi-domain magneti-
zation-demagnetization processes. However, in the SSS, Ni0.3Zn0.7Fe

2
O

4
 still exhibits single 

domain grains as shown in Figure 5. Consequently, the magnetization of the SSS samples is 
largely exhibiting via spin rotation, thus lowering the magnetization values than that of MSS 
samples which already possessing multi-domain grains though sintered at similar sintering 
temperature. The result is clearly observed in Ni0.3Zn0.7Fe

2
O

4 
sintered at 1100°C: while the 

MSS sample already behaving as strongly ferromagnetic (third group), the SSS sample is still 
belong to the second group. The third group displays strongly ferromagnetic behavior (B

s
, 

M
s
) with a diminishing amorphous phase due to insignificant amount of amorphous grain 

boundaries volume. This behavior is exhibited by Ni0.3Zn0.7Fe
2
O

4 
sintered at much higher sin-

tering temperature. The sintering temperatures range from 1100 to 1400°C for the MSS and 
from 1200 to 1400°C for the SSS. The well-known erect, narrower and well-defined sigmoid 
shape has been observed for the third group of hysteresis loops. This strongly ferromag-
netic behavior is contributed by very high crystallinity, high density with a minute amount 
of microstructural defects, and large size of grains, resulting from high sintering tempera-
ture. Therefore, the combinations of these particular parameters would allow domain walls 
movement to become easier in the magnetization and demagnetization process.

Figure 5. Coercivity and grain size as a function of sintering temperatures for (a) MSS and (b) SSS of Ni0.3Zn0.7Fe
2
O

4
 samples.
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The H
c
 values in Figures 5(a) and (b) are found to increase as the sintering temperature 

increased from 600 to 800°C, reaches a maximum value and decreased from 800 to 1400°C. 
Interestingly, the similar trend is showed in both MSS and SSS schemes, proving the transi-
tion of single-domain to multi-domain grains happened in the similar grain size range. The 
drop of H

c
 values in SSS has occurred earlier for Ni0.3Zn0.7Fe

2
O

4 
having grain size of 0.19 µm 

as compared to MSS where it drops at 0.23 µm. H
c
 is probably the property most sensitive 

to porosity and grain size [20] nevertheless to the anisotropy field as well. Soft ferrites with 
nanometric grains exhibit a much higher H

c 
than samples having grain sizes of the order of 

few microns. An inversely proportional trend of H
c
 against grain size is observed for multi-

domain grains, which consisting of more domain walls. Therefore, the contribution of lower 
energy domain walls movement to demagnetization or demagnetization than that of domain 
rotation increases. Consequently, coarse grains are expected to display low H

c
 [43]. However, 

below a certain size, which the H
c 
reaches a maximum value, or known as the critical size, 

the grains are single-domain grains [44, 45]. The increasing values of coercivity for lower 
sintering (≤800°C) were due to size-shape anisotropy (necking phase in the microstructure) 
and magnetocrystalline anisotropy. For higher sintering temperatures (≥900°C), the grain size 
exceeded the critical grain size with the disappearing size-shape anisotropy but with remain-
ing magnetocrystalline anisotropy. Magnetocrystalline anisotropy is reduced in larger grains 
by decreasing the internal stress and crystal anisotropy [46], helping in better domain walls 
movement, thus decreasing the H

c
. Within this grain size range, the anisotropy and defects 

including pores govern the H
c 
values. Figure 5(a) and (b) greatly affirms the trend, giving 

a maximum H
c
 of 12.5 Oe at 0.23 µm and 11.5 Oe 0.19 µm for MSS and SSS, respectively. 

Therefore, the range of critical size for Ni0.3Zn0.7Fe
2
O

4
 is approximately from 0.20 to 0.25 µm.

Figures 6 and 7 present the real part of permeability with frequency dispersion from 1 MHz 
to 1.8 GHz for both sintering schemes. Generally, the permeability is related to two different 
magnetizing mechanisms which are spin rotational and domain wall movement. Normally, 
spin rotation occurs at higher frequency when domain is damped and could not follow the 
applied electromagnetic wave. According to Snoek’s law [47], the relation between resonance 
frequency f

R
 and the initial permeability μ

i
 for Ni–Zn ferrites may be expressed as follows:

   f  
R
   = (1 / µ 

i
   )    × 3 ×  10   9  Hz  (1)

This indicates that the lower the initial permeability values, the higher will be the frequency at 
which resonance phenomenon occurs. The value of real part of permeability for Ni0.3Zn0.7Fe

2
O

4
 

sintered at 600 and 700°C for both sintering schemes is independent of frequency in this mea-
sured frequency region (1 MHz–1.8 GHz), whereas Ni0.3Zn0.7Fe

2
O

4
 sintered at 800°C only 

showed the dependency at about 100 MHz before reach the onset of resonance frequency. The 
resonance frequency is mostly observable in samples with lower sintering temperatures with 
the presence of single phase Ni0.3Zn0.7Fe

2
O

4
 (800–1000°C) for both sintering schemes. The coars-

ened grains for Ni0.3Zn0.7Fe
2
O

4
 sintered at 1100°C and above would lead to a ferromagnetic reso-

nance at a lower frequency, in which, therefore, the resonance frequency could not be observed 
in the permeability spectra within the frequency region. At high frequencies, the domain walls 
cannot keep pace with the rapidly changing magnetic field, decreasing the value of real part of 
permeability. In powdered ferrites where each grain contains only a few domains, magnetiza-
tion process occurs primarily by domain rotation and less by domain wall movement [48].
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Figure 6. Graph of real permeability, µ’ against frequency for Ni0.3Zn0.7Fe
2
O

4 
multi-sample sintering.

Figure 7. Graph of real permeability, µ’against frequency for Ni0.3Zn0.7Fe
2
O

4 
single-sample sintering.
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The frequency stability for real permeability is varied from one group to another, which there-
fore varying the suitable applications for each group. The resonance frequency represents the 
high-frequency limit up to which the material can be used in a device. Ni0.3Zn0.7Fe

2
O

4
 with 

strong ferromagnetic behavior is suitable for lower frequency application (less than 1 MHz) 
because of the frequency stability at lower frequency where resonance frequency is found to 
be lowered than measured frequency range. Some applications that are operating in the fre-
quency range of 0.5–5 MHz are ferrite antennas for medium and long wave broadcast bands, 
power transformers, and cores for electromagnetic suppression. For moderate ferromagnetic 
behavior, Ni0.3Zn0.7Fe

2
O

4
 sintered through MSS displays ferromagnetic resonance at frequency 

of 10.7 MHz (sintered at 900°C) and 3.9 MHz (sintered at 1000°C) with maximum real part of 
permeability value of 44.4 and 72.1, respectively, whereas for Ni0.3Zn0.7Fe

2
O

4
 sintered through 

SSS, samples demonstrate ferromagnetic resonance at frequency of 20.1 MHz (sintered at 
900°C), 6.31 MHz (sintered at 1000°C), 5.40 MHz (sintered at 1100°C) with maximum real 
part of permeability value of 37.4, 70.5 and 87.9, respectively. The materials could be used for 
the application of the solid core of inductors for resonant circuits or transformers operating 
in the approximate frequency range 2–20 MHz [41, 49], ferrite antennas for short wave broad-
cast bands, power transformers for the approximate frequency range 2–30 MHz and cores 
for electromagnetic interference suppression [41]. For weak ferromagnetic behavior, only 
Ni0.3Zn0.7Fe

2
O

4
 sintered at 800°C for both sintering schemes displays the resonance phenom-

enon. The frequencies are stabled until 44.3 and 39.5 MHz for SSS and MSS, respectively, with 
maximum real part of permeability value of 8.64 and 4.42, respectively. Permeability with a 
value less than 12 is used for inductors and for resonant circuits operating at frequencies above 
30 MHz and cores for electromagnetic interference suppression, whereas a much higher fre-
quency than 1.8 GHz is needed to show resonance behavior in Ni0.3Zn0.7Fe

2
O

4
 sintered at 600 

and 700°C due to smaller grain size and lower magnetic mass in the Ni0.3Zn0.7Fe
2
O

4
.

The complex permeability could also be classified into three different groups which are value-
differentiated groups: strongly, moderately and weakly ferromagnetic behavior. By determining 
the critical size of single-domain to multi-domain grains through plot in Figure 5, it is found that 
Ni0.3Zn0.7Fe

2
O

4
 with weakly ferromagnetic behavior contains less than 50% multi-domain grains 

(Ni0.3Zn0.7Fe
2
O

4
 sintered from 600 to 800°C for MSS and SSS), whereas Ni0.3Zn0.7Fe

2
O

4
 with the mod-

erately ferromagnetic behavior possesses more than 50%  multi-domain grains (Ni0.3Zn0.7Fe
2
O

4
 

sintered from 900 to 1000°C for MSS; Ni0.3Zn0.7Fe
2
O

4
 sintered from 900 to 1100°C for SSS), and 

100% of the grains are multi-domain grains (Ni0.3Zn0.7Fe
2
O

4
 sintered from 1100 to 1400°C for MSS; 

Ni0.3Zn0.7Fe
2
O

4
 sintered from 1200 to 1400°C for SSS) which are counted as strongly ferromagnetic 

behavior. Therefore, Ni0.3Zn0.7Fe
2
O

4
 sintered below 800°C (with grain size less than 0.25 µm) is 

dominated by spin rotation, whereas Ni0.3Zn0.7Fe
2
O

4
 sintered from 800°C upwards dominated 

by domain wall movement and spin rotation. The reason for the increase in permeability with 
sintering temperature is attributed to the increase of grain size and reduction of porosity, reduc-
ing the anisotropy arising from the demagnetizing fields outside of grains. Fewer number of the 
grain boundaries would be present in Ni0.3Zn0.7Fe

2
O

4 
sintered at high temperatures, causing the 

existence of very mobile domain walls thus increasing the permeability value. Moreover, dur-
ing grain growth, many pores would be removed, thus reducing the hindrance to the domain 
walls motion because pores provide stress concentration that may affect the magnetization’s easy 
direction. However, the decrease in the real part of the permeability for Ni0.3Zn0.7Fe

2
O

4
 sintered at 

1400°C is attributed to zinc loss [47] and existence of pores (see Figure 3).
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The loss factor is observed to increase with a rise of the frequency from 1 MHz and attain the 
maximum value at a particular frequency and decreased with a further increase in frequency. 
The loss factor values increase with increasing sintering temperature in both MSS and SSS as 
shown in Figures 8 and 9 for MSS and SSS, respectively. The frequency at which losses begin to 
increase due to the onset of resonance varies with the sintering temperatures from 2 to 100 MHz  
for both sintering schemes. As the sintering temperatures increase, the domain walls move-
ment becomes easier in the larger grain, thus inducing larger eddy current. It is caused by the 
changing magnetic fields inside the sample which give rise to circulating currents inside the 
sample, and hence to energy losses [50]. However, in Ni0.3Zn0.7Fe

2
O

4
, eddy current losses are 

not dominant due to its high electrical resistivity. The larger grain raises the number and size 
of magnetic domains which contribute to loss due to delay in domain wall motion. The losses 
in ferrites are associated with domain wall relaxation and rotational resonance. In higher fre-
quency regions (>500 MHz), most of the domain walls are damped and become less important 
as spin rotational would continue to occur [20].

Figure 8. Graph of loss factor, µ” against frequency for Ni0.3Zn0.7Fe
2
O

4 
multi-sample sintering.

Figure 9. Graph of loss factor, µ” against frequency for Ni0.3Zn0.7Fe
2
O

4 
single-sample sintering.
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6.2. Comparative study of single-sample and multi-sample sintering of yttrium iron 
garnet

A systematic track of microstructure-magnetic properties evolution of several polycrystalline 
Yttrium iron garnet (YIG) ferrite samples as a result of different sintering schemes was inves-
tigated in detail, focusing on the attendant occurrence of their dependency: an aspect seem-
ingly ignored, hitherto in the garnet ferrite previous literatures for the past eight decades.

In order to prepare Yttrium iron garnet (YIG) ferrite sample, Fe
2
O

3
 (Alfa Aesar, 99.945%) and 

Y
2
O

3
 (Alfa Aesar, 99.99%) powders were weighed and mixed according to the stoichiometric 

proportions required in the final YIG samples based on the reaction:

  3 Y  
2
   O  

3
   + 5F e  

2
   O  

3
   → 2 Y  

3
  F e  

5
   O  

12
    (2)

The powder then mechanically alloyed into nanosize via mechanical alloying technique. Two 
batches of samples were produced with different sintering scheme: SSS and MSS, each cov-
ering a range of low sintering temperature from 600°C up to high sintering temperature of 
1400°C with 100°C increments. The samples were analyzed by using a LEO 912AB energy filter 
transmission electron microscope (TEM), Philips Expert PW3040 diffractometer operating at 
40 kV/30 mA using Cu Kα radiation, scanning electron microscopy (SEM), MATS-2010S Static 
Hysteresis Graph at room temperature under applied magnetic fields 0–50 Oe (0–4000 A/m)  
and HP4291B Materials Impedance Analyzer at room temperature for their evolution stage in 
crystalline phases, microstructure, magnetic hysteresis-loop parameters, and magnetic per-
meability components, respectively.

With great experimental care, both the SSS and MSS batches yielded similar variation of micro-
structure-magnetic properties evolution (Table 3). The results showed an increasing tendency of 

Sintering 

temperature, 

(T, °C)

Single-sample sintering Multi-sample sintering

Grain 

size, 

(±0.01 

μm)

Saturation 

induction, 

B
s
 (Gauss)

Saturation 

magnetization, 

M
s
 (emu/cm3)

Coercivity, 

H
c
 (Oe)

Grain 

size, 

(±0.01 

μm)

Saturation 

induction, 

B
s
 (Gauss)

Saturation 

magnetization, 

Ms (emu/cm3)

Coercivity, 

H
c
 (Oe)

600 0.16 2.1 1.7 2.6 0.20 16.9 2.2 0.1

700 0.17 2.3 2.6 3.1 0.21 24.9 2.7 0.7

800 0.18 16.4 3.9 6.7 0.25 35.8 4.7 1.3

900 0.28 20.6 4.8 10.9 0.26 49.6 5.2 3.9

1000 0.33 120.7 5.4 15.5 0.28 128.6 5.5 15.8

1100 0.60 173.2 5.7 18.5 0.58 185.7 6.2 19.3

1200 1.14 223.7 10.9 12.4 0.80 244.5 12.8 15.2

1300 1.68 378.9 21.2 7.4 1.25 463.1 23.3 8.8

1400 2.71 570.4 26.3 4.3 3.09 714.6 29.1 2.9

Table 3. Microstructural and magnetic parameters of single- and multi-sample sintering YIG samples with various 
sintering temperature variations.
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the saturation magnetization and magnetic induction with grain size, which was attributed to 
increase of crystallinity and demagnetizing field reduction in the grains. The variation in coerciv-
ity corresponded to the changes of anisotropy field within the samples due to grain size changes. 
Specifically, the starting appearance of room temperature ferromagnetic order suggested by 
the sigmoid-shaped B-H loops seems to be dependent on a sufficient number of large enough 
magnetic-domain containing grains formed in the microstructure. Viewed simultaneously, the 
B-H loops (appeared to be belonging to three groups with different magnetism-type dominance, 
respectively dependent on phase purity and distribution of grain size. The clearly tracked evo-
lution of the hysteresis (Figures 10 and 11) and permeability component (Figure 12) strongly 
suggests that high reactivity grain surfaces and great-care human handling of the sample prepa-
ration process contributed to the startlingly clear microstructure-property evolution trends.

Figure 10. B-H hysteresis loop for single-samples sintered at various temperatures. The circles inside the figure indicate 
3 different groups of B-H curve evolution.

Figure 11. B-H hysteresis loop for multi-samples sintered at various temperatures. The circles inside the figure indicate 
3 different groups of B-H curve evolution.
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