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Abstract

Archaeal organisms harbor many unique genotypic and phenotypic properties, testify‐
ing their peculiar evolutionary status. Thus, the so‐called extremophiles must be ade‐
quately adapted to cope with many extreme environments with regard to metabolic 
processes, biological functions, genomes, and transcriptomes to overcome the challenges 
of life. This chapter will illustrate recent progress in the research on extremophiles from 
the phylum Euryarchaeota and compile their evolutive history, metabolic strategies, lipid 
composition, the structural adaptations of their enzymes to temperature, salinity, and pH 
and their biotechnological applications. Archaeal organisms have evolved to deal with 
one or more extreme conditions, and over the evolution, they have accumulated changes 
in order to optimize protein structure and enzyme activity. The structural basis of these 
adaptations resulted in the construction of a vast repertoire of macromolecules with par‐
ticular features not found in other organisms. This repertoire can be explored as an inex‐
haustible source of biological molecules for industrial or biotechnological applications. 
We hope that the information compiled herein will open new research lines that will 
shed light on various aspects of these extremophilic microorganisms. In addition, this 
information will be a valuable resource for future studies looking for archaeal enzymes 
with particular properties.
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1. Introduction

Archaea represents the third domain of life. Their peculiar evolutionary status conforms to 

their unique genotypic and phenotypic properties. Except for methanogenesis, which has 

not yet been described in bacteria, all central metabolic pathways discovered in archaea also 

exist in bacteria, although in some cases with important and novel modifications. Archaeal 
organisms can be either heterotrophs or autotrophs (chemio‐ or photo‐lithoautotroph) and 

can use a large variety of electron donors and acceptors [1]. One of the most striking features 

of archaea organisms is their relation with hyperthermophilicity as they are able to colo‐

nize ecological niches even above 95°C. This property relies in part on the unique structure 

of archaeal lipids, which are able to maintain impermeability of the cytoplasmic membrane 

to ions at such high temperatures. Although archaea are often believed to live in extreme 

environments, they can also be found in many diverse locations including even moderate 

environmental conditions.

The phylum Euryarchaeota, in archaea, comprises an extremely physiologically diverse group 

of microorganisms, adapted to the most extreme environments known so far. This phylum 

includes organisms adapted to different temperature niches (thermophiles, mesophiles, and 
psychrophiles), pH (acidophiles), and the organisms those grow at elevated salt concentra‐

tions (halophiles). On the other hand, the phylum, Crenarchaeota, comprises a much more 

limited phenotypic diversity of cultivable organisms. This chapter focuses on the phylum 

Euryarchaeota and considering the industrial potential of their proteins.

2. The Euryarchaeota phylogenetic tree

The evolutionary studies of archaea are important for understanding the origin of life and the 

course of evolution of the organisms that populate the earth. In the 1970s, Carl Woese’s work 

showed that RNA of the small subunit of the ribosome (SSU rRNA) could be used to define 
phylogenetic relationships, which allowed the construction of a universal tree of life [2]. From 

these studies emerged the discovery of archaea, demonstrating that living organisms on earth 

can be divided into three domains (archaea, eukarya, and bacteria). Initially, two phyla were 

identified in archaea: Crenarchaeota and Euryarchaeota [3]. Subsequently, new phyla, namely 

Korarchaeota, Nanoarchaeota, and Thaumarchaeota, were proposed based on SSU rRNA [2].

The phylum Euryarchaeota comprises an extreme physiologically diverse group of microorgan‐

isms, adapted to the most extreme environments known. The members constitute the greatest 

phenotypic diversity among the cultivable species known to date, including halophiles, metha‐

nogens, some thermoacidophiles, and some hyperthermophiles. Through SSU rRNA, the follow‐

ing orders of Euryarchaeota were identified: Thermococcales, Methanobacteriales, Methanococcales, 
Thermoplasmatales, Halobacteriales, Methanosarcinales, Methanomicrobiales, Methanocellales, and 

Archaeoglobales.

However, at the end of the 1990s, the phylogenies based on SSU rRNA were questioned 

regarding their ability to reconstruct the more ancestral speciation events, given the lack of a 

phylogenetic signal [4]. The phylogenetic trees, reconstructed with SSU rRNA by maximum 
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likelihood and evaluated by bootstrap (a method to evaluate the robustness of nodes in a 

tree), showed that the most ancestral nodes of the phylum Euryarchaeota have ’60% statisti‐

cal significance, which makes difficult to have confidence in the phylogenetic relationship 
between the different orders. Then, by using SSU rRNA, the orders that diverge first and 
those that diverge last cannot be established [5].

The evolutionary relationships among the archaea orders have been established by the 

sequencing of several genomes. Petitjean et al. [6] identified 200 protein families, along with 
57 ribosomal proteins and 14 RNA polymerase subunits, which represent 273 phylogenetic 

markers in 129 archaeal genomes. With this conserved core of archaeal genes, they inferred 

the phylogeny of the nodes of different orders with high robustness (statistical significance 
>95%). The tree topology obtained with this core of proteins is generally consistent with other 

topologies such as that obtained by Battistuzzia and Hedgesa [7].

The topology of these phylogenies shows that Thermococcales were the first group to diverge 
(Figure 1) in Euryarchaeota, approximately 3594 Ma ago, ruling out the possibility that metha‐

nogenesis was an ancestral metabolic process in the Euryarchaeota. Subsequently, the orders 

Methanopyrales, Methanobacteriales, and Methanococcales diverged around 3468 Ma ago, and 

methanogens class I or Methanomada appeared [6]. Later on, the order Thermoplasmatales 

diverged (3160 Ma ago), followed by the order Archaeoglobales (2799 Ma ago). Finally, metha‐

nogens class II diverged (Methanocellales, Methanosarcinales, and Methanomicrobiales), and from 

this group, the order Halobacteriales emerged [6]. However, this hypothesis is debatable as in 

some topologies, Halobacteriales appear prior to the divergence of methanogens class II [7].

Figure 1. Schematic representation of phylogenetic relationships between the orders of Euryarchaeota. The estimated time 

in millions of years (Ma) for the divergence of some orders is shown according to the time‐tree [7].
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3. Euryarchaeota metabolism

Euryarchaeota organisms show very diverse metabolism. For example, phylogenetically 

close orders can exhibit very different kinds of metabolism, while important similarities 
can be observed in distantly related orders. Most of the Euryarchaeota are strictly anaerobic, 

although some of them can grow at low oxygen concentrations. Euryarchaeota, like most of the 

anaerobic organisms studied, lacks the defense mechanisms against oxidative stress (ROS). 

However, recently, the ability of P. furiosus to grow even in the presence of 8% oxygen has 

been described, which led to postulate the existence of a mechanism through which a part 

of the electrons destined to H
2
 production are diverted to the O

2
 reduction [8]. Further, this 

phylum comprises mainly autotrophic organisms, and some heterotrophs can be found. This 

trait has been suggested to be an evolutive novelty acquired later [9].

The systematic studies of archaeal metabolism were undertaken soon after the first genome 
sequence from archaea was obtained. The initial studies contemplated metabolic reconstructions 

based on the presence of homologous sequences with known activities [10]. In parallel, the in vitro 

studies with cellular cultures that included metabolite and enzymatic measurements in crude 

extracts began to appear. The most of our current knowledge about their metabolism has been 

derived from the exhaustive studies performed with the model organisms like Methanocaldococcus 

jannaschii (the first archaeal genome to be sequenced), Methanococcus maripaludis [11] (order 

Methanococcales), Methanosarcina acetivorans [12] (order Methanosarcinales), Thermococcus kodaka-

rensis, and P. furiosus [13] (both from order Thermococcales)—just to mention some of them. In 

Figure 2, a simplified scheme showing the main metabolic pathways of the archaeal life is pre‐

sented, using Thermococcales, Methanococcales, and Methanosarcinales as examples.

Heterotrophs from Thermococcales are the most studied organisms, which can be grown in 

different conditions using sugars, peptides, or polysaccharides as a carbon source [14, 15]. In 

these organisms, glycolysis or the Embden‐Meyerhof pathway (EM) plays a fundamental role 

in the production of reduced equivalents and ATP [16]. In this pathway, important modifica‐

tions to the traditional glycolysis can be observed, such as the phosphorylation of glucose and 

fructose‐6‐P is performed by a glucokinase (ADP‐GK) and a phosphofructokinase  (ADP‐PFK) 

employing ADP instead of ATP as a phosphoryl donor [17, 18], and the canonical G3PDH is 

replaced by a glyceraldehyde‐3‐phosphate ferredoxin oxidoreductase (GAPOR) [19]. In addi‐

tion, a pyruvate ferredoxin oxidoreductase (POR) that decarboxylases pyruvate to synthesize 

Acetyl‐CoA is also present in these organisms [20]. In both the aforementioned reactions, 

reduced ferredoxin is produced, which constitutes one of the most important electron carri‐

ers. Ferredoxin produced in glycolysis is oxidized later by a membrane hydrogenase, coupled 

to molecular hydrogen production [21]. During this process, a proton is exported to the extra‐

cellular medium, contributing to the proton gradient which in turn allows ATP production 

carried out by the ATP synthase enzyme [21]. Alternatively, archaea possess a unique Acetyl‐

CoA synthetase able to synthesize acetate from Acetyl‐CoA coupled to ATP production [22]. 

This reaction, along with pyruvate synthesis by pyruvate kinase, is the only step where phos‐

phorylation of ADP at a substrate level occurs in glycolysis. In these organisms, as well as the 

autotrophs belonging to Euryarchaeota, the presence of an incomplete reductive Kreb’s cycle 
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has been reported and it has been postulated that its function is the production of metabolic 

intermediates for amino acid synthesis and other anabolic processes [23].

Thermococcales can use elemental sulfur as the final electron acceptor producing sulfhydric acid 
as a final metabolic product [14]. However, in most cases, the presence of sulfur is not neces‐

sary, and alternatively, molecular hydrogen is produced as the final metabolic product [24]. This 

reaction is mainly carried out by a ferredoxin‐dependent membrane hydrogenase. In the pres‐

ence of elemental sulfur, the expression of this hydrogenase is diminished with the concomitant 

decrease in H
2
 production. Under these conditions, ferredoxin is oxidized by a membrane oxido‐

reductase coupled to NADPH production and H+ ions are exported to the extracellular medium. 

Later, an NADPH‐dependent oxidoreductase reduces elemental sulfur, producing sulfhydric 
acid [24].

In autotrophic organisms of Euryarchaeota, such as methanogens class I (Methanococcales) 

and methanogens class II (Methanosarcinales), glycolysis also shows certain modifications; 
of them, most are shared with Thermococcales [16]. However, important differences can be 
observed in Methanococcales; since these organisms lack the ADP‐GK gene, the ADP‐PFK 
enzyme performs both phosphorylating activities at the same active site [25, 26]. It has been 

Figure 2. The simplied scheme of Euryarchaeal metabolism. Thermococcales are used as an example to represent 

heterotrophic archaea, Methanococcales as an example of class I methanogens and Methanosarcinales of class II 

methanogens. Light gray squares represent main metabolic processes mentioned in the text. The genera carrying each 

process are enclosed in a square. The relevant metabolites that can enter the cell are represented in dark gray squares. 

Metabolites that serve as intermediaries and connecting different processes are represented by black squares. CH
4
, one 

of the major metabolic final products from methanogenic archaea is shown. The arrows represent connections between 
metabolites and metabolic processes. The dashed arrows represent the pathways present in Thermococcales; the black 
arrows represent the pathways present in Methanococcales, and the dotted arrows represent the pathways present in 
Methanosarcinales.
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postulated that in both classes of methanogens, glycolysis is a secondary pathway since 

during the growth in the presence of a suitable amount of nutrients these organisms main‐

tain active pathways like gluconeogenesis and glycogen synthesis [12, 27]. In the absence of 

nutrients, glycolysis is activated as a salvage route to produce metabolic intermediates and 

substrates for methanogenesis. Nonetheless, the role of glycolysis and gluconeogenesis in 

these organisms is still under an active investigation. Recently, an ADP‐dependent PFK‐GK 

with more catalytic efficiency toward glucose synthesis has been described in M. maripaludis, 

but its physiological relevance has not been elucidated [26]. Further, both activities (PFK 

and GK) are activated by AMP, which might have important consequences for glycolysis 

regulation [26].

Methanogens are unable to grow in the presence of sugars, peptides or compounds of three 

or more carbons since they lack specific transporters for these substances [28]. However, 

they can use CO
2
 and other one‐carbon compounds, such as formate, as a carbon source. 

Carbon fixation proceeds via a reductive pathway of Acetyl‐CoA (Wood‐Ljungdahl path‐

way) where two molecules of CO
2
 are reduced and one molecule of Acetyl‐CoA is produced 

[29]. This reduction is carried out by the oxidation of two equivalents of ferredoxin and 

one equivalent of coenzyme F420 (a unique coenzyme from methanogenic organisms) [30]. 

The methanogens, by using the POR enzyme, carry out the carboxylation of Acetyl‐CoA to 

form pyruvate and, in this way, generate the substrates for gluconeogenesis or amino acid 

synthesis [31].

Methanogenesis is the main metabolic process in autotrophs from Euryarchaeota. Class I meth‐

anogens produce methane from CO
2
 in a pathway called hydrogenotrophic. The electrons 

required for CO
2
 reduction come from the oxidation of H

2
 and are transferred to the carriers 

like ferredoxin and coenzyme F420 and ultimately to CO
2
 in successive reactions [32].

In class II methanogens, besides the hydrogenotrophic pathway [33], two variants have also 

been found: acetoclastic and methylotrophic methanogenesis, both of which have a more 
recent evolutive origin [34]. In acetoclastic methanogenesis, one molecule of methane and 

one of CO
2
 are generated from one molecule of acetate [35, 36]. Acetate is first converted to 

Acetyl‐CoA by the action of the Acetyl‐CoA synthetase enzyme with a concomitant expendi‐

ture of ATP. Later, the methyl group of Acetyl‐CoA enters methanogenesis and gets reduced 

to generate methane in a process whose stages are shared with hydrogenotrophic methano‐

genesis. The electrons required to carry out the process are provided by the oxidation of the 

carbonyl group of Acetyl‐CoA to carbon monoxide and then to CO
2
 in a ferredoxin‐depen‐

dent process.

In the methylotrophic methanogenesis, methane can be produced from the methyl group of 

several molecules, such as methanol, methylamine, and methanethiol. A total of four methyl 

groups are metabolized, and three of them enter methanogenesis where they are reduced to 

yield three methane molecules [35, 37]. The fourth methyl group is oxidized through a pro‐

cess equivalent to hydrogenotrophic methanogenesis, but it occurs in reverse order, yield‐

ing CO
2
 and providing the electrons needed for the reduction of the other three molecules. 

The CO
2
 produced in this process, as well as the one produced in acetoclastic methanogen‐

esis, can enter in the reductive acetyl‐CoA pathway to be destined to biomass generation.

Archaea - New Biocatalysts, Novel Pharmaceuticals and Various Biotechnological Applications16



4. Archaeal membrane lipids

Archaea are generally characterized by the unique structure of their membrane lipids. Their 

phospholipid composition mainly includes long chains of methylated isoprenoids attached 
to a glycerol‐1‐phosphate molecule via an ether bond, which has been suggested to contrib‐

ute to the survival in extreme environments [38]. Archaeal lipids differ in isoprenoids chain 
length, composition, configuration, and various modifications at the polar head groups. 
The two main core structures are C

20
 sn‐2, 3‐diphytanyl glycerol diether lipid (also known 

as archaeal) and C
40

 sn‐2, 3‐diphytanyl diglyceroltetraether also known as glycerol diphy‐

tanoyl diglycerol tetraether (GDGT) or caldarchaeol. The archaeal lipids include some lip‐

ids with C
25

isoprenoid chain, which enables the formation of the bilayer membrane. On 

the other hand, in caldarchaeol, two identical or different glycerol moieties are connected 
by two C

40
 isoprenoid chains, enabling the formation of monolayer membrane (Figure 3). 

These membranes present a higher degree of compactness compared to the other bilayer 

Figure 3. The structures of archaeal membrane lipids. (A) Archaeal C
20

. (B) Modified archaeal C
25

. (C) Macrocyclic 

archaeal. (D) Tetriol‐archaeoldiether lipids. (E) Crenarchaeol with cyclopentane and cyclohexane. (F) Caldarchaeol C
40

 

(GDGT).
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membranes, which precludes external and internal layer fusion at high temperatures [39]. 

Furthermore, the ether bond typical of archaeal lipids is less susceptible to hydrolysis than 

the ester bonds present in bacterial lipids, which makes this kind of membrane to be more 

stable at high temperatures and in acidic environments. Molecular dynamic simulations 

have confirmed the importance of the monolayer structure in the membrane stability and 
determined that the presence of cyclic structures, like cyclopentane, increases membrane 

rigidity, rendering the membrane more resistant to mechanical stresses and high tempera‐

tures [40]. In hyperthermophilic archaea, the number of cyclic structures increases with the 

increase in growth temperature since the interaction between the lipids with cyclopentane is 

more stable. On the other hand, in psychrophilic Euryarchaeota the membrane lipids present 

unsaturated isoprenoid chains, which offer higher membrane fluidity at low temperatures. 
This is the case for the membranes from the psychrophilic organism Methanococcoides bur-

tonii, where the identified lipids correspond to unsaturated archaeal lipids such as archaeal 
phosphatidylglycerol, archaeal phosphatidylinositol, hydroxyarchaeol phosphatidylglyc‐

erol, and hydroxyarchaeol phosphatidylinositol [41].

As a ubiquitous characteristic, the membrane lipids in Halobacteria organisms lack phospho‐

lipids with ethanolamine, inositol, and serine groups. Archaetidyl glycerol methyl phosphate 

(PGP‐Me) is the main component of the membrane, which accounts for 50−80% of the total 
lipids. This particular lipid composition allows that the membranes from Halobacteria organ‐

isms retain their stability and impermeability in environments up to 4 M NaCl, distinct from 

the membranes of other Euryarchaeota organisms lacking PGP‐Me [42].

Archaeal and extended archaeal are the main lipids in the orders Methanococcales and 

Methanosarcinales, while the orders Methanopyrales, Thermoplasmatales, Archaeoglobales, and 

Methanomicrobiales contain GDGTs lipids [39]. In the orders, Thermococcales and Methanobacteriales, 

both type of lipids, archaeal and GDGT, are present. Furthermore, in hyperthermophilic 

Euryarchaeota such as Thermococcales and Thermoplasmatales, GDGT with cyclic structures can be 

found (Table 1) [38, 43].

During the lipid synthesis in archaea, the isopentenyl diphosphate (IPP) and dimethyl allyl 

diphosphate (DMAPP) compounds serve as the building blocks of the isoprenoid chains. 

There are two pathways for the synthesis of these compounds: one of them corresponds to 
the mevalonate pathway (MVA), and the other is mevalonate‐independent, which is known 

as C‐methyl‐d‐erythritol‐4‐phosphate/1‐deoxy‐d‐xylulose‐5‐phosphate (MEP‐DOXP). In 

the MVA pathway, IPP and DMAPP are formed by the condensation of Acetyl‐CoA mole‐

cules to give 3‐hydroxy‐3‐methylglutaryl‐CoA (HMG‐CoA), which is later reduced to mev‐

alonate and then phosphorylated and decarboxylated to form the precursor molecules of 

the isoprenoid chains [43]. Further, M. jannaschii uses a modified MVA pathway, where the 
conversion of mevalonate‐5‐phosphate to IP is catalyzed by a phosphomevalonate decar‐

boxylase (MJ0403), and later IP is phosphorylated by the action of the IP kinase (MJ0044) 

enzyme [44].

Isoprenoid synthesis through the mevalonate‐independent pathway was described initially 

in eukaryotes and later in bacteria, algae, and plants. Both pathways differ in the substrates 
and enzymes that participate in IPP formation. For example, in the MEP‐DOXP pathway, 
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the initial substrates for IPP formation are pyruvate and glyceraldehyde‐3P, while in the 

MVA pathway are acetyl‐CoA and acetoacetyl‐CoA. Another difference lies in the last three 
enzymes of both pathways; in the MEP‐DOXP route, they correspond to methylerythritol 
cyclodiphosphate (MEcPP) synthase and hydroxymethylbutenyl 4‐diphosphate (HMBPP) 

synthase, which are absent in the MVA route. Further, the last enzyme in the MEP‐DOXP 

pathway is an HMBPP reductase, which, in the other pathway, is a mevalonate‐5‐diphosphate 

(MVAPP) decarboxylase [45, 46].

Euryarchaeota 

order

Organism 

characteristic

Organism Metabolism Type of lipid References

Halobacteriales Psychrophilic

Mesophilic

Halobacterium sp

Halorubrum 

lacusprofundi

Heterotrophic Archaeal C
20

*, 

Archaeal extended 

C
25

**, GDGT C
40

 and 

Archaeal unsaturated 

(psychrophilic 

organisms only)

[52, 53]

Methanosarcinales Thermophilic

Mesophilic

Psychrophilic

Methanosarcina sp

Methanococcoides 

burtonii

Autotrophic Archaeal C
20

*, GDGT 

C
40

 and Archaeal 

unsaturated 

(psychrophilic 

organisms only)

[41, 54, 

55]

Methanopyrales Hyperthermophilic Methanopyrus 

kandleri

Autotrophic Archaeal C
20

* with 

cyclic ring (the degree 

of cyclization increase 

with the increase of the 

T°) and unsaturated 

Archaeal

[56]

Methanococcales Hyperthermophilic Methanocaldococcus 

jannaschii

Autotrophic Archaeal C
20

 

macrocyclic Archaeal***

[44]

Thermococcales Thermophilic

Hyperthermophilic

Pyrococcus horikoshii

Thermococcus sp

Heterotrophic Archaeal C
20

*, 

Cardarchaeol 

derivatives and GDGT 

with up to two cyclic 

rings

[56]

Methanobacteriales Mesophilic

Thermophilic

Methanobacterium 

thermoautotrophicus

Autotrophic Archaeal C
20

* or 

Archaeal extended C
25

** 

and GDGT‐0

[39]

Archaeoglobales Mesophilic

Thermophilic

Archaeoglobus 

Fulgidus

Heterotrophic Archaeal C
20

*, 
**Archaeal extended 

C
25

** and GDGT with 

zero to two cyclic rings

[57]

Thermoplasmatales Mesophilic

Thermophilic

Thermoplasma 

acidophilum

Heterotrophic GDGT with one to 

three cyclic ring

[56]

Notes: *Archaeal C
20

 = C20 sn‐2,3‐diacilglycerol diether lipid.
**Archaeal C

25
 = C

25
 sn‐2,3‐sesterterpanyl.

***Macrocyclic Archaeal = C20 macrocyclic archaeal; GDGT = glycerol diphytanoyl glycerol tetraether; GDGT‐0 cyclic 
ring; GDGT‐1‐4 cyclic ring; GDGT‐5‐8 cyclic ring.

Table 1. Main membrane lipids in Euryarchaeota.
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5. Structural adaptations of extremophilic proteins

As already mentioned, archaea thrive in many different extremes: heat, cold, acid, base, 
salinity, pressure, and radiation. These harsh environmental conditions imposed several 

restrictions to which they had to adapt during the course of their evolution. Considering 

these extreme environments, archaea can be divided into: halophiles, psychrophiles, thermo‐

philes, acidophiles, and piezophiles. However, it has to be remembered that these branches 

frequently intersect in interesting ways.

Archaeal organisms have evolved to deal with one or more extreme conditions that have 

led them to accumulate the changes mostly concerned with protein structure and enzyme 

activity. These adaptations made them a vast repertoire of macromolecules with particular 

features not available in their counterparts from other organisms. This constitutes an inex‐

haustible source of biological molecules for industrial or biotechnological applications.

5.1. Thermophiles and hyperthermophiles

Thermophilic and hyperthermophilic archaea are found mainly in the deep ocean, hydro‐

thermal vents, and hot water near volcanoes. According to their growth temperature, these 

organisms have been classified as thermophiles or hyperthermophiles. The former are those 
able to grow at temperatures above 50°C and the latter at 80°C or more [47]. There are diverse 

cellular mechanisms that make the life possible at these extreme temperatures. The expres‐

sion of molecular chaperones (HsP) that help in the correct folding of proteins and enzymes 

accompanied with more rigid membranes and proteins than those found in mesophiles are 

common characteristics of this kind of organisms [39, 48, 49]. At a genomic level, it is not clear 

if an increase in the G+C content is indeed a characteristic of thermophilic and hyperther‐

mophilic organisms since some mesophilic organisms do show a higher proportion of these 

nitrogen bases than their hyperthermophilic counterparts [47, 50]. The high thermal stability, 

as well as the capacity of the enzymes of these microorganisms to catalyze reactions at very 

high temperatures, has made them a subject of intense research. Many archaeal thermophilic 

and hyperthermophilic enzymes employ substrates that are different from those used by their 
bacterial homologs; even some of them possess novel catalytic activities not found in bacteria, 
which make the archaeal enzymes a promising source for biotechnological processes.

Thermophilic and hyperthermophilic archaea could be either methanogenic or nonmetha‐

nogenic organisms. The nonmethanogenic hyperthermophilic archaea belong to the orders 

Thermococcales, Thermoplasmatales, and Archaeoglobales, whereas class I methanogenic archaea 

belong to the thermophilic organisms of the orders Methanopyrales, Methanobacteriales, 

and Methanococcales and class II methanogens belong to the orders Methanomicrobiales and 

Methanosarcinales.

5.1.1. Mechanism of protein adaptation to the heat

In general terms, the enzyme structures of thermophilic and hyperthermophilic archaea have 

been described as highly rigid and thermostable compared to their mesophilic homologs. The 
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mechanisms reported to achieve this enhancement in thermostability include an increase in 

the number of ionic interactions, disulfide bridges, surface charges, higher oligomerization 
states, and a more compact hydrophobic core [51]. Although to date there are many character‐

ized thermophilic and hyperthermophilic enzymes from the phylum Euryarchaeota, it is not 

possible to compare them with their mesophilic homologs from the same phylum due to the 

lack of studies regarding the homologous counterpart.

The structure of enzyme triose phosphate isomerase is characterized by TIM barrel fold, 

and it catalyzes the reversible interconversion of glyceraldehyde‐3P and dihydroxyacetone 

phosphate. In eukaryotes, bacteria, and mesophilic archaea, this enzyme is a dimer, while in 

thermophilic and hyperthermophilic archaea, it exists in a tetrameric form [58]. The hyper‐

thermophilic triose phosphate isomerase from P. furiosus and Thermococcus onnurineus was 

also characterized as tetramers [59]. The increase in the state of oligomerization could be a 

difference related to an increase in the thermal stability; an interesting but different example 
of oligomerization state as a strategy to increase thermostability is manifested by an amylase 

from P. furiosus. This hyperthermophilic enzyme, unlike its mesophilic homologs, which are 

dimers, presents a lower oligomerization state, being described as a highly packed monomer. 

This highly packed structure, as well as the decrease in the oligomerization state, results in 

the decrease in the hydrophobic surface exposed to the solvent [60]. In this case, the interac‐

tions that favor the compactness of the hydrophobic core of the hyperthermophilic amylase 

are hydrogen bonds, which play a fundamental role in maintaining the folding at high tem‐

peratures [60]. In order to analyze the importance of ionic and noncovalent interactions in the 

thermostability, Vogt et al. performed a comparative analysis between the mesophilic and 

thermophilic proteins employing 56 model proteins belonging to 16 families and concluded 

that in thermophilic proteins, interactions like hydrogen bonds are in a greater number than 

in mesophilic proteins, which are bestowed by a high number of charged residues consti‐

tuting a key characteristic to increase thermostability [61]. In addition, it can be noted that 

thermophilic and hyperthermophilic proteins exhibit a larger polar surface exposed to the 

solvent in comparison with mesophilic proteins mainly due to the presence of charged resi‐

dues on the surface and the diminution in the number of noncharged polar residues [62]. The 

presence of large hydrophobic lateral chains is also a characteristic of thermostable proteins. 

The comparison of the glutamate dehydrogenase from P. furiosus with its bacterial homologs 

(Thermotoga marítima, TmGDH and Clostridium symbiosum, CsGDH) shows that this thermo‐

stable enzyme presents a greater fraction of charged residues given mainly by arginine resi‐

dues. In addition, it was established that the ionic‐pair strategy follows this trend: PfGDH > 

TmGDH > CsGDH [63].

A good example of the role of ionic interactions in the adaptation of protein structures to high 

temperatures is the ionic network present in a triose phosphate isomerase from P. furiosus 

and T. onnurineus; this type of ionic network is absent in the psychrophilic homolog from 
Methanosarcinales (M. burtonii) [64]. The introduction of ionic interactions in a psychrophilic 

enzyme significantly increased the thermal stability of a mutant, highlighting the importance 
of this type of interactions in the increased thermal stability of enzymes from archaea [64]. 

Even more, when this network of ionic interactions was eliminated from the triose phosphate 

isomerase from P. furiosus, its stability decreased [65].
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An example of the use of disulfide bridges for increased stability is the comparison between 
the archaeal hyperthermophilic enzyme alpha‐amylase from P. furiosus and its bacterial 

counterpart from Bacillus licheniformis. The study shows that the increased stability of the 

alpha‐amylase from P. furiosus was due to a higher content of cysteine residues than the ones 

observed in the enzyme from B. licheniformis. The increase in cysteine residues along with the 

increase in the number of ionic pairs has been described as the main characteristics respon‐

sible for the activity and protein stabilization in this hyperthermophilic organism [66].

5.2. Psychrophiles

Most of the archaeal organisms studied evolved to colonize low‐temperature aquatic eco‐

systems such as those present in Antarctic, Arctic, vast tracts of the deep sea, and also alpine 

regions. These organisms are called psychrophiles and can be classified in Stenopsychrophiles 

and Eurypsychrophiles according to their growth temperature range [67]. This classification is 
based on two parameters: optimal growth temperature (T

opt
) and maximal growth temperature 

(T
max

). Stenopsychrophiles show an upper optimal growth temperature less than ~20°C and a 

T
max

 not greater than 25°C. On the other hand, Eurypsychrophiles tolerate a broader temperature 

range, presenting T
opt

 above 30°C and T
max

 below 10°C [67]. To date, almost all psychrophilic 

archaea belong to the phylum Euryarchaeota and they are all methanogenic. Psychrophilic 

and methanogenic archaea can be found in the following archaeal orders: Methanobacteriales, 

Methanomicrobiales, and Methanosarcinales. Methanobacterium sp. is a representative of the 

order Methanobacteriales, while in the order Methanomicrobiales, we can find Methanogenium 

frigidum, Methanogenium marinum, and Methanogenium boonei. In Methanosarcinales, the organ‐

isms identified correspond to M. burtonii, Methanococcoides alaskaense, Methanosarcina baltica, 

Methanosarcina lacustris, and Methanolobus psychrophilus. Psychrophilic archaea and their pro‐

teins and enzymes have been a focus of great attention owing to their high potential as bio‐

catalysts in biotechnological applications since a long time.

5.2.1. Mechanism of protein adaptation to the cold

Low temperature imposes several challenges to cellular functions such as replication, tran‐

scription, translation, and metabolic reactions crucial for the development of microorganisms. 

At a cellular level, the common strategies employed to cope low temperatures include, inter 

alia, cold shock proteins, antifreeze proteins, and an increased membrane fluidity [67]. Besides 

this, the protein structure should also adapt to a cold environment. Identifying the important 

features that confer specific thermal properties has been a subject of intense research in the 
last few years. Even so, to date, very few proteins from psychrophilic archaea have been stud‐

ied, in contrast to a large number of proteins and enzymes from mesophilic, thermophilic, 

and hyperthermophilic archaea. The current studies indicate that the main feature of psy‐

chrophilic proteins and enzymes is to have a flexible structure, which could offset the energy 
decrease of the reaction medium, thus facilitating catalysis processes at low temperatures. 

Heat‐induced unfolding experiments for psychrophilic, mesophilic, and thermophilic pro‐

teins show distinct stability patterns where the unfolding of the cold‐adapted proteins occurs 
at lower temperatures (T

m
) and gradually increases for the other groups [68]. Nonetheless, 
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the psychrophilic enzymes do not display unusual or exotic 3D conformations and bear over‐

all folds resembling that of their mesophilic counterparts [69]. The main challenge faced by 

psychrophilic enzymes is to catalyze reactions at an appropriate rate even when the low tem‐

peratures strongly diminish the rates of chemical reactions. Several reports regarding cold‐

active enzymes have demonstrated that they display a much higher specific activity at low 
and moderate temperatures as their thermophilic counterparts [70]. This is caused by the 

destabilization of either the active site or the whole protein, conferring mobility and flexibility 
to the active site at the temperatures that tend to freeze molecular motions [71]. It is gener‐

ally accepted that although other molecular traits can contribute to cold activity, the lack of 

selective pressure on stable proteins, in conjunction with a strong selection of highly active 

enzymes, is the main factors responsible for cold activity adaptation in natural environments.

The psychrophilic enzymes from archaea evolved to attain more flexible structures by adopt‐
ing several mechanisms. For example, by reducing the number of charged residues present at 

both the protein surface and the hydrophobic core (Arg, Lys, Glu). A low content of arginine 

residues results in a low number of hydrogen bonds that can be formed contributing to struc‐

tural flexibility. In order to compensate for the loss of charges at the protein surface and avoid 
aggregation, these proteins present a great proportion of noncharged polar residues such as 

Gln and Thr, which in turn implies a decrease in stabilizing ion pairs favoring a structural 

destabilization [72]. Other adaptations include the clustering of glycine residues (providing 

local mobility), the disappearance of proline residues in loops (providing enhanced chain 

flexibility between secondary structures), as well as a lower number of ion pairs, aromatic 
interactions, and hydrogen bonds [73]. Additionally, the hydrophobicity of the protein core 

and the compactness of the protein interior is usually low [73]. In summary, all aforemen‐

tioned factors are attenuated in strength and number in the structures of cold‐active enzymes.

One remarkable fact about psychrophilic enzymes is that they are inactivated at the tempera‐

tures that are well below than the one at which the protein unfolds; this presents a remarkable 
difference from their mesophilic or thermophilic homologs. This led to the concept of a local‐
ized increase in the flexibility at the active site, which is responsible for a high but heat‐labile 
activity, while the other regions of the protein, not involved in catalysis, might not have low 

stability [74, 75]. The comparison of the experimentally measured activation energy of transi‐

tion (∆G≠) of some cold‐active enzymes revealed that this parameter is systematically lower 

than the mesophilic proteins [74]. It has been proposed that the activation of these enzymes is 

facilitated by a decrease in the affinity of the enzyme for the substrate (higher level of ES) and 
by a possibly lower energetic level of ES≠. In many cases, the high activity of these enzymes 

at low temperatures has been associated with a rather open structure and also to a loss of 

specificity [73, 74].

The above and the other structural alterations have been reported mainly for psychrophilic 

enzymes from bacteria and eukarya, and there are not enough studies about psychrophilic 

archaeal enzymes in order to sustain that the same alternations are also responsible for cold 

adaptations in these organisms. A general adaptive mechanism proposed for psychrophilic 

enzymes from bacteria is the optimization of k
cat

 at the expense of K
m

 [73]. Although this mech‐

anism is generally accepted, it cannot be generalized to archaeal enzymes considering the few 
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cases studied. In the case of the GTPase of the elongation factor 2 (EF2) from M. burtonii, the 

adaptive mechanism to perform its activity at low temperatures involves a reduction in the 

K
m

 value compared to its thermophilic homolog phylogenetically related from Methanosarcina 

thermophile [76]. This decrease is due to the loss of noncovalent interactions that allow this 

enzyme to have a greater structural flexibility [76]. The loss of ionic and noncovalent interac‐

tions offering an increase in the structural flexibility has also been seen in other psychrophilic 
archaea enzymes such as the enzyme triphosphate isomerase from M. burtonii and in the DNA 

polymerase from Cenarchaeum symbiosum [77, 78].

The biophysical and catalytic features of psychrophilic enzymes present a challenge and offer 
an interesting model to unravel protein evolution, folding, and dynamics. We hope that these 

traits along with their tremendous biotechnological potentials will bring further promising 

advances in the archaeal psychrophilic protein research.

5.3. Halophiles

Hypersaline environments are defined as those containing higher salt concentrations than 
seawater (>3.5% total dissolved salts). Most hypersaline bodies are thalassohaline, dominated 

by Na+, Ca2+, Cl−, and SO4− ions, generally bearing neutral pH. These bodies derive from the 

evaporation of seawater and retain the relative proportion of salts in the sea. On the other 

hand, there is another less common group called athalassohaline of water bodies, dominated, 

among others, by Ca2+, Mg2+, Cl−, and Ba−, with pH conditions ranging from acidic to alkaline, 

and having a nonmarine origin. Both overall salinity and ionic composition together with 

the conditions like temperature and nutrient availability determine the existence of highly 

variable hypersaline environments that can be found extending from Antarctica to alkaline 

hypersaline soda brines and subterranean evaporite deposits.

Halophilic microorganisms are classically categorized according to their optimal growth at 

different salt concentrations, and two main groups have been recognized: the extreme halo‐

philes (optimal growth above 15% NaCl) and moderate halophiles (optimal growth 3–15% 

NaCl).

In archaea, the only halophilic organisms known to date belong to the phylum Euryarchaeota. 

These organisms are distributed into three groups: (1) class Halobacteria, whose members are 

extreme halophiles that require over 3M salinity for growth and structural stability; (2) order 
Methanosarcinales, including extreme and moderate halophilic organisms; and (3) the recently 
discovered archaeal class, Nanohaloarchaea, uncultured to date [79, 80].

5.3.1. Mechanism of protein adaptation to salt

How do these organisms deal with high salinity environments and what adaptations did 

they incorporate into their molecular machinery and proteins? Both questions have been 

addressed in multiple studies with the main focus on Halobacteria organisms and their molec‐

ular machinery and proteins [51]. There are two fundamentally different strategies proposed 
for halophilic microorganisms explaining how they maintain osmotic pressure in their cyto‐

plasm while growing in a saline medium: the salt‐in‐cytoplasm and the organic osmolyte 
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accumulation. It has been demonstrated that, in Halobacteria, the intracellular accumula‐

tion of inorganic ions, mainly potassium and chloride, to high concentrations is the strategy 

employed to balance the extracellular osmotic pressure [81] in accordance with the salt‐in 

mechanism. These high intracellular concentrations require unique adaptations of the molec‐

ular machinery implying that the proteins must retain their structural and functional integrity 

under such high salt conditions [80]. Although a perfect model that accurately explains how 

a protein structure is stabilized at high salt concentrations is still debatable, some specialized 

features of osmoadaptation have been identified through the determination of the genome 
sequence of Halobacteria organisms [82]. The statistical and bioinformatic analyses of these 

data, together with previous experimental data [83], have identified a biased amino acid com‐

position known as the “halophilic signature.” This signature is characterized by an increase 

in negative residues Asp and Glu, a reduction in the positively charged residues, Lys but no 

Arg, the low content of bulky hydrophobic residues like Phe and Ile, and an increase in small 

hydrophobic residues like Ala and Val [84]. As a result, in addition to preserving the protein 

folding relative to mesophilic counterparts, halophilic proteins exhibit a low hydrophobic 

content and a surface with a large negative net charge. This trend has also been confirmed 
by the means of isoelectric point calculated from the proteome of these organisms (the most 

acidic proteomes to date) [82].

The classical “solvation‐stabilization” model proposed for the understanding of the mech‐

anism behind the adaptation of the halophilic proteins proposes that the stability at high 

salt concentrations arises from the recruitment of an orderly solvate envelope of high ionic 

concentration, coordinated through the abundance of carboxylate groups (Asp and Glu) at 

the protein surface [85]. Despite the studies that have identified an increased stability and 
solubility of proteins enriched in Asp and Glu residues [86], biophysical [87] and crystal‐

lographic data [88] have failed to identify such hydration layers up to the extent proposed. 

More recently, it has been proposed that the main change in residue composition responsible 

for “halophilicity” is the diminution of Lys residues [89] due to the decreased solvent acces‐

sible area. This idea was confirmed by crystallographic studies, showing that water molecules 
adopt more structured distributions in the vicinity of Lys residues [90].

On the other hand, Methanosarcinales constitutes a heterogeneous group of organisms, consist‐

ing of the species with different salt requirements, ranging from moderate to extreme halo‐

philes. These organisms are able to accumulate intracellular organic solutes, and the more 

halophilic organisms of the group are also able to accumulate inorganic ions (like K+) in high 

concentrations [91]. Interestingly, recent phylogenetic studies show that this group of organ‐

isms branched off from the same ancestral node as the groups Halobacteria and Nanohaloarchaea 

[79]. Nevertheless, no study to date has addressed the possible adaptations on the amino acid 

composition and structural properties of proteins from Methanosarcinales.

5.4. Acidophiles

Acidophilic and acid tolerant organisms can thrive in natural, as well as man‐made, acidic 

environments at pH less than 4.0. These environments are usually present in the combina‐

tions with other stressors, like high temperatures, elevated concentrations of heavy metals, 
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and salinities approaching saturation [92]. As a result, Euryarchaeota acidophilic organisms 

are mostly polyextremophiles, being an example of acidophilic organisms that thrive in 

high salinities (Halarchaeum genera) [93] and in heavy metals along with high temperatures 

(Thermoplasmata class) [94].

Although some members of Euryarchaeota live in environments with pH values below 1, it has 

been demonstrated that most acidophiles maintain their internal pH close to neutrality. In 

order to adapt to these conditions, acidophilic organisms have evolved different mechanisms, 
such as a proton impermeable cell membrane, reversed membrane potential, and a cytoplas‐

mic buffering system [95]. However, despite keeping their internal environment close to neu‐

tral pH values, these organisms possess macromolecules with adaptations that preserve their 

structure and function. However, the exact mechanisms underlying these adaptations have 

not been elucidated to date.

5.4.1. Mechanism of protein adaptation to acid

One striking feature of some acidophilic proteins is their requirement of a low pH (2−5) for their 
optimal activity, such as alfa‐glucosidase and carboxyl esterase [96], even when the internal 

pH of these organisms is close to neutrality. Nevertheless, not all proteins from Euryarchaeota 

acidophiles have a preference for a low pH for their optimal activity, for example, an ATP‐

dependent DNA ligase from Ferroplasma acidarmanus has its optimal activity at pH 6−7, similar 
to the DNA ligases from nonacidophilic organisms [51, 97].

A possible explanation for the optimal activity at low pH was proposed through the study 

of the endo‐β‐glucanase from the Crenarchaeota Sulfolobus solfataricus [98]. This enzyme has 

an optimum pH of approximately 2.0 and an optimum temperature around 80°C. Through 

homology modeling, it was determined that its catalytic domain possesses a fold similar to 

that observed in other mesophilic, acidophilic, and neutral cellulases and its surface dis‐

plays mostly negative charges. Nonetheless, other β‐glucanases from mesophilic homologs, 
which are optimally active at neutral pH, also display low predicted P.I. values, which sug‐

gests that the net charge is not the only factor responsible for the extreme acidic stability 

[51, 98].

Recent crystallographic studies shed some light on the mechanisms of protein stability and 

catalytic efficiency at low pH. The strategy of increased negative residues was not present at 
the same extent in the aspartate racemase from P. torridus [99], while in the carboxylesterase 

from F. acidiphilum a highly negatively charged surface around the active site was identi‐

fied. However, this is not a trend observed for the rest of the protein surface. Further, in this 
enzyme, it has been demonstrated that the modifications in the hydrogen bond network sur‐

rounding the catalytic triad altered the catalytic efficiency and allowed pH preference adjust‐
ments from a low pH to a more upward optimum and vice versa [100].

5.5. Piezophiles

Deep‐sea hydrothermal vents are another extreme environment colonized by archaea. In 

these environments, an average pressure of approximately 38 MPa is found that can reach 
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even up to 110 MPa, hence imposing a major challenge for life. Organisms that can thrive 

in such extreme barometric pressure are often termed as piezophiles or barophiles. Several 

piezophiles have been cultured; however, they require specialized equipment in order to 
maintain high pressures. Thus, many studies have focused on nonculturing techniques, 

like genomic analysis. Besides high pressure, hydrothermal vents also have very high tem‐

peratures and indeed could be the habitat of hyperthermophiles. However, only a few 

hyperthermophiles are also piezophiles. To date, the only strictly piezophilic anaerobic 

hyperthermophilic archaeon reported is Pyrococcus yayanosii CH1 [101]. Some reports have 

indicated that there are no specific pressure‐related adaptations required for the enzymes 
isolated from piezophiles to be stable; however, a hydrostatic pressure asymmetry index 
(PAI) that reflects the extent to which an amino acid is preferred by piezophiles has been 
described [102]. Proteomic comparative analysis of P. furiosus and P. abyssi shows that 

Asp and Arg are the only two amino acids that can be designated preferentially baro‐

philic, although previous studies designated five (Arg, Ser, Val, Asp, and Gly). On the 
other hand, only three amino acids (Asn, Lys, and Thr) display a clear preference for 

nonbarophily [103].

6. Biotechnological applications of extremozymes

The extreme harsh environmental conditions where extremophiles live serve as an enormous 

source of enzymes with peculiar properties that make them very suitable for industrial or 

biotechnological applications. The first commercialized enzyme was diastase, available in the 
market since 1830 in France. Since then, the enzyme market gained importance because they 

not only reduce the cost of the products but benefit the environment. In 2015, the global market 
for industrial enzymes reached nearly 4.9 billion and is expected to reach nearly $5.0 billion 

in 2016 to $6.3 billion in 2021. Food and animal feed industrial enzyme market is expected to 

grow to $1.9 billion and $1.6 billion in 2021, respectively (BCC Research Biotechnology report 

2017). At present, most of the industrially applied enzymes show low activity and stability, 

which is highly disadvantageous in terms of concomitant high costs (Table 2).

There have been continuous efforts for expressing the genes encoding for the enzymes from 
extremophiles in mesophilic hosts in order to overproduce them and modify their properties 

to be suitable for commercial applications. In addition, archaeal enzyme expression can be 

achieved by using extremophilic microorganisms as hosts for autologous gene expression 

[124]. Integrative and shuttle vectors have been developed for Methanococcus species, which 

allow overexpressing specific enzymes with complex prosthetic groups that are inactive if 
expressed in E. coli [124].

Archaeal compounds also have many applications in the pharmaceutical and alimentary 

industry. Haloarchaea organisms from the order Halobacterium (Haloferax sp.) produce a pep‐

tide called halocin, which is used as an antimicrobial and preservative in food with high salt 

content. For example, the H6/H7 halocin produced by Haloferax gibbonsii affects the Na+/H+ 
antiporter and then inhibits the membrane ionic gradient of the target cell, provoking cell 

death by lysis [125, 126]. In addition, compounds like canthaxanthin produced by Haloferax 
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Enzyme Enzyme characteristics Organism Application References

α‐Amylase Hyperthermophilic Thermococcus 

profundus

Bread and baking industry, 

Starch liquefaction and 

saccharification. Production 
of glucose, fructose for 

sweeteners, textile desizing, 

paper industry

[104]

Halophilic Haloferax 

mediterranei

[105]

Acidophilic Picrophilus torridus Q6KZM7*

Psychrophilic Methanococcoides 

burtonii

Q12YQ1*

Subtilisin Hyperthermophilic Thermococcus 

kodakaraensis

Detergents, baking, brewing 

and amino acid production

[106]

Halophilic Halorubrum litoreum M0NQ93*

Acidophilic Thermoplasmatales 

archaeon

M7TYK7*

Psychrophilic Methanolobus 

psychrophilus

K4M7H8*

Esterase Hyperthermophilic Picrophilus torridus Detergent formulations and 

dairy industry

[107]

Halophilic Haloarcula 

marismortui

[108]

Acidophilic Picrophilus torridus [107]

DNA polymerase Hyperthermophilic Pyrococcus abyssi DNA cloning, sequencing, 

labeling, mutagenesis, and 

other purposes

[109]

Halophilic Halobacterium 

halobium

[110]

Acidophilic Thermoplasma 

acidophilum

Q9HJR0*

Psychrophilic Methanococcoides 

burtonii

Q12YC5*

Cellulase Hyperthermophilic Pyrococcus horikoshii Pulp and paper, textile, 

laundry, biofuel production

[111]

Halophilic Halorhabdus 

utahensis

[112]

Acidophilic Picrophilus torridus Q6KZ15*

Psychrophilic Methanococcoides 

burtonii

Q12XZ9*

β‐Glycosidase Hyperthermophilic Pyrococcus furiosus Polymer degradation, color 

brightening, color extraction 

of juice, cotton products, 
synthesis of sugars

[113]

Halophilic Haloarcula 

marismortui

Q5V5G3*

Acidophilic Picrophilus torridus [114]

β‐Galactosidase Hyperthermophilic Pyrococcus woesei Detergent and food 

industries and for the 

production of fine chemicals

[115]

Halophilic Haloferax alicante [116]

Acidophilic Picrophilus torridus [117]

Psychrophilic Halorubrum 

lacusprofundi

[118]
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alexandrinus present antioxidant properties that can be used potentially as food supplements 

to prevent cancer or cardiovascular diseases [127]. Other compounds like exopolysaccharides 

produced by Haloferax have been employed in the food industry as emulsifiers since they are 
stable at high temperatures. Other interesting biotechnological applications are the use of 

archaeal lipids for the formation of a new generation of liposomes, known as archaeosomes. 

Archaeal lipids present a more polar character and have ether bonds which gave them more 

stability at extreme temperatures, pH, and pressure. In addition, these characteristics pro‐

vide protection against oxidation, to the action of phospholipases and chemical hydrolysis, 

providing an advantage over liposomes formed by neutral phospholipids. Owing to their 

great stability, biocompatibility, and biodegradation, archaeosomes have many uses as vac‐

cine adjuvants and in drug delivery system [128].

There is a huge amount of information available regarding biotechnological applications of 

extremozymes, and therefore, this chapter made an effort to summarize the applications of 
these enzymes and compounds in some selected areas. Considering that very few archaeal 

enzymes have found their way to the market in some applications, we provided the examples 

of such extremophiles and the corresponding UniProt code for the homologous enzymes 

present in archaea (Table 2). We hope that this kind of information will be extremely valuable 

for future studies looking for archaeal enzymes with particular properties.
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Enzyme Enzyme characteristics Organism Application References

Alcohol 

dehydrogenase

Hyperthermophilic Thermococcus 

hydrothermalis

Food, pharmaceutical, and 

fine chemicals industries
[119]

Halophilic Haloferax volcanii [120]

Acidophilic Thermoplasma 

acidophilum

[121]

Psychrophilic Halorubrum 

lacusprofundi

B9LV78*

Lipase Hyperthermophilic Pyrococcus furiosus Detergent formulations and 

the dairy industry

[122]

Halophilic Natronococcus sp [123]

Acidophilic Thermoplasma 

acidophilum

Q9HJS7*

*UniProt code.

Table 2. Extremozymes and their applications in industrial and biotechnological processes.
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