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Abstract

In this chapter, we present some recent results about nonlinear filtering for jump diffu-
sion signal and observation driven by correlated Brownian motions having common
jump times. We provide the Kushner-Stratonovich and the Zakai equation for the nor-
malized and the unnormalized filter, respectively. Moreover, we give conditions under
which pathwise uniqueness for the solutions of both equations holds. Finally, we study
an application of nonlinear filtering to the financial problem of derivatives hedging in an
incomplete market with partial observation. Precisely, we consider the risk-minimizing
hedging approach. In this framework, we compute the optimal hedging strategy for an
informed investor and a partially informed one and compare the total expected squared
costs of the strategies.

Keywords: nonlinear filtering, jump diffusions, risk minimization,
Galtchouk-Kunita-Watanabe decomposition, partial information

1. Introduction

Bayesian inference and stochastic filtering are strictly related, since in both approaches, one

wants to estimate quantities which are not directly observable. However, while in Bayesian

inference, all uncertainty sources are considered as random variables, stochastic filtering refers

to stochastic processes. It also covers many situations, from linear to nonlinear case, with

various types of noises.

The objective of this chapter is to present nonlinear filtering results for Markovian partially

observable systems where the state and the observation processes are described by jump diffu-

sions with correlated Brownian motions and common jump times. We also aim at applying this
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theory to the financial problem of derivatives hedging for a trader who has limitative informa-

tion on the market.

A filtering model is characterized by a signal process, denoted by X, which cannot be observed

directly, and an observation process denoted by Ywhose dynamics depends on X. The natural

filtration of Y, FY ¼ {FY
t , t∈ ½0, T�}, represents the available information. The goal of solving a

filtering problem is to determine the best estimation of the signal Xt from the knowledge of FY
t .

Similar to optimal Bayesian filtering, we seek for the best estimation of the signal according to

the minimum mean-squared error criterion, which corresponds to compute the posterior

distribution of Xt given the available observations up to time t.

Historically, the first example of continuous-time filtering problem is the well-known Kalman-

Bucy filter which concerns the case where Y gives the observation of X in additional Gaussian

noise and both processes X and Yare modeled by linear stochastic differential equations. In this

case, one ends up with a filter having finite-dimensional realization. Since then, the problem

has been extended in many directions. To start, a number of authors including Refs. [1–3]

studied the nonlinear case in the setting of additional Gaussian noise. Other references in a

similar framework are given, for instance, by Refs. [4–8]. Subsequently also the case of counting

process or marked point process observation has been considered (see Refs. [9–14] and refer-

ence therein). A more recent literature contains the case of mixed-type observations (marked

point processes and diffusions or jump-diffusion processes), see, for, example, Refs. [15–18].

There are two major approaches to nonlinear filtering problems: the innovations method and

the reference probability method. The latter is usually employed when it is possible to find an

equivalent probability measure that makes the state X and the observations Y independent.

This technique may appear problematic when, for instance, signal and observation are corre-

lated and present common jump times. Therefore, in this chapter, we use the innovations

approach which allows circumventing the technical issues arising in the reference probability

method. By characterizing the innovation process and applying a martingale representation

theorem, we can derive the dynamics of the filter as the solution of the Kushner-Stratonovich

equation, which is a nonlinear stochastic partial integral differential equation. By considering

the unnormalized version of the filter, it is possible to simplify this equation and make it

at least linear. The resulting equation is called the Zakai equation, and due to its linear nature,

it is of particular interest in many applications. We also compute the dynamics of the

unnormalized filter, and we investigate pathwise uniqueness for the solutions of both equa-

tions. Normalized and unnormalized filters are probability measure and finite measure-valued

processes, respectively, and therefore in general infinite-dimensional. Due to this, various

recursive algorithms for statistical inference have come in to address this intractability, such

as extended Kalman filter, statistical linearization, or particle filters. These algorithms intend to

estimate both state and parameters. For the parameter estimation, we also mention the expec-

tation maximization (EM) algorithm which enables to estimate parameters in models with

incomplete data, see, for example, Ref. [19].

The success of the filtering theory over the years is due to its use in a great variety of problems

arising from many disciplines such as engineering, informational sciences and mathematical

finance. Specifically, in this chapter, we have a financial application in view. In real financial
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markets, it is reasonable that investors cannot fully know all the stochastic factors that may

influence the prices of negotiated assets, since these factors are usually associated with eco-

nomic quantities which are hard to observe. Filtering theory represents a way to measure, in

some sense, this uncertainty. A consistent part of the literature over the last years has consid-

ered stochastic factor models under partial information for analyzing various financial prob-

lems, as, for example, pricing and hedging of derivatives, optimal investment, credit risk, and

insurance modeling. A list, definitely nonexhaustive, is given by Refs. [15, 16, 20–26]).

In the following, we consider the problem of a trader who wants to determine the hedging

strategy for a European-type contingent claim with maturity T in an incomplete financial

market where the investment possibilities are given by a riskless asset, assumed to be the

numéraire, and a risky asset with price dynamics given by a geometric jump diffusion,

modeled by the process Y. We assume that the drift, as well as the intensity and the jump size

distribution of the price process, is influenced by an unobservable stochastic factor X, modeled

as a correlated jump diffusion with common jump times. By common jump times, we intend to

take into account catastrophic events which affect both the asset price and the hidden state

variable driving its dynamics. The agent knows the asset prices, since they are publicly

available, and trades on the market by using the available information FY .

Partial information easily leads to incomplete financial markets as clearly the number of

random sources is larger than the number of tradeable risky asset. Therefore, the existence of

a self-financing strategy that replicates the payoff of the given contingent claim at maturity is

not guaranteed. Here, we assume that the risky asset price is modeled under a martingale

measure, and we choose the risk-minimization approach as hedging criterion, see, for exam-

ple, Refs. [27, 28].

According to this method, the optimal hedging strategy is the one that perfectly replicates the

claim at maturity and has minimum cost in the mean-square sense. Equivalently, we say that it

minimizes the associated risk defined as the conditional expected value of the squared future

costs, given the available information (see Refs. [28, 29] and references therein).

The risk-minimizing hedging strategy under restricted information is strictly related to

Galtchouk-Kunita-Watanabe decomposition of the random variable representing the payoff

of the contingent claim in a partial information setting. Here, we provide a characterization of

the risk-minimizing strategy under partial information via this orthogonal decomposition and

obtain a representation in terms of the corresponding risk-minimizing hedging strategy under

full information (see, e.g., Refs. [29, 30]) via predictable projections on the available informa-

tion flow by means of the filter. Finally, we investigate the difference of expected total risks

associated with the optimal hedging strategies under full and partial information.

The chapter has the following structure. In Section 2, we introduce the general framework. In

Section 3, we study the filtering equations. In particular, we derive the dynamics for both

normalized and unnormalized filters, and we investigate uniqueness of the solutions of the

Kushner-Stratonovich and the Zakai equation. In Section 4, we analyze a financial application

to risk minimization by computing the optimal hedging strategies for a European-type contin-

gent claim under full and partial information and providing a comparison between the

corresponding expected squared total costs.
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2. The setting

We consider a pair of stochastic processes (X,Y), with values on R � R and càdlàg trajectories,

on a complete filtered probability space ðΩ,F ,F, PÞ, where F ¼ {F t, t∈ ½0, T�} is a filtration

satisfying the usual condition of right continuity and completeness, and T is a fixed time

horizon. The pair (X, Y) represents a partially observable system, where X is a signal process

that describes a phenomenon which is not directly observable and Y gives the observation of

X, and it is modeled by a process correlated with the signal, having possibly common jump

times.

Remark 1. In view of the financial application discussed in Section 4, Y represents the price of some

risky asset, while X is an unknown stochastic factor, which may describe the activity of other markets,

macroeconomic factors or microstructure rules that influences the dynamics of the stock price process.

We define the observed history as the natural filtration of the observation process Y, that is,

F
Y ¼ fFY

t gt∈ ½0,T�, where FY
t :¼ σðYs; 0 ≤ s ≤ tÞ. The σ-algebra F

Y
t can be interpreted as the infor-

mation available from observations up to time t. We aim to compute the best estimate of the

signal X from the available information, in the quadratic sense. In other terms, this corre-

sponds to determine the filter which furnishes the conditional distribution of Xt given F
Y
t , for

every t ∈ [0, T].

Let MðRÞ be the space of finite measures over R and PðRÞ the subspace of the probability

measures over R. Given μ∈MðRÞ, for any bounded measurable function f, we write

μðf Þ ¼

ð

R

f ðxÞμðdxÞ: (1)

Definition 2. The filter is the FY-càdlàg process π taking values in PðRÞ defined by

πtðf Þ :¼ E f ðt, XtÞjF
Y
t

� �

¼

ð

R

f ðt, xÞπtðdxÞ, (2)

for all bounded and measurable functions f (t, x) on [0, T] � R.

In the sequel, we denote by πt� the left version of the filter and for all functions F(t, x, y) such

that EjFðt, Xt, YtÞj < ∞ (resp. EjFðt, Xt�, Yt�Þj < ∞) for every t ∈ [0,T], we use the notation

πtðFÞ :¼ πtðFðt, � , YtÞÞ (resp. πt�ðFÞ :¼ πt�ðFðt, � , Yt�ÞÞÞ.

In this paper, we wish to consider the filtering problem for a partially observable system (X, Y)

described by the following pair of stochastic differential equations:

dXt ¼ b0ðt, XtÞdtþ σ0ðt, XtÞdW
0
t þ

ð

Z

K0ðt, Xt�; ζÞNðdt,dζÞ; X0 ¼ x0 ∈R

dYt ¼ b1ðt, Xt, YtÞdtþ σ1ðt, YtÞdW
1
t þ

ð

Z

K1ðt, Xt�, Yt�; ζÞNðdt,dζÞ; Y0 ¼ y0 ∈R

8

>

>

>

<

>

>

>

:

(3)
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where W0 and W1 are correlated ðF,PÞ-Brownian motions with correlation coefficient ρ ∈

[�1,1] and Nðdt,dζÞ is a Poisson random measure on R
þ � Z whose intensity νðdζÞdt is a

σ – finite measure on a measurable space ðZ,ZÞ. Here, b0, b1, σ0, σ1, K0, and K1 are R-valued and

measurable functions of their arguments. In particular, σ0(t, x) and σ1(t, x, y) are strictly

positive for every ðt, x, yÞ∈ ½0, T� � R
2.

For the rest of the paper, we assume that strong existence and uniqueness for system Eq. (3)

holds. Sufficient conditions are collected, for instance, in Ref. [18, Appendix]. These assump-

tions also imply Markovianity for the pair (X, Y).

Remark 3. Note that the quadratic variation process of Y defined by

½Y�t ¼ Y2
t � 2

ðt
0

Yu�dYu, t∈ ½0, T�, (4)

is FY-adapted and ½Y�t ¼

ðt
0

σ21ðu, YuÞduþ
X

u ≤ t
ðΔYuÞ

2, where ΔYt :¼ Yt � Yt�. Therefore, it is

natural to assume that the signal X does not affect the diffusion coefficient in the dynamics

of Y. If Y describes the price of a risky asset, this implies that the volatility of the stock price

does not depend on the stochastic factor X.

The jump component of Y can be described in terms of the following integer-valued random

measure on [0, T] � R:

mðdt,dzÞ ¼
X

s:ΔYs 6¼0

δ{s,ΔYs}ðdt,dzÞ, (5)

where δa denotes the Dirac measure at point a. Note that the following equality holds:

ðt
0

ð
R

zmðds,dzÞ ¼

ðt
0

ð
Z

K1ðs, Xs� , Ys� ; ζÞNðds,dζÞ: (6)

For all t ∈ [0, T], for all A∈BðRÞ, we define the following sets:

d0ðt, xÞ :¼ {ζ∈Z : K0ðt, x; ζÞ 6¼ 0}, d1ðt, x, yÞ :¼ {ζ∈Z : K1ðt, x, y; ζÞ 6¼ 0}, (7)

dAðt, x, yÞ :¼ {ζ∈Z : K1ðt, x, y; ζÞ∈A\{0}} ⊆ d1ðt, x, yÞ, (8)

DA
t :¼ dAðt, Xt�, Yt�Þ⊆Dt :¼ d1ðt, Xt�, Yt�Þ, D0

t :¼ d0ðt, Xt�Þ: (9)

Typically, we have D0
t ∩Dt 6¼ Ø P � a.s., which means that state and observation may have

common jump times. This characteristic is particularly meaningful in financial applications to

model catastrophic events that produce jumps in both the stock price and the underlying

stochastic factor that influences its dynamics.

To ensure existence of the first moment for the pair (X, Y) and non-explosiveness for the jump

process governing the dynamics of X and Y, we make the following assumption:
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Assumption 4.

E

ðT

0

jb0ðt, XtÞj þ σ20ðt, XtÞ þ

ð

Z

jK0ðt, Xt�; ζÞjνðdζÞdt

� �

< ∞, (10)

E

ðT

0

jb1ðt, Xt, YtÞj þ σ21ðt, YtÞ þ

ð

Z

jK1ðt, Xt�, Yt�; ζÞjνðdζÞdt

� �

< ∞, (11)

E

ðT

0

νðD0
t ∪ DtÞdt

� �

< ∞: (12)

Denote by ηPðdt,dzÞ the ðF,PÞ compensator of mðdt,dzÞ (see, e.g., Refs. [9, 31] for the defini-

tion).

Then, in Ref. [14, Proposition 2.2], it is proved that

ηPðdt,dzÞ ¼ λðt, Xt�, Yt�Þφðt, Xt�, Yt�,dzÞdt, (13)

where

λðt, x, yÞφðt, x, y,dzÞ ¼

ð

d1ðt,x,yÞ
δK1ðt,x,y;ζÞðdzÞνðdζÞ (14)

and in particular λðt, x, yÞ ¼ νðd1ðt, x, yÞÞ.

Remark 5. Let us observe that both the local jump characteristics ðλðt, Xt�, Yt�Þ,φðt, Xt�, Yt�,dzÞÞ

depend on X and, for all A∈BðRÞ, λðt, Xt�, Yt�Þφðt, Xt�, Yt�, AÞ ¼ νðDA
t Þ provides the ðF,PÞ -intensity

of the point process NtðAÞ :¼ mðð0, t� � AÞ. According to this, the process λðt, Xt�, Yt�Þ ¼ νðDtÞ is the

ðF,PÞ -intensity of the point process NtðRÞ which counts the total number of jumps of Yuntil time t.

2.1. The innovation process

To derive the filtering equation, we use the innovations approach. This method requires to

introduce a pair ðI, mπÞ, called the innovation process, consisting of the ðFY ,PÞ-Brownian motion

and the ðFY ,PÞ-compensated jump measure that drive the dynamics of the filter. The innova-

tion also represents the building block of ðFY ,PÞ -martingales.

To introduce the first component of the innovation process, we assume that

E exp
1

2

ðT

0

b1ðt,Xt,YtÞ

σ1ðt,YtÞ

� �2

dt

( )" #

< ∞, (15)

and define

It :¼ W1
t þ

ðt

0

b1ðs, Xs, YsÞ

σ1ðs, YsÞ
�

πsðb1Þ

σ1ðs, YsÞ

� �

ds, t∈ ½0, T�: (16)

The process I is an ðFY ,PÞ-Brownian motion (see, e.g., Ref. [4]) and the ðFY ,PÞ-compensated

jump martingale measure is given by
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mπðdt,dzÞ ¼ mπðdt,dzÞ � πt�ðλφðdzÞÞdt; (17)

See, e.g. Ref. [14]. The following theorem provides a characterization of the ðFY ,PÞ-martingale

in terms of the innovation process.

Theorem 6 (A martingale representation theorem). Under Assumption 4 and the integrability

condition Eq. (15), every ðFY,PÞ-local martingale M admits the following decomposition:

Mt ¼ M0 þ

ðt

0

ð

R

wsðzÞm
πðds,dzÞ þ

ðt

0

hsdIs, t∈ ½0, T�, (18)

where wðzÞ ¼ {wtðzÞ, t∈ ½0, T�} is an F
Y-predictable process indexed by z, and h ¼ {ht, t∈ ½0, T�} is an

F
Y-adapted process such that

ðT

0

ð

R

jwtðzÞjπt�ðλφðdzÞÞdt < ∞,

ðT

0

h2tdt < ∞ P�a:s:: (19)

Proof. The proof is given in Ref. [17, Proposition 2.4]. Note that here condition (15) implies that

E

ðT

0

b1ðt,Xt ,YtÞ
σ1ðt,YtÞ

� 	2
dt

� �

< ∞, and also that the process L defined by

Lt ¼ exp �

ðt

0

b1ðs, Xs, YsÞ

σ1ðs, YsÞ
dW1

s �
1

2

ðt

0

b1ðs,Xs,YsÞ

σ1ðs,YsÞ

� �2

ds

 !

, (20)

for every t∈ ½0, T�, is an ðF,PÞ-martingale.

3. The filtering equations

Theorem 7 (The Kushner-Stratonovich equation). Under Assumptions 4 and condition (15), the

filter π solves the following Kushner-Stratonovich equation, that is, for every f ∈C1;2
b ð½0, T� � RÞ:

πtðf Þ ¼ f ð0, x0Þ þ

ðt

0

πsðL
Xf Þdsþ

ðt

0

ð

R

wπ
s ðf , zÞm

πðds,dzÞ þ

ðt

0

hπs ðf ÞdIs, t∈ ½0, T� (21)

where

wπ
t ðf , zÞ ¼

dπt�ðλφf Þ

dπt�ðλφÞ
ðzÞ � πt�ðf Þ þ

dπt�ðLf Þ

dπt�ðλφÞ
ðzÞ, (22)

hπt ðf Þ ¼ σ�1
1 ðtÞ πtðb1f Þ � πtðb1Þπtðf Þ½ � þ ρπt σ0

∂f

∂x

� �

: (23)

Here, by
dπt�ðλφf Þ
dπt�ðλφÞ

ðzÞ and dπt�ðLf Þ
dπt�ðλφÞ

ðzÞ, we mean the Radon-Nikodym derivatives of the measures

πt�ðλfφðdzÞÞ and πt�ðLf ÞðdzÞ, with respect to πt�

�

λφðdzÞ
	

. Moreover, the operator L defined by

Ltf ðdzÞ :¼ Lf ð.; Yt�,dzÞ is such that for every A∈BðRÞ,
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Lf ðt, x, y, AÞ ¼

ð

dAðt,x,yÞ
f ðt, xþ K0ðt, x; ζÞÞ � f ðt, xÞ½ �νðdζÞ (24)

takes into account common jump times between the signal X and the observation Y.

Finally, the operator LX given by

L
Xf ðt, xÞ ¼

∂f

∂t
þ b0ðt, xÞ

∂f

∂x
þ
1

2
σ20ðt, xÞ

∂
2f

∂x2
þ

ð

Z

{f ðt, xþ K0ðt, x; ζÞÞ � f ðt, xÞ}νðdζÞ: (25)

denotes the generator of the Markov process X.

Proof. The theorem is proved in Ref. [17, Theorem 3.1].

Example 8 (Observation dynamics driven by independent point processes with unobservable

intensities). In the sequel, we provide an example where the Kushner-Stratonovich equation

simplifies and the Radon-Nikodym derivatives appearing in the dynamics of π(f) reduce to

ratios. Suppose that there exists a finite set of measurable functions Ki
1ðt, yÞ 6¼ 0 for all

ðt, yÞ∈ ½0, T� � R, for i∈ {1,…; n}, such that the dynamics of Y is given by

dYt ¼ b1ðt, Xt, YtÞdtþ σ1ðt, YtÞdW
1
t þ

X

n

i¼1

Ki
1ðt, Yt�ÞdN

i
t, Y0 ¼ y0 ∈R, (26)

where Ni are independent counting processes with ðF,PÞ intensities λiðt, Xt�, Yt�Þ.

For simplicity, in this example, we assume that X and Y have no common jump times. Then,

the filtering Eq. (21) reads as

πtðf Þ ¼ f ð0, x0Þ þ

ðt

0

πsðL
Xf Þdsþ

ðt

0

σ1ðsÞ
�1½πsðb1f Þ � πsðb1Þπsðf Þ� þ ρπs σ0

∂f

∂x

� �
 �

dIs

þ
X

n

i¼1

ðt

0

1πs� ðλ
iÞ>0

πs�ðλ
if Þ � πs�ðf Þπs�ðλ

iÞ

πs�ðλ
iÞ

�

dNi
s � πs�ðλ

iÞds
	

, t∈ ½0, T�:

(27)

Note that Eq. (21) has an equivalent expression in terms of the operator LX
0 , given by

L
X
0 f ðt, x, yÞ ¼ L

Xf ðt, xÞ � Lf ðt, x, y,RÞ

¼
∂f

∂t
ðt, xÞ þ b0ðt, xÞ

∂f

∂x
þ
1

2
σ20ðt, xÞ

∂2f

∂x2
þ

ð

d1t ðt,x,yÞ
c
f ðt, xþ K0ðt, x, ζÞÞ � f ðt, xÞf gνðdζÞ,

(28)

where d1ðt,x,yÞc ¼ {ζ∈Z : K1ðt, x, y, ζÞ ¼ 0}. Indeed, we get

dπtðf Þ ¼ {πtðL
X
0 f Þ þ πtðf ÞπtðλÞ � πtðλf Þ}dtþ hπt dIt þ

ð

R

wπðt, zÞmðdt,dzÞ: (29)

Moreover, the filter has a natural recursive structure. To show this, define the sequence

{Tn,Zn}n∈N of jump times and jump sizes of Y, that is, Zn ¼ YTn � YT�
n
. These are observable
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data. Then, between two consecutive jump times the filter is governed by a diffusion process,

that is, for t∈ ðTn ∧T, Tnþ1 ∧TÞ

πtðf Þ ¼ πTn
ðf Þ þ

ðt

Tn

{πsðL
X
0 f Þ þ πsðf ÞπsðλÞ � πsðλf Þ}dsþ

ðt

Tn

hπs ðf ÞdIs, (30)

and at any jump time Tn occurring before time T, it is given by

πTn
ðf Þ ¼

dπT�
n
ðλφf Þ

dπT�
n
ðλφÞ

ðZnÞ þ
dπT�

n
ðLf Þ

dπT�
n
ðλφÞ

ðZnÞ, (31)

which implies that πTn
ðf Þ is completely determined by the observed data (Tn, Zn) and the

knowledge of πt (f) in the time interval ½Tn�1, TnÞ, since πT�
n
ðf Þ ¼ limt!T�

n
πtðf Þ.

Note that the Kushner-Stratonovich equation is an infinite-dimensional nonlinear stochastic

differential equation. Often, it is possible to characterize the filter in terms of a simpler equa-

tion, known as the Zakai equation which provides the dynamics of the unnormalized version

of the filter. Although the Zakai equation is still infinite-dimensional, it has the advantage to be

linear.

The idea for getting the dynamics of the unnormalized filter consists of performing an equiv-

alent change of probability measure defined by

dP0

dP

�

�

�

�

F t

¼ Zt, t∈ ½0, T� (32)

for a suitable strictly positive ðF,PÞ-martingale Z, in such a way that the so-called

unnormalized filter p is the MðRÞ-valued process defined by

ptðf Þ :¼ E
0 Z�1

t f ðt, XtÞjF
Y
t

� �

, t∈ ½0, T�, (33)

Remark 9. By the Kallianpur-Striebel formula, we get that

πtðf Þ ¼
E
0 f ðt, XtÞZ

�1
t jFY

t

� �

E
0 Z�1

t jFY
t

� � ¼
ptðf Þ

ptð1Þ
, t∈ ½0, T�, (34)

where ptð1Þ :¼ E
0 Z�1

t jFY
t

� �

. This provides the relation between the filter and its unnormalized version.

In order to compute the Zakai equation, we make the following assumption.

Assumption 10. Suppose that there exists a transition function η0ðt, y,dzÞ such that the ðFY,PÞ-

predictable measure η0ðt, Yt�,dzÞ is equivalent to λðt, Xt�, Yt�Þφðt, Xt�, Yt�,dzÞ and

E

ðT

0

η0ðt, Yt� ,RÞdt

� �

< ∞: (35)
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Remark 11. In Ref. [18], a weaker assumption is considered. That condition allows to introduce an

equivalent probability measure on ðΩ,FY
T Þ which is not necessarily the restriction on F

Y
T of an equivalent

probability measure on ðΩ,FTÞ.

Remark 12. In the context of Example 8, Assumption 10 is satisfied if, for instance, λiðt, Xt�, Yt�Þ > 0

P-a.s. for every t∈ ½0, T�.

Assumption 10 equivalently means that there exists an ðFY ,PÞ-predictable process

Ψðt, Xt�, Yt�, zÞ such that

λðt, Xt�, Yt�Þφðt, Xt�, Yt�,dzÞdt ¼ ð1þΨðt, Xt�, Yt�, zÞÞη
0ðt, Yt�,dzÞdt (36)

and 1þΨðt, Xt� , Yt� , zÞ > 0 P-a.s. for every t∈ ½0, T�, z∈R. Setting

Uðt, zÞ :¼
1

1þΨðt, Xt� , Yt� , zÞ
� 1, (37)

we also assume that the following integrability condition holds:

E exp
1

2

ðT

0

b1ðs,Xs,YsÞ

σ1ðs,YsÞ

� �2

dsþ

ðT

0

ð

R

U2ðs, zÞλðs, Xs� , Ys�Þφðs, Xs� , Ys� ,dzÞds

( )" #
< ∞: (38)

The subsequent proposition provides a useful version of the Girsanov Theorem that fits to our

setting.

Proposition 13. Let Assumptions 4 and 10, and condition (38) hold and define the process

Zt :¼ E �

ðt

0

b1ðs,Xs,YsÞ
σ1ðs,YsÞ

dW1
s þ

ðt

0

ð

R

Uðs, zÞ
�
mðds,dzÞ � λðs, Xs� , Ys�Þφðs, Xs� , Ys� ,dzÞds

	� �
, for

every t∈ ½0, T�, where EðMÞ denotes the Doléans-Dade exponential of a martingale M. Then, Z is a

strictly positive ðF,PÞ -martingale. Let P0 be the probability measure equivalent to P given by

dP0

dP

����
F t

¼ Zt, t∈ ½0, T�: (39)

Then, the process

fW 1

t :¼ W1
t þ

ðt

0

b1ðs, Xs, YsÞ

σ1ðs, YsÞ
ds, t∈ ½0, T� (40)

is an ðF,P0Þ-Brownian motion, and the ðF,P0Þ-predictable projection of the integer-valued random

measure mðdt,dzÞ is given by η0ðt, Yt� ,dzÞdt.

Proof. [32, Theorem 9] ensures that Z is a martingale under Assumptions 10, 4 and integrability

condition Eq. (38). Then the proof follows by Ref. [31, Chapter III, Theorem 3.24].

Note that, by Eq. (16), we get that the process fW1 can also be written as
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fW 1

t ¼ It þ

ðt

0

πs
b1
σ1

� �
ds, t∈ ½0, T� (41)

which implies that fW 1
is also an ðFY ,P0Þ-Brownian motion. Moreover, since η0ðt, Yt� ,dzÞ is F

Y

predictable, it provides the ðFY ,P0Þ-predictable projection of the measure mðdt,dzÞ and the

observation process Y satisfies dYt ¼ σ1ðt, YtÞd ~W
1

t þ

ð

R

zmðdt,dzÞ. In particular, η0t ðRÞ :¼

η0ðt, Yt� ,RÞ is the ðF
Y,P0Þ-intensity of the point process which counts the total jumps of Yuntil

time t.

Theorem 14 (The Zakai equation). Under Assumptions 4 and 10 and condition (38), let P0 be the

probability measure defined in Proposition 13. For every f ∈ C
1;2
b ð½0, T� � RÞ, the unnormalized filter

defined in Eq. (33) satisfies the equation

dptðf Þ ¼ ptðL
X
0 f Þ � ptðλf Þ þ η0t ðRÞptðf Þ


 �
dtþ

ptðb1f Þ

σ1ðt, YtÞ
þ ρ pt σ0

∂f

∂x

� �
 �
dfW 1

t

þ

ð

R

pt�ðfΨÞðzÞ þ
dpt�ðLf Þ

dη0t
ðzÞ


 �
mðdt,dzÞ:

(42)

See Ref. [18, Theorem 3.6] for the proof.

3.1. Uniqueness of the filtering equations

In this section, we show pathwise uniqueness for the solution of the Kushner-Stratonovich and

the Zakai equations. The first result provides the equivalence of uniqueness of the solutions to

the filtering Eqs. (21) and (42).

Theorem 15. Let Assumptions 4 and 10 and condition (38) hold.

i. Assume strong uniqueness for the solution to the Zakai equation, let μ be a PðRÞ-valued process

which is a strong solution of the Kushner-Stratonovich equation. Thenμt =πtP� a.s. for all t∈ [0,T].

ii. Conversely, suppose that pathwise uniqueness for the solution of the Kushner-Stratonovich

equation holds and let ξ be an MðRÞ-valued process which is a strong solution of the Zakai

equation. Then ξt ¼ pt P� a:s: for all t∈ ½0, T�.

Proof. The proof follows by Ref. [18, Theorems 4.5 and 4.6]. Here, note that Assumption 10

implies that the measures μt�ðλφðdzÞÞ and πt�ðλφðdzÞÞ are equivalent.

Finally, strong uniqueness for the solution of both filtering equations is established in the

subsequent theorems.

Theorem 16. Let (X, Y) be the partially observed system defined in Eq. (3), and assume in addition to

Assumptions 4 and 10 and condition (15) that

sup
t, x, y

ð

Z

jK0ðt, x; ζÞj þ jK1ðt, x, y; ζÞjf gνðdζÞ < ∞: (43)
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Let μ be a strong solution of the Kushner-Stratonovich equation. Then μt = πt P-a.s. for every t∈ ½0, T�.

Proof. See Ref. [17, Theorem 3.3].

Theorem 17. Let (X, Y) be the partially observed system in Eq. (3). Under Assumptions 4 and 10 and

conditions (38) and (43), let ξ be a strong solution to the Zakai equation, then ξt = pt P-a.s. for every

t∈ ½0, T�.

Proof. The proof follows by Ref. [18, Theorem 4.7], after noticing that under Assumption 10 the

measures ξt�ðλφðdzÞÞ and pt�ðλφðdzÞÞ are equivalent.

4. A financial application to risk minimization

In the current section, we focus on a financial application. We consider a simple financial market

where agents may invest in a risky asset whose price is described by the process Y given in Eq. (3)

and a riskless asset with price process B. Without loss of generality, we assume that Bt = 1 for

every t∈ ½0, T�. We also assume throughout the section the following dynamics for the process Y:

dYt ¼ Yt

�

σðt, YtÞdW
1
t þ

ð

Z

Kðt, Xt�, Yt�; ζÞ
�

Nðdt,dζÞ � νðdζÞdt
		

, Y0 ¼ y0 ∈R
þ (44)

for some functions σðt, yÞ and Kðt, x, y; ζÞ such that σðt, yÞ > 0 and Kðt, x, y; ζÞ > �1.

This choice for the dynamics of Y has a double advantage. On one side assuming a geometric

form, together with the condition that Kðt, x, y; ζÞ > �1 guarantees nonnegativity which is

desirable when talking about prices. On the other hand, we are modeling Y directly under a

martingale measure, and by Assumption 18, it turns out to be a square integrable ðF,PÞ-

martingale.

Considering Eq. (44) corresponds to take in system (3)

b1ðt, x, yÞ ¼ �y

ð

Z

Kðt, x, y; ζÞνðdζÞ

σ1ðt, yÞ ¼ yσðt, yÞ, K1ðt, x, y; ζÞ ¼ yKðt, x, y; ζÞ:

(45)

In addition, we me make the following assumption.

Assumption 18.

0 < c1 < σðt, yÞ < c2, jKðt, x, y; ζÞj < c3, νðDtÞ < c4, (46)

for every ðt, x, yÞ∈ ½0, T� � R� R
þ, ζ ∈ Z and for some positive constants c1, c2, c3, c4.

Remark 19. In the sequel, it might be useful to specify the dynamics of Y also in terms of the jump

measure mðdt,dzÞ. Recalling Eqs. (6) and (14), we have

dYt ¼ Ytσðt, YtÞdW
1
t þ

ð

R

z
�

mðdt,dzÞ � λðt, Xt� , Yt�Þφðt, Xt� , Yt� ,dzÞdt
	

: (47)
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The stochastic factor X which affects intensity and jump size distribution of Y may represent

the state of the economy and is not directly observable by market agents. This is a typical

situation arising in real financial markets.

We model by F
Y the available information to investors. Since Y is FY adapted, it is in particular

an ðFY ,PÞ-martingale with the following decomposition:

Yt ¼ y0 þ

ðt

0

Ysσðs, YsÞdIs þ

ðt

0

ð

R

z
�

mðds,dzÞ � πs�ðλφðdzÞÞds
	

, t∈ ½0, T�: (48)

By Eqs. (14) and (45), in this setting the first component of the innovation process I defined in

Eq. (16) is given by It ¼ W1
t þ

ðt

0

1
Ysσðs,YsÞ

ð

R

z
�

λðs, Xs, YsÞφðs, Xs, Ys,dzÞ � πsðλφðdzÞÞ
	

ds.

Suppose that we are given a European-type contingent claim whose final payoff is a square

integrable FY
T -measurable random variable ξ, that is, ξ∈L2ðFY

T Þ where

L2ðFY
T Þ :¼ {random variables Γ∈FY

T : E Γ
2

� �

< ∞}: (49)

The objective of the agent is to find the optimal hedging strategy for this derivative. Since the

number of random sources exceeds the number of tradeable risky assets, the market is incom-

plete. It is well known that in this setting, perfect replication by self-financing strategies is not

feasible. Then, we suppose that the investor intends to pursue the risk-minimization approach.

Risk minimization is a quadratic hedging method that allows determining a dynamic invest-

ment strategy that replicates perfectly the claim with minimal cost. Let us properly introduce

the objects of interest. We start with the following notation. For any pair of F-adapted (respec-

tively, FY-adapted) processes Ψ
1,Ψ2 we refer to 〈Ψ1

,Ψ
2〉F for the predictable covariation

computed with respect to filtration F (respectively, 〈Ψ1
,Ψ

2〉F
Y

for the predictable covariation

computed with respect to filtration F
Y). Note that

〈Y〉Ft ¼

ðt

0

Y2
s

�

σ2ðs, Ys�Þ þ

ð

Z

K2ðs, Xs� , Ys� ; ζÞνðdζÞ
	

ds

¼

ðt

0

�

Y2
sσ

2ðs, Ys�Þ þ

ð

R

z2λðs, Xs� , Ys�Þφðs, Xs� , Ys� ,dzÞ
	

ds, t∈ ½0, T�,

(50)

and since Y is also F
Y adapted, we also have

〈Y〉F
Y

t ¼

ðt

0

�

Y2
sσ

2ðs, Ys�Þ þ

ð

R

z2πs�ðλφðdzÞÞ
	

ds, t∈ ½0, T�: (51)

We stress that, due to the presence of a jump component, the predictable quadratic variations

of Y with respect to filtrations F and F
Y are different.

Now we introduce a technical definition of two spaces, ΘðFÞ and ΘðFYÞ
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Definition 20. The space ΘðFYÞ (respectively, ΘðFÞ) is the space of all FY-predictable (respectively,

F-predictable) processes θ such that

E

ðT

0

θ2
ud〈Y〉F

Y

u

� �

< ∞ respectively E

ðT

0

θ2
ud〈Y〉Fu

� �

< ∞

� �

: (52)

We observe that for every θ∈ΘðFYÞ, thanks to F
Y-predictability, we have

E

ðT

0

θ2
ud〈Y〉Fu

� �

¼ E

ðT

0

θ2
ud〈Y〉F

Y

u

� �

< ∞, (53)

which implies that ΘðFYÞ ⊆ ΘðFÞ.

Since we have two different levels of information represented by the filtrations F and F
Y , we

may define two classes of admissible strategies.

Definition 21. An F
Y-strategy (respectively, F-strategy) is a pair ψ ¼ ðθ, ηÞ of stochastic processes,

where θ represents the amount invested in the risky asset and η is the amount invested in the riskless

asset, such that θ∈ΘðFYÞ (respectively, θ∈ΘðFÞ) and η is FY-adapted (respectively, F-adapted).

This definition reflects the fact that investor’s choices should be adapted to her/his knowledge

of the market. The value of a strategy ψ ¼ ðθ, ηÞ is given by

V tðψÞ ¼ θtYt þ ηt, t∈ ½0, T�, (54)

and its cost is described by the process

CtðψÞ ¼ V tðψÞ �

ðt

0

θudYu, t∈ ½0, T�: (55)

In other terms, the cost of a strategy is the difference between the value process and the gain

process. For a self-financing strategy, the value and the gain processes coincide, up to the initial

wealth V0, and therefore the cost is constant and equal to Ct ¼ V0, for every t∈ ½0, T�. We

continue by defining the risk process, in the partial information setting.

Definition 22. Given an F
Y-strategy (respectively, an F-strategy) ψ ¼ ðθ, ηÞ, we denote by RF

Y

ðψÞ

(respectively, RF ðψÞ) the associated risk process defined as

RF
Y

t ðψÞ :¼ E

�

CTðψÞ � CtðψÞ
	2
jFY

t

� �

, respectively RFt ðψÞ :¼ E

�

CTðψÞ � CtðψÞ
	2
jF t

� �� �

,

(56)

for every t∈ ½0, T�.

Then, we have the following definition of risk-minimizing strategy under partial information.
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Definition 23. An F
Y-strategy ψ is risk minimizing if

i. VTðψÞ ¼ ξ,

ii. for any other FY -strategy ~ψ we have RF
Y

t ðψÞ ≤RF
Y

t ð~ψÞ, for every t∈ ½0, T�.

The corresponding definitions of risk process and risk-minimizing strategy under full infor-

mation can be obtained replacing F
Y and RF

Y

t with F and RFt in Definition 23. To differentiate,

when it is necessary, we use the terms F
Y-risk-minimizing strategy or F-risk-minimizing

strategy. The criterion (ii) in Definition 23 can be also written as

min
ψ∈ΘðFYÞ

E ðCTðψÞ � CtðψÞÞ
2

h i

, t∈ ½0, T�, (57)

which intuitively means that a strategy is risk minimizing if it minimizes the variance of the

cost. This equivalent definition allows to obtain a nice property of risk-minimizing strategies

which turn out to be self-financing on average, that is, the cost process C is a martingale and

therefore has constant expectation (see, e.g., Ref. [27, Lemma 2] or [28, Lemma 2.3]).

In the sequel, we aim to characterize the optimal hedging strategy for the contingent claim ξ

under full and partial information, that is, the F- and the FY-risk-minimizing strategies. To this,

we introduce two orthogonal decompositions known as the Galtchouk-Kunita-Watanabe

decompositions under full and partial information (see, e.g., [30]). To understand better the

relevance of these decompositions, we assume for a moment completeness of the market and

full information. Then, it is well known that for every European-type contingent claim with

final payoff ξ, there exists a self-financing strategy ψ ¼ ðθ, ηÞ such that

ξ ¼ V0 þ

ðT

0

θudYu, P� a:s: (58)

that is, a replicating portfolio is uniquely determined by the initial wealth and the

investment in the risky asset. When the market is incomplete, decomposition Eq. (58)

does not hold in general. Intuitively, this implies that we might expect additional terms

in Eq. (58), and according to the risk-minimization criterion, this additional terms need

to be such that the final cost does not deviate too much from the average cost, in

the quadratic sense. Specifically, we have the following decomposition of the random

variable ξ:

ξ ¼ V0 þ

ðT

0

θudYu þ GT , P� a:s: (59)

where GT is the value at time T of a suitable process G. The minimality criterion requires that

G is a martingale orthogonal to Y. We refer the reader to Ref. [28] for a detailed survey. Under

suitable hypothesis, the above decomposition takes the name of Galtchouk-Kunita-Watanabe

decomposition.

Recent Advances in Nonlinear Filtering with a Financial Application to Derivatives Hedging under Incomplete…
http://dx.doi.org/10.5772/intechopen.70060

339



Now we wish to be more formal, and we introduce the following definitions:

Consider a random variable ξ∈L2ðFY
T Þ. Since F

Y
T⊆FT , we can define the following decompo-

sitions for ξ.

Definition 24. a. The Galtchouk-Kunita-Watanabe decomposition of ξ∈ L2ðFY
T Þ with respect to Y and

F is given by

ξ ¼ UF

0 þ

ðT

0

θFu dYu þ GFT P� a:s:, (60)

where UF

0 ∈ L2ðF 0Þ, θF ∈ΘðFÞ and GF is a square integrable ðF,PÞ-martingale, with GF0 ¼ 0,

orthogonal to Y, that is, 〈GF ,Y〉Ft ¼ 0 for every t∈ ½0, T�.

b. The Galtchouk-Kunita-Watanabe decomposition of ξ∈ L2ðFY
T Þ with respect to Y and F

Y is given by

ξ ¼ UF
Y

0 þ

ðT

0

θF
Y

u dYu þ GF
Y

T P� a:s:, (61)

where UF
Y

0 ∈L2ðFY
0 Þ, θF

Y

∈ΘðFYÞ and GF
Y

is a square integrable ðFY ,PÞ -martingale, With

GF
Y

0 ¼ 0, strongly orthogonal to Y, that is, 〈GF ,Y〉F
Y

t ¼ 0 for every t∈ ½0, T�:

In the sequel, we refer to Eqs. (60) and (61) as the Galtchouk-Kunita-Watanabe decompositions

under full information and under partial information, respectively. Since Y is a square integrable

martingale with respect to both filtrations F and F
Y , decompositions Eqs. (60) and (61) exist.

Next proposition provides a relation between the integrands θF and θF
Y

of decompositions

Eqs. (60) and (61) in terms of predictable projections. For any ðF,PÞ-predictable process A of

finite variation, we denote by Ap,FY

its ðFY ,PÞ-dual-predictable projection.1

Proposition 25. The integrands in decompositions Eqs. (60) and (61) satisfy the following relation:

θF
Y

t ¼

d

ðt

0

θFu d〈Y〉Fu

� �p,FY

d〈Y〉
p,FY

t

, t∈ ½0, T�: (62)

Here, 〈Y〉p,F
Y

denotes the ðFY ,PÞ-dual-predictable projection of 〈Y〉F and it is given by

1We call ðFY ,PÞ- dual predictable projection of a process A the FY-predictable finite variation process Ap,FY

such that for any

F
Y-predictable-bounded process φ we have

E

ðT

0

φsdAs

� �

¼ E

ðT

0

φsdA
p,FY

s

� �
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〈Y〉
p,FY

t ¼ 〈Y〉F
Y

t ¼

ðt

0

Y2
sσ

2ðs, Ys�Þdsþ

ðt

0

ð

R

z2πs�ðλφðdzÞÞds, t∈ ½0, T�: (63)

Proof. First note that the ðFY ,PÞ-dual-predictable projection of the process 〈Y〉F coincides with

the predictable quadratic variation of the process Y itself, computed with respect to its internal

filtration, given in Eq. (51), since for any ðFY ,PÞ-predictable-(bounded) process φ, we have that

E

ðT

0

φtd〈Y〉Ft

� �
¼ E

ðT

0

φtd〈Y〉F
Y

t

� �
. This proves Eq. (63).

Let

θt :¼

d

ðt

0

θFu d〈Y〉Fu

� �p,FY

d〈Y〉
p,FY

t

, t∈ ½0, T�: (64)

By the Galtchouk-Kunita-Watanabe decomposition Eq. (60), we can write

ξ ¼ UF

0 þ

ðT

0

θudYu þ GFT þ eGT P� a:s:; (65)

where eGt :¼

ðt

0

ðθFu � θuÞdYu, for every t∈ ½0, T�. We observe that for every F
Y-predictable

process φ the following holds:

E

ðT

0

φuθud〈Y〉Fu

� �
¼ E

ðT

0

φuθud〈Y〉F
Y

u

� �

¼ E

ðT

0

φuðθ
F

u d〈Y〉FuÞ
p,FY

� �
¼ E

ðT

0

φuθ
F

u d〈Y〉Fu

� �
:

(66)

By choosing φ = θ and applying the Cauchy-Schwarz inequality, we obtain

E

ðT

0

ðθuÞ
2d〈Y〉F

Y

u

� �
≤E

ðT

0

ðθFu Þ
2d〈Y〉Fu

� �
< ∞: (67)

This implies that θ∈ΘðFYÞ ⊆ ΘðFÞ and that eG is an ðF,PÞ-martingale. Taking the conditional

expectation with respect to FY
T in Eq. (65) leads to

ξ ¼ E UF

0 jF
Y
T

� �
þ

ðT

0

θudYu þ GFT þ eGT ¼ E UF

0 jF
Y
0

� �
þ

ðT

0

θudYu þ bG
F

Y

T P� a:s: (68)

where

bG
F

Y

t :¼ E UF

0 jF
Y
t

� �
� E UF

0 jF
Y
0

� �
þ E GFT jF

Y
t

� �
þ E eGT jF

Y
t

h i
, t∈ ½0, T�, (69)
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which provides the Galtchouk-Kunita-Watanabe decomposition Eq. (61) if we can show that

the ðFY ,PÞ-martingale bG
F

Y

is strongly orthogonal to Y, that is, if for any ðFY ,PÞ-predictable-

(bounded) process φ the following holds:

E bG
F

Y

T

ðT

0

φudYu

� �
¼ 0: (70)

Note that orthogonality of the term E UF

0 jF
Y
t

� �
� E UF

0 jF
Y
0

� �
þ E GFT jF

Y
t

� �
follows by the

orthogonality of GF and Y. Moreover, we have

E E eGT jF
Y
T

h iðT

0

φudYu

� �
¼ E eGT

ðT

0

φudYu

� �
¼ E

ðT

0

φuðθ
F

u � θuÞd〈Y〉Fu

� �
, (71)

and by Eq. (64)

E

ðT

0

φuθud〈Y〉Fu

� �
¼ E

ðT

0

φuθud〈Y〉F
Y

u

� �

¼ E

ðT

0

φudð

ðu

0

θFr d〈Y〉rÞ
p,FY

� �
¼ E

ðT

0

φuθ
F

u d〈Y〉Fu

� �
,

(72)

which proves strong orthogonality.

Theorem 26 shows the relation between the Galtchouk-Kunita-Watanabe decompositions and

the optimal strategies under full and partial information.

Theorem 26. i. Every contingent claim ξ∈ L2ðFY
T ,PÞ admits a unique F-risk-minimizing strategy

ψ�,F ¼ ðθ�,F , η�,F Þ, explicitly given by

θ�,F ¼ θF , η�,F ¼ Vðψ�,F Þ � θ�,FY, (73)

where V tðψ
�,F Þ ¼ E ξjF t½ � for every t∈ ½0, T�, with minimal cost

Ctðψ
�,F Þ ¼ UF

0 þ GFt , t∈ ½0, T�: (74)

Here, θF , UF

0 , and GF are given in Definition 24 part a.

ii. Moreover, it also admits a unique FY-risk-minimizing strategyψ�,F ¼ ðθ�,F , η�,F
Y

Þ, explicitly given by

θ�,FY

¼ θF
Y

, η�,F
Y

¼ Vðψ�,FY

Þ � θ�,FY

Y, (75)

where V tðψ
�,FY

Þ ¼ E ξjFY
t

� �
for every t∈ ½0, T�, with minimal cost

Ctðψ
�,FY

Þ ¼ UF
Y

0 þ GF
Y

t , t∈ ½0, T�, (76)
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and θF
Y

, UF
Y

0 and GF
Y

are given in Definition 24 part b.

Proof. The proof of part i. is given, for example, in Ref. [28, Theorem 2.4]. For part ii., note that

using the martingale representation of Ywith respect to its inner filtration given in Eq. (48) and

the fact that ξ∈ L2ðFY
T Þ, it is possible to reduce the partial information case to full information

and apply again [28, Theorem 2.4]. □

Proposition 25 helps us in the computation of the optimal strategy under partial information.

Indeed, it is sufficient to compute the corresponding strategy θ�,F under full information and

the Radon-Nikodym derivative given in Eq. (62). To get more explicit representations, we

assume that the payoff of the contingent claim has the form ξ ¼ HðT, YTÞ, for some function

H : ½0, T� � R
þ ! R. Let LX,Y denote the Markov generator of the pair (X, Y), that is

L
X,Yf ðt, x, yÞ ¼

∂f

∂t
þ b0ðt, xÞ

∂f

∂x
þ b1ðt, x, yÞ

∂f

∂y
þ
1

2
σ20ðt, xÞ

∂
2f

∂x2
þ ρyσ0ðt, xÞσðt, yÞ

∂
2f

∂x∂y

þ
1

2
y2σ2ðt, yÞ

∂2f

∂y2
þ

ð

Z

Δf ðt, x, y; ζÞνðdζÞ

(77)

for every f ∈C1;2;2
b ð½0, T� � R� R

þÞ, where

Δf ðt, x, y; ζÞ :¼ f ðt, xþ K0ðt, x; ζÞ, yð1þ Kðt, x, y; ζÞÞÞ � f ðt, x, yÞ: (78)

By the Markov property, we have that for any t∈ ½0, T� there exists a measurable function

hðt, x, yÞ such that

hðt, Xt, YtÞ ¼ E HðT,YTÞjF t½ �: (79)

If the function h is sufficiently regular, for instance h∈C1;2;2
b ð½0, T� � R� R

þÞ, we can apply

Itô’s formula and get that

hðt, Xt, YtÞ ¼ hð0, X0, Y0Þ þ

ðt

0

L
X,Yhðs, Xs, YsÞdsþMh

t (80)

where Mh is the ðF,PÞ-martingale given by

dMh
t ¼

ðt

0

∂h

∂x
ðs, Xs, YsÞσ0ðs, XsÞdW

0
s þ

ðt

0

∂h

∂y
ðs, Xs, YsÞYsσðs, YsÞdW

1
s

þ

ðt

0

ð

Z

Δhðs, Xs� , Ys� ; ζÞ
�

Nðds,dζÞ � νðdζÞds
	

:

(81)

By Eq. (79), the process {hðt, Xt, YtÞ, t∈ ½0, T�} is an ðF,PÞ-martingale. Then, the finite variation

term vanishes, which means that the function h satisfies L
X,Yhðt, Xt, YtÞ ¼ 0, P-a.s. and for

almost every t∈ ½0, T�. The next proposition provides the risk-minimizing strategy under par-

tial information.
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Proposition 27. Assume h∈C1;2;2
b ð½0, T� � R� R

þÞ. Then the first components θ�,F and θ�,FY

of the

risk-minimizing strategies under full and partial information are given by

θ�,F
t ¼

gðt, Xt�, Yt�Þ

Y2
t�σ

2ðt, Yt�Þ þ

ð

R

z2λðt, Xt�, Yt�Þφðt, Xt�, Yt�,dzÞ
, t∈ ½0, T� (82)

θ�,FY

t ¼
πt�ðgÞ

Y2
t�σðt, Yt�Þ þ

ð

R

z2πt�ðλφðdzÞÞ
, t∈ ½0, T� (83)

respectively, where the function g(t, x, y) is

gðt, x, yÞ ¼ ρ σ0ðt, xÞyσðt, yÞ
∂h

∂x
þ y2σ2ðt, yÞ

∂h

∂y
þ

ð

Z

yKðt, x, y; ζÞΔhðt, x, y; ζÞνðdζÞ: (84)

Proof. Consider decomposition Eq. (60) for ξ ¼ HðT, YTÞ. Then, conditioning on F t we get

hðt, Xt, YtÞ ¼ U0 þ

ðt

0

θ�,F
s dYs þ GFt : (85)

Taking the covariation with respect to Y and F, we obtain

〈hð�,X,YÞ,Y〉Ft ¼

ðt

0

θ�,F
s d〈Y〉Fs : (86)

On the other hand, hðt, Xt, YtÞ ¼ Mh
t , then taking Eqs. (81) and (44) into account we get that

〈hð�,X,YÞ,Y〉Ft ¼

ðt

0

gðs, Xs, YsÞds, (87)

where g(t, x, y) is given in Eq. (84). Hence, by Eqs. (50) and (87), we may represent θ�,F as

θ�,F
t ¼

d〈hð�,X,YÞ,Y〉Ft

d〈Y〉Ft
¼

gðt, Xt�, Yt�Þ

Y2
t�
σ2ðt, Yt�Þ þ

ð

R

z2λðt, Xt�, Yt�Þφðt, Xt�, Yt�,dzÞ
(88)

Note that by Eq. (51) and

ðt

0

θ�,F
u d〈Y〉Fu

� �p,FY

¼
�

ðt

0

gðs,Xs,YsÞds
	p,FY

¼

ðt

0

πsðgÞds, (89)

applying Eq. (62) we get representation Eq. (83).

Our ultimate objective in this section is to investigate on the relation between costs of the

F-optimal strategy and the FY-optimal strategy, or equivalently the associated risk processes.
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It clearly holds that θ�,FY

∈ΘðFÞ, and then the FY-risk-minimizing strategy is also an F-strategy.

Considering the corresponding risks, we have

E

�

CTðψ
�,FY

Þ � Ctðψ
�,FY

Þ
	2
jFY

t

� �

¼ E E

�

CTðψ
�,FY

Þ � Ctðψ
�,FY

Þ
	2
jF t

� �

jFY
t

� �

≥E E

�

CTðψ
�,F Þ � Ctðψ

�,F Þ
	2
jF t

� �

jFY
t

� �

¼ E

�

CTðψ
�,F Þ � Ctðψ

�,F Þ
	2
jFY

t

� �

,

(90)

and then E RFt ðψ
�,F Þ

� �

≤E RF
Y

t ðψ�,FY

Þ
h i

, for every t∈ ½0, T�. In the remaining part of the paper,

we assume that FY
0 ¼ F 0 ¼ {Ω, Ø}, and we wish to measure the difference in the total risk

taken by an informed investor, endowed with a filtration F, and a partially informed investor,

whose information is described by F
Y. Precisely, we compute the difference RF

Y

0 ðψ�,FY

Þ

�RF0 ðψ
�,F Þ. By decompositions Eqs. (60) and (61), we have that CTðψ

�,F Þ � C0ðψ
�,F Þ ¼ GFT

and CTðψ
�,FY

Þ � C0ðψ
�,FY

Þ ¼ GF
Y

T and also

GF
Y

T ¼ U
F

0 �U
F

Y

0 þ

ðT

0

ðθ�,F
r � θ�,FY

r ÞdYr þ GFT , (91)

since FY
0 ¼ F 0 ¼ {Ω, Ø}, UF

0 ¼ U
F

Y

0 . Then computing the square of GF
Y

T and taking the expec-

tation we get

E ðGF
Y

T Þ2
h i

¼ E ðGFT Þ
2

h i

þ E

�

ðT

0

ðθ�,F
r � θ�,FY

r ÞdYr

	2
� �

þ 2E GFT

ðT

0

ðθ�,F
r � θ�,FY

r ÞdYr

� �

: (92)

It follows from Itô isometry and the fact that GF is orthogonal to Y, that

E ðGF
Y

T Þ2
h i

¼ E ðGFT Þ
2

h i

þ E

ðT

0

ðθ�,F
r � θ�,FY

r Þ2〈Y〉Fr

� �

: (93)

Then the difference that we want to evaluate becomes

RF
Y

0 ðψ�,FY

Þ � RF0 ðψ
�,F Þ ¼ E ðGF

Y

T Þ2
h i

� E ðGFT Þ
2

h i

¼ E

ðT

0

ðθ�,F
r � θ�,FY

r Þ2d〈Y〉Fr

� �

¼ E

ðT

0

ðθ�,F
r Þ2d〈Y〉Fr

� �

þ E

ðT

0

ðθ�,FY

r Þ2d〈Y〉Fr

� �

� 2E

ðT

0

θ�,F
r θ�,FY

r d〈Y〉Fr

� �

:

(94)

Using Eq. (62) and the definition of FY-dual-predictable projections, we have that

E

ðt

0

θ�,FY

r θ�,F
r d〈Y〉Fr

� �

¼ E

ðt

0

ðθ�,FY

r Þ2d〈Y〉F
Y

r

� �

¼ E

ðt

0

ðθ�,FY

r Þ2d〈Y〉Fr

� �

, (95)

which implies
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RF
Y

0 ðψ�,FY

Þ � RF0 ðψ
�,F Þ ¼ E

ðT

0

ðθ�,F
r Þ2d〈Y〉Fr

� �

� E

ðT

0

ðθ�,FY

r Þ2d〈Y〉F
Y

r

� �

: (96)

Plugging in the expressions for the optimal strategies given in Eqs. (82) and (83), respectively,

and denoting Σðt, Xt, YtÞ :¼ Y2
t

�

σ2ðt, YtÞ þ

ð

Z

z2λðt, Xt�, Yt�Þφðt, Xt�, Yt�,dzÞ
	

, we have

RF
Y

0 ðψ�,FY

Þ � RF0 ðψ
�,F Þ ¼ E

ðT

0

g2ðt, Xt, YtÞ

Σðt, Xt, YtÞ
�

π2
t ðgÞ

πtðΣÞ

� �

dt

� �

≤CE

ðT

0

�

g2ðt, Xt, YtÞ � π2
t ðgÞ

	

dt

� �

¼ CE

ðT

0

�

gðt,Xt,YtÞ � πtðgÞ
	2
dt

� �

(97)

for some C > 0, where the inequality follows by Assumption 18, and in the last equality, we

used E

ðT

0

2gðt, Xt, StÞπtðgÞdt

� �

¼ E

ðT

0

2πtðgÞ
2dt

� �

.

We can conclude by saying that we found an upper bound for the expected difference between

the total risks taken by an informed investor and a partially informed one which is directly

proportional to the mean-squared error between the process {gðt, Xt, StÞ, t∈ ½0, T�} and its

filtered estimate πðgÞ ¼ {πtðgÞ, t∈ ½0, T�}.
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