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Abstract

Over the last decades, Bayesian hierarchical models defined by means of directed,
acyclic graphs have become an essential and widely used methodology in the analysis
of complex data. Simulation-based model criticism in such models can be based on
conflict measures constructed by contrasting separate local information sources about
each node in the graph. An initial suggestion of such a measure was not well calibrated.
This shortcoming has, however, to a large extent been rectified by subsequently pro-
posed alternative mutually similar tail probability-based measures, which have been
proved to be uniformly distributed under the assumed model under various circum-
stances, and in particular, in quite general normal models with known covariance
matrices. An advantage of this is that computationally costly precalibration schemes
needed for some other suggested methods can be avoided. Another advantage is that
noninformative prior distributions can be used when performing model criticism. In this
chapter, we describe the basic framework and review the main uniformity results.

Keywords: cross-validation, data splitting, information contribution, MCMC, model
criticism, pivotal quantity, preexperimental distribution, p-value

1. Introduction

Over the last decades, Bayesian hierarchical models have become an essential and widely used

methodology in the analysis of complex data. Computational techniques such as Markow

Chain Monte Carlo (MCMC) methods make it possible to treat very complex models and data

structures. Analysis of such models gives intuitively appealing Bayesian inference based on

posterior probability distributions for the parameters.

In the construction of such models, an understanding of the underlying structure of the problem

can be represented by means of directed acyclic graphs (DAGs), with nodes in the graph

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



corresponding to data or parameters, and directed edges between parameters representing

conditional distributions. However, a perfect understanding of the underlying structure is

usually an unachievable goal, and there is always a danger of constructing inadequate models.

Box [1] suggests a pattern for the model building process where an initial candidate model is

assessed for adequacy, and if necessary modified and elaborated on, leading to a new candi-

date that again is checked for adequacy, and so on. As a tool in this model criticism process,

Ref. [1] suggests using the prior predictive distribution of some checking function or test

statistic as a reference for the observed value of this checking function, resulting in a prior

predictive p-value. This requires an informative and realistic prior distribution, which is not

always available or even desirable. Indeed, as pointed out in Ref. [2], in an early phase of the

model building process, it is often convenient to use noninformative or even improper priors

and thus avoid costly and time-consuming elicitation of prior information. Noninformative

priors may be used also for the inference because relevant prior information is unavailable.

There exist many other methods for checking the overall fit of the model or an aspect of the

model of special interest, based on locating a test statistic or a discrepancy measure in some

kind of a reference distribution. The posterior predictive p-value (ppp) of Ref. [3] uses the

posterior distribution as reference and does not require informative priors. But this method

uses data twice and can as a result be very conservative [2, 4–6]. Hjort et al. [5] suggest

remedying this by using the ppp value as a test statistic in a prior predictive test. The compu-

tation of the resulting calibrated cppp-value is, however, very computer intensive in the

general case, and again realistic, informative priors are needed. A node-level discrepancy

measure suggested in Ref. [7] is subject to the same limitations. The partial posterior predictive

p-value of Ref. [4] avoids double use of data and allows noninformative priors but may be

difficult to compute and interpret in hierarchical models.

Comparison with other candidate models through a technique for model comparison or model

choice, such as predictive methods, maximum posterior probability, Bayes factors or an infor-

mation criterion, can also serve as tools for checking model adequacy indirectly when alterna-

tive candidate models exist.

In this chapter, we will, however, focus on methods for criticizing models in the absence of any

particular alternatives. We will review methods for checking the modeling assumptions at

each node of the DAG. The aim is to identify parts or building blocks of the model that are in

discordance with reality, which may be in need of adjustment or further elaboration.

O’Hagan [8] regards any node in the graph as receiving information from two disjoint subsets

of the neighboring nodes. This information is represented as a conditional probability density

or a likelihood or as a combination of these two kinds of information sources. Adopting the

same basic perspective, our aim is to check for inconsistency between such subsets. The

suggestion in Ref. [8] is to normalize these information sources to have equal height 1 and to

regard the height of the curves at the point of intersection as a measure of conflict. However, as

shown in Ref. [2], this measure tends to be quite conservative. Dahl et al. [9] demonstrated that

it is also poorly calibrated, with false warning probabilities that vary substantially between

models. Dahl et al. [9] also identified the different sources of inaccuracy and modified the

measure of Ref. [8] to an approximately χ2-distributed quantity under the assumed model by
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instead normalizing the information sources to probability densities. In Ref. [10], these densi-

ties were instead used to define tail probability-based conflict measures. Gåsemyr and

Natvig [10] showed that these measures are uniformly distributed in quite general hierarchical

normal models with fixed variances/covariances. In Ref. [11], such uniformity results were

proved in various situations involving nonnormal and nonsymmetric distributions. These

uniformity results indicate that the measures of Refs. [9] and [10] have comparable interpreta-

tions across different models. Therefore, they can be used without computationally costly

precalibration schemes, such as the one suggested in Ref. [5]. Gåsemyr [12] focuses on some

situations where the conflict measure approach can be directly compared to the calibration

method of Ref. [5] and shows that the less computer-intensive conflict measure approach

performs at least as well in these situations. Moreover, the conflict measure approach can be

applied in models using noninformative prior distributions.

Focusing on the special problem of identifying outliers among the second-level parameters in a

random-effects model, Ref. [13] defines similar conflict measures. In this setting, the group-

specific means are the nodes of interest. In some models, there exist sufficient statistics for

these means. Then, outlier detection at the group level can also be based on cross validation,

measuring the tail probability beyond the observed value of the statistic in the posterior

predictive distribution given data from the other groups. In this context, the conflict measure

approach can be viewed as an extension of cross-validation to situations where sufficient

statistics do not exist. Also in Ref. [13] applications to the examination of exceptionally high

hospital mortality rates and to results from a vaccination program are given. In Ref. [14], this

methodology is used to check for inconsistency in multiple treatment comparison of random-

ized clinical trials. Presanis et al. [15] apply these conflict measures in complex cases of medical

evidence synthesis.

2. Directed acyclic graphs and node-specific conflict

2.1. Directed acyclic graphs and Bayesian hierarchical models

An example of a DAG discussed extensively in Ref. [8] is the random-effects model with

normal random effects and normal error terms defined by

Yi, j � Nðλi,σ
2Þ,λi � Nðμ, τ2Þ, j ¼ 1,…, ni, i ¼ 1,…, m: (1)

In general, we identify the nodes or vertices of the graph with the unknown parameters θ and

the observed data y, the latter appearing as bottom nodes and being the realizations of the

random vector Y. In the Bayesian model, the parameters, the components of θ, are also

considered as random variables. In general, if there is a directed edge from node a to node b,

then a is a parent of b, and b is a child of a. We denote by Ch(a) the set of child nodes of a, and

by Pa(b) the set of parent nodes of b. More generally, b is a descendant of a if there is a directed

path from a to b. The set of descendants of a is denoted by Desc(a) and, for convenience, is

defined to contain a itself. The directed edges encode conditional independence assumptions,

indicating that, given its parents, a node is assumed to be independent of all other

Node-Level Conflict Measures in Bayesian Hierarchical Models Based on Directed Acyclic Graphs
http://dx.doi.org/10.5772/intechopen.70058

25



nondescendants. Hence, writing θ = (ν, μ), with μ representing the vector of top-level nodes, the

joint density of (Y, θ) = (Y, ν, μ) is

pðy,ν,μÞ ¼
Y

y∈y

pðyjPaðyÞÞ
Y

ν∈ ν

pðνjPaðνÞÞπðμÞ; (2)

where π(μ) is the prior distribution of μ. The posterior distribution π(θ|y) is the basis for the

inference.

This setup can be generalized in various directions. The nodes may be allowed to represent

vectors, at both the parameter and the data levels [10]. Instead of DAGs, one may consider

chain graphs, as described in Ref. [16], with undirected edges representing mutual dependence

as in Markov random fields. Scheel et al. [17] introduce a graphical diagnostic for model

criticism in such models.

2.2. Information contributions

The representation of a Bayesian hierarchical model in terms of a DAG is often meant to reflect

an understanding of the underlying structure of the problem. By looking for a conflict associ-

ated with the different nodes in the DAG, we may therefore put our understanding of this

structure to test. We may also identify parts of the model that need adjustment.

The idea put forward in Ref. [8] is that for each node λ in a DAG one may in general think of each

neighboring node as providing information about λ and that it is of interest to consider the

possibility of conflict between different sources of information. For instance, one may want to

contrast the local prior information provided by the factor p(λ|Pa(λ)) with the likelihood informa-

tion source formed by multiplying the factors p(γ|Pa(γ)) for all child nodes γ ∈ Ch(λ). The full

conditional distribution of λ given all the observed and unobserved variables in the DAG, i.e.,

πðλjðy,θÞ�λÞ∝ pðλjPaðλÞÞ
Y

γ∈ChðλÞ

pðγjPaðγÞÞ; (3)

is determined by these two types of factors. Here, (y, θ)�λ denotes the vector of all components

of (y, θ) except for λ.

Dahl et al. [9] normalize the product
Y

γ∈ChðλÞ

pðγjPaðγÞÞ to a probability density function denoted

by fc(λ), the likelihood or child node information contribution, whereas the local prior density is

denoted by fp(λ) and called the prior or parent node information contribution. These information

contributions are integrated with respect to posterior distributions for the unknown nuisance

parameters to form integrated information contribution (iic) denoted by gc and gp. In this

construction, a key to avoid the conservatism of the measure suggested in Ref. [8] is to prevent

dependence between the two information sources by introducing a suitable data splitting

Y = (Yp, Yc) and condition the parameters of fp on yp and the parameters of fc on yc.

Definition 1 For a given parameter node λ, denoted by βp the vector whose components are Pa(λ), and

by βc the vector whose components are
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∪γ∈ChðλÞð{γ}∪PaðγÞÞ � {λ} ¼ ChðλÞ∪½PaðChðλÞÞ � {λ}� (4)

Let Y = (Yp, Yc) be a splitting of the data Y. Define the densities fp, fc, the prior respectively likelihood

information contributions, by

f pðλ;βpÞ ¼ pðλjβpÞ, f cðλ;βcÞ∝
Y

γ∈ChðλÞ

pðγjPaðγÞÞ (5)

Define the integrated information contribution densities gp, gc by

gpðλÞ ¼

ð
f pðλ;βpÞπðβpjypÞdβp, gcðλÞ ¼

ð
f cðλ;βcÞπðβcjycÞdβc; (6)

and denote by Gp, Gc the corresponding cumulative distribution functions.

Note that βc may contain data nodes. The second integral in Eq. (6) is then taken only with

respect to the random components of βc, i.e., the parameters in βc. If βc contains no parameters,

then gc and fc coincide. Definition 1 may also be extended to the case when λ is a vector,

corresponding to a subset of parameter nodes.

Combining the set of information sources linked to a specific node in different ways leads to a

modification of Definition 1 where βc does not contain all child nodes of λ, the others being

instead included in βp together with their parent nodes. In this way, different types of conflict

about the node may be revealed. This is natural, e.g., in the context of outlier detection among

independent observations with a common mean. Note that βp and βc may then be overlapping,

containing common coparents with λ. The setup is illustrated in Figure 1 in the case when the

Figure 1. Part of a DAG showing information sources about λ.
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set of common components, by abuse of notation denoted by βp ∩ βc, is empty. For the general

setup, Definition 1 is modified as follows.

Definition 2 Let γ be a vector whose components are a subset of Ch(λ), and define βc as in Eq. (4).

Denote by γ1 the rest of the child nodes of λ, and let βp consist of γ1 together with its parent nodes in the

same way as in Eq. (4), as well as Pa(λ). The information contributions are then given by

f pðλ;βpÞ∝ pðγ1jPaðγ1ÞpðλjPaðλÞÞ; (7)

f cðλ;βcÞ∝ pðγjPaðγÞÞ: (8)

In Eq. (7), p
�

λjPaðλÞ
�

is replaced by the prior density π(λ) if λ is a top-level parameter. The

corresponding iic densities are defined by Eq. (6) as before.

2.3. Node-specific conflict measures

The conflict measure c2λ of Ref. [9] is defined as

c2λ ¼ ðEGpðλÞ � EGcðλÞÞ2=ðvarGpðλÞ þ varGcðλÞÞ (9)

The χ2
1-distribution is the reference distribution for this measure. For the conflict measures of

Ref. [10], the uniform distribution on [0, 1] is the reference distribution. They focus on tail

behavior but are based on the same iic distributions. The general distribution of information

sources given in Definition 2 is also introduced in Ref. [10]. For a given pair Gp, Gc of iic

distributions, let λ�
p and λ�

c be independent samples from Gp and Gc, respectively. Let G be the

cumulative distribution function for δ ¼ λ�
p � λ�

c. Define

c3þλ ¼ Gð0Þ, c3�λ ¼ Gð0Þ¼
def
1� Gð0Þ (10)

and

c3λ ¼ 1� 2minðGð0Þ, Gð0ÞÞ ¼ 2jGð0Þ � 1=2j: (11)

The c3þλ -measure and the P conf
λ measure of Ref. [13] are very similar. The latter measure is

aimed at detecting outlying groups or units in a three-level hierarchical model, with the

second-level parameters being location parameters for group-specific data. However, the mea-

sure is interpreted as a p value, with small values indicative of conflict. Gåsemyr and

Natvig [10] also defines a measure based on defining a tail area in terms of the density g of G,

namely

c4λ ¼ PGðgðδÞ > gð0ÞÞ; (12)

applicable also when λ is a vector.
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Example 1. To illustrate the theory, consider the random-effects model 1, with the variance

parameters σ2, τ2 assumed known, and with μ having the improper prior π(μ) = 1. For

simplicity, assume ni = n for all i. Suspecting the mth group of representing an outlier, let λ=λm

be the node of interest. Define the data splitting Yp, Yc by letting Yc ¼ Ym ¼ ðYm,1,…, Ym,nÞ,

and let βc ¼ yc, βp ¼ μ. Denoting the normal density function by φ, it is easy to see that

gcðλÞ ¼ f cðλÞ ¼ φðλ; yc, σ
2=nÞ. Furthermore, f pðλ;μÞ ¼ φðλ;μ, τ2Þ. Given yp, μ has the density

πðμjypÞ ¼ φðμÞ;
Xm�1

i¼1
yi=ðm� 1Þ, ð1=ðm� 1ÞÞτ2 þ ð1=ðnðm� 1ÞÞÞσ2Þ. By a standard argument

gpðλÞ ¼

ð
f pðλ;μÞπðμjypÞdμ

¼ φðλ;
Xm�1

i¼1

yi=ðm� 1Þ, ð1þ 1=ðm� 1ÞÞτ2 þ ð1=ðnðm� 1ÞÞÞσ2Þ:

It follows that gðδÞ ¼ φðδÞ;
Xm¼1

i¼1
yi=ðm� 1Þ � yc, ðm=ðm� 1ÞÞðτ2 þ σ2=nÞ. The conflict mea-

sures (Eqs. (9), (10), (11), and (12)) can hence be calculated analytically, with no simulation

needed in this case.

In a simulation study of the c2λ-measure in Ref. [9] using a warning level equal to the 95%

quantile of the χ2
1-distribution, a false warning probability of close to 5% is obtained for a

normal random-effects model with unknown variance parameters as in Eq. (1) and also in

similar random-effects models with heavy-tailed t- and uniformly distributed random effects.

Also with respect to detection power, this measure performs well when compared to a cali-

brated version of the measure given in Ref. [8], if an optimal data splitting is used. Refs. [10]

and [11] prove preexperimental uniformity of the conflict measures in various situations, i.e.,

their distributions as functions of a Ywhich is distributed according to the assumed model are

uniform, regardless of the true value of the basic parameter. Another way of stating this is that

we obtain a proper p-value by subtracting these measures from 1. These results are reviewed in

Section 5 of the present chapter.

2.4. Integrated information contributions as posterior distributions

In most cases, the conflict measures of Refs. [9] and [10] are based on simulated samples from

Gp and Gc. Definitions 1 and 2 suggest obtaining such samples by running an MCMC algo-

rithm to generate posterior samples of the unknown parameters in βp and βc and then generate

samples λ�
p and λ�

c from the respective information contributions for each such parameter

sample. If the information contributions are standard probability densities, this procedure is

straightforward. If not, one may instead often use the fact that, under certain conditions on the

data splitting, the distributions Gp and Gc are posterior distributions conditional on yp and yc,

respectively, the latter based on the improper prior π(λ) = 1, independently of the coparents.

Theorem 1 Suppose that the data splitting satisfies

Yc ¼ Y ∩ ½∪γ∈ChðλÞ ∩ βc
DescðγÞ�, Yp ¼ Y� Yc; (13)
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the latter expression by abuse of notation meaning the components of Y not present in Yc. Assume λ and

the coparents Pa
�

ChðλÞ ∩ βp

�

� λ are independent. We then have

gpðλÞ ¼ πðλjypÞ

and, specifying as prior density

πðλjPaðChðλÞ ∩βcÞ � λÞ ¼ 1;

gcðλÞ ¼ πðλjycÞ:
(14)

The proof is given in Appendix A in the online supporting information for Ref. [11]. Specializing

to the standard setup of Definition 1, where ChðλÞ⊆βc, we see that the requirement for Eq. (13) to

hold is that Yc consists of all data descendant nodes of λ. In Ref. [9], this splitting was compared

with two other splittings for c2λ and found to be optimal with respect to detection power. This

measure was also found to be a well-calibrated measure under this splitting.

3. Noninvariance and reparametrizations

The iic distributions and the corresponding conflict measures are parametrization dependent.

Based on experience so far, the conflict measures seem to be fairly robust to changes in

parametrization. However, this noninvariance can be handled in a theoretically satisfactory

way under certain circumstances.

Let φ be the parameter, in a standard parametrization, corresponding to a specific node in the

DAG. Suppose for simplicity that Yc ¼ ChðφÞ. Assume that there exists a sufficient statistic Yc

and an alternative parametrization λ, being a strictly monotonic function λ(φ), such that Yc – λ

is a pivotal quantity, i.e., the density for Yc given λ is of the form

pðycjλÞ ¼ f Yc
ðycjλÞ ¼ f 0ðyc � λÞ (15)

for some known density function f0. Such a parametrization will be considered as a canonical

or reference parametrization if it exists, as opposed to the standard parametrization involving

φ. Accordingly, the conflict measures given in Eqs. (9)–(12) are preferably based on this

reference parametrization.

By Theorem 1, samples λ�
c from Gc may be obtained by MCMC as posterior samples from

πðλjycÞ when the splitting satisfies Eq. (13) and the prior for λ satisfies Eq. (14), i.e., equals 1.

According to an argument given in Section 1.3 of Ref. [18], such a prior expresses noninfor-

mativity for likelihoods of the form (Eq. (15)). Computationally, we may, however, use the

standard parametrization. When generating φ�
c as posterior samples from π(φ|Yc), the prior

density |dλ/dφ| for φ must be used. Then, we may calculate λ�
c ¼ λðφ�

cÞ. To represent the iic

distribution Gp(λ), we may calculate λ�
p ¼ λðφ�

pÞfor samples φ�
p from πðφjypÞ according to the

given model. Now, the c4λ-measure can be estimated from (Eq. (12)), using a kernel density
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estimate of g(δ) based on corresponding samples δ� ¼ λ�
p � λ�

c . However, if we limit attention

to the c3λ-measure (Eq. (11)) and its one-sided versions (Eq. (10)), we may use the samples from

πðφjycÞ and πðφjypÞ directly. To see this, note that the condition λ�
p ≥λ

�
c is equivalent to the

condition φ�
p ≥φ

�
c (assuming that λ is increasing as a function of φ). Hence, the probability G

(0) that λ�
p � λ�

c ≤ 0 can be estimated as the proportion of sample values for which φ�
p ≤φ

�
c.

4. Extensions to deterministic nodes: Relation to cross-validation,

prediction and hypothesis testing

4.1. Cross-validation and data node conflict

The model variables Y are represented by the bottom nodes in the DAG describing the hierar-

chical model. The framework can be extended to also cover conflict concerning these nodes. In

this way, cross-validation can be viewed as a special case of the conflict measure approach.

Let Yc be an element in the vector Y of observable random variables. We define the prior iic

density gp(yc) exactly as in Eq. (6), with λ replaced by yc. The Dirac measure at the observed

value yc represents a degenerate iic information contribution about Yc. This leads to the

following definitions:

c3þyc ¼ GpðycÞ, c3�yc ¼ GpðycÞ; (16)

c3yc ¼ 1� 2minðGpðycÞ, GpðycÞÞ; (17)

c4yc ¼ PgpðgpðYcÞ ≥ gpðycÞÞ: (18)

The measures (Eqs. (16)–(18)) are called data node conflict measures. To see that these defini-

tions are consistent with Eqs. (10)–(12), note that λ�
p corresponds to Yc, and λ�

c is determin-

istic and corresponds to yc. We define X = Yc – yc, corresponding to δ. We then have

gðxÞ ¼ gpðxþ ycÞ. Hence,

Gð0Þ ¼

ð0
�∞

gðxÞdx ¼

ðyc
�∞

gpðyÞdy ¼ GpðycÞ;

and accordingly, Gð0Þ ¼ GpðycÞ. It follows that Eqs. (16) and (17) are special cases of Eqs. (10)

and (11). Moreover,

PgðgðXÞ ≥ gð0ÞÞ ¼ PgpðgpðYcÞ ≥ gpðycÞÞ;

showing that Eq. (18) is a special case of Eq. (12).

Furthermore, this correspondence between the data node conflict measures (Eqs. (16) and (17))

and the parameter node conflict measures (Eqs. (10) and (11)) can be used to motivate these

latter measures. We will treat the c3+ measure as an example. Consider again a parameter node
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λ. If λwere actually observable and known to take the value λc, the data node version of the c3+

measure could be used to measure deviations toward the right tail of Gp as

GpðλcÞ ¼

ð

λc

�∞

gpðλÞdλ ¼

ð0

�∞

gpðδþ λcÞdδ:

Now λ is in reality not known, but we can take the expectation of this conflict with respect to

the distribution Gc, which reflects the uncertainty about λ when influence from data yp is

removed. The result is the following theorem:

Theorem 2

EGcðGpðλÞ ¼ c3þ
λ

:

Proof:

EGcðGpðλÞ ¼

ð

∞

�∞

gcðλÞ

ð0

�∞

gpðδþ λÞdδ

� �

dλ ¼

ð0

�∞

ð

∞

�∞

gpðδþ λÞgcðλÞdλ

� �

dδ

¼

ð0

�∞

gðδÞdδ ¼ Gð0Þ ¼ c3þ
λ

by Eq. (10).

4.2. Cross-validation and sufficient statistics

Suppose the node λ of interest is the parent of the subvector Yc of Y. Suppose also that Yc is a

sufficient statistic for Yc. Evidently then, the measures c3þ
λ

and c3þYc
address the same kind of

possible conflict in the model. The following theorem, proved in Ref. [11], states that the two

measures agree under certain conditions. This is a generalization of a result in Ref. [13], which

also unnecessarily assumed symmetry for the conditional density of Yc.

Theorem 3 Suppose the conditional density for the scalar variable Yc given the parameter λ is of the

form f Yc
ðyjλÞ ¼ f 2c,0ðy� λÞ. Then,

c3þYc
¼ c3þ

λ
:

When a sufficient statistic exists, the cross-validatory p-value is considered by Ref. [13] as the

gold standard, and the aim of their construction is to provide a measure which is generally

applicable and matches cross-validation when a sufficient statistic exists.

4.3. Prediction

As mentioned in Section 2, the c4 measure can be used to assess conflict concerning vectors of

nodes. Applying this at the data node level, we may assess the quality of predictions of a

subvector Yc of Y based on a complementary subvector yp of observations. The relevant
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measure is given by Eq. (18), with Yc replaced by the vector Yc. This is particularly well suited

to models where data accumulate as time evolves. Such a conflict measure can be used to

assess the overall quality of the model. It can also be used as a tool for model comparison and

model choice.

4.4. Hypothesis testing

Suppose the top-level nodes μ appearing in Eq. (2) are assumed fixed and known according to

the model, so that π(μ) is a Dirac measure at these fixed values of the components of μ. Hence,

the DAG has deterministic nodes both at the top and at the bottom, namely the vectors μ and y,

respectively. We may then check for a conflict concerning a component λ of μ by introducing a

random version ~λ of λ and contrast the corresponding gcð
~λÞ with the fixed value λ. The

random ~λ has the same children and coparents as λ, and the vector βc, the information

contribution f cð
~λ; βcÞ and the iic density gc are defined as in Eqs. (4), (5) and (6). The respective

conflict measures are defined as in Eqs. (16)–(18) with yc replaced by λ and Gp and gp replaced

by Gc and gc. If the model is rejected when the conflict exceeds a certain predefined warning

level, this corresponds to a formal Bayesian test of the hypothesis ~λ ¼ λ. Using the conflict

measure (Eq. (18)), we may put the whole vector μ to test in this way.

5. Preexperimental uniformity of the conflict measures

In this section, we review some results concerning the distribution of the conflict measures. If c

is one of the measures (Eqs. (10), (11), (12), (16), (17) or (18)), then preexperimentally, i.e., prior

to observing the data y, c is a random variable taking a value in [0, 1]. A large value of c

indicates a possible conflict in the model, and uniformity of c corresponds to 1 – c being a

proper p-value. This does not mean that we propose a formal hypothesis testing procedure for

model criticism, possibly even adjusted for multiple testing, nor that we think that a fixed

significance level represents an appropriate criterion signaling the need for changing the

model. A relatively large value of c may be accepted if there are convincing arguments for

believing in a particular modeling aspect, while a less extreme value of c may indicate a need

for adjustments in modeling aspects that are considered questionable for other reasons. But the

terms “relatively large” and “less extreme” must refer to a meaningful common scale. In our

view, uniformity of the conflict measure under all sources of uncertainty is the natural ideal

criterion for being a well-calibrated conflict measure, the fulfillment of which ensures compa-

rable assessment of the level of conflict across models. This means that we aim for

preexperimental uniformity in cases where the prior distribution is highly noninformative,

and also, as discussed in the following subsection, in cases where an informative prior repre-

sents part of the randomness in the data-generating process (aleatory uncertainty) rather than

subjective (epistemic) uncertainty about the location of a fixed but unknown λ. In this chapter,

we limit attention to situations where exact uniformity is achieved. The pivotality condition

(Eq. (15)) turns out to be a key assumption needed to obtain such exact results. Refs. [10]

and [12] provide some examples where exact uniformity is achieved in other cases.
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5.1. Data-prior conflict

Consider the model

Y � FYðyjλÞ,λ � FλðλÞ;

where Fλ is an arbitrary informative prior distribution. Here, we think of this prior distribution

as representing aleatory rather than epistemic uncertainty. The corresponding densities are

denoted by fY and fλ. If contrasting the prior density with the likelihood f YðyjλÞ indicates a

conflict between the prior and likelihood information contributions, we consider this a data-

prior conflict. The following theorem, proved in Ref. [11], deals with this kind of conflict. Note

that in this situation, the Yp part of the data splitting is empty.

Theorem 4 Suppose the conditional density for the scalar variable Y given the parameter λ is of the

form f YðyjλÞ ¼ f 0ðy� λÞ and that λ is generated from an arbitrary informative prior density fλ(λ).

Then, the data-prior conflict measures about λ are preexperimentally uniformly distributed for both the

c3
λ
- and c4

λ
-measures.

The theorem obviously applies to the location parameter of normal and t-distributions with

fixed variance parameters, as well as the location parameter in the skew normal distribu-

tion [19]. If the vector Y consists of IID normal variables, the theorem also applies to the

location parameter, using as scalar variable the sufficient statistic Y. If the n components of Y

are IID exponentially distributed with failure rate λ, their sum is a sufficient statistic that is

gamma distributed with shape parameter n and scale parameter λ. We may then use the fact

that for a variable Ywhich is gamma distributed with known shape parameter and unknown

scale parameter λ, the quantity logðYÞ � logðλÞ is a pivotal statistic, and uniformity is

obtained by combining Theorem 4 with the approach of Section 3. In the standard parame-

trization, the appropriate prior distribution is πðλÞ ¼ 1=λÞ. Details are given in Ref. [11],

which also deals with the gamma, inverse gamma, Weibull and lognormal distributions in a

similar way.

5.2. Data-data conflict

Suppose all components of Y have distributions determined by the same parameter λ.

Suppose we want to contrast information contributions from separate parts of Y about λ

and define the splitting ðYp,YcÞ accordingly. Focusing on this kind of possible conflict, we

assume complete prior ignorance about λ and accordingly assume that λ has the improper

prior πðλÞ ¼ 1. Hence, recalling Eqs. (7) and (8), we contrast the information in f cðλ;YcÞ with

that in f pðλ;YpÞ. We use the term data-data conflict in this context, since there is no prior

information incorporated in fp, and the two information contributions play symmetric roles.

However, as a particular application, one may think of Yc as a scalar variable representing a

possible outlier.

The following theorem is proved in Ref. [11].

Theorem 5 Suppose that the conditional densities for the scalar variables Yp and Yc given the

parameter λ are of the form f Yp
ðyjλÞ ¼ f p,0ðy� λÞ, f Yc

ðyjλÞ ¼ f c,0ðy� λÞ.
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Assume λ has the improper prior πðλÞ ¼ 1. Then, the data-data conflict measures about λ are preexper-

imentally uniformly distributed for both the c3λ- and c4λ-measures.

Theorem 5 can be applied if the components of Yc and Yp are normally or lognormally

distributed with known variance parameter, exponentially distributed, or gamma, inverse

gamma or Weibull with known shape parameter, since pivotal quantities based on sufficient

statistics exist for these distributions.

5.3. Normal hierarchical models with fixed covariance matrices

Allowing for each y and ν appearing in Eq. (2) to be interpreted as vectors of nodes, we now

assume that each conditional distribution in the decomposition (Eq. (2)) is multinormal with

fixed and known covariance matrices. The random-effects model (Eq. (1)) is a simple example

of this. We also assume that the top-level parameter vector μ has the improper prior 1 and that

each linear mapping PaðνÞ ! EðνjPaðνÞÞ has full rank.

Now let λ be any node in the model description. It is standard to verify that, regardless of how

the vector of neighboring and coparent nodes β is decomposed into βp, containing PaðλÞ, and

βc, the densities f pðλ; βpÞ and f cðλ; βcÞ of Eqs. (5) and (8) are multinormal with fixed covariance

matrices. Furthermore, this is true also for the iic densities gp and gc of Eq. (6), regardless of the

data splitting. It follows that the density g of the difference δ between independent samples from

gp and gc is multinormal with expectation EGðδÞ ¼ EGpðλÞ � EGcðλÞ and covariance matrix

covGðδÞ ¼ covGpðλÞ þ EGcðλÞ. It follows that
�

δ� EGðδÞ
�t
covGðδÞ�1

�

δ� EGðδÞ
�

is χ2-distributed

with n ¼ dimðλÞ degrees of freedom, and the probability under G that gðδÞ < gð0Þ is easily seen

to be Ψ n

�

EGðδÞtcovGðδÞ�1EGðδÞ
�

, where Ψn is the cumulative distribution function for the χ2
n-

distribution. The preexperimental uniformity of this quantity is proved in Ref. [10].

Theorem 6 Consider a hierarchical normal model as described above.

i. Let λ be an arbitrary scalar or vector parameter node. If the data splitting satisfies Eq. (13), then

c4λ is uniformly distributed preexperimentally.

ii. Suppose the data splitting ðYp,YcÞ satisfies Ch
�

PaðYcÞ
�

¼ Yc. Then, c
4
Yc

is uniformly distrib-

uted preexperimentally.

If λ in (i) or Yc in (ii) are one dimensional, then G is symmetric and unimodal, and therefore, the

respective c3-measures are defined and coincide with the c4-measures. Gåsemyr et al. [10] also

show that in that case the c3+- and c3�-measures are uniformly distributed preexperimentally.

Example 2. Consider the following DAG model, a regression model with randomly varying

regression coefficients.

Yi, j � NðXt
i, jξi, σ

2Þ, ξi � Nðξ,ΩÞ, j ¼ 1,…, n, i ¼ 1,…, m,πðξÞ∝ 1: (19)

The m units could be groups of individuals, with yi,j the measurement for a group member

with individual covariate vector Xi,j, or individuals with the successive yi,j representing
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repeated measurements over time. In this model, we could check for a possible exceptional

behavior of the mth unit by means of the conflict measure c4ξm . With a data splitting for which

Yc ¼ Ym ¼ ðYm , 1,…, Ym,nÞ the conditions for Theorem 6, part (i), are satisfied if dimðξÞ ≤n,

and the measure is preexperimentally uniformly distributed.

6. Concluding remarks

The assumption of fixed covariance matrices in the previous subsection is admittedly quite

restrictive. In general, the presence of unknown nuisance parameters, such as parameters

describing the covariance matrices in a normal model, makes the derivation of exact unifor-

mity at least difficult and often impossible. Promising approximate results are reported in Ref.

[9] for the closely related c2λ measure. Further empirical studies are needed in order to examine

to what extent the conflict measures are approximately uniformly distributed in other situa-

tions. As an informal tool to be used in conjunction with subject matter insight, the conflict

measure approach does not require exact uniformity in order to be useful.
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